An Introduction to SQL
‘ Foundations of Information Management (WS 2008/09) I

CREATE TABLE
—

N — Chapter 3 -

‘ An Introduction to SQL I

SELECT
FROM
WHERE

SQL.: History

« SQL (Structured Query Language) is the most popular and well-known relational
DB language today.

* Almost every relational DBMS ,,understands" SQL !

* SQL has been developed in the early 1970s at IBM (as interface to the relational
prototype DBMS "System R").

e Original name: SEQUEL (Structured English Query Language)
o First SQL standard: SQL1 in 1986 by ANSI in the USA, revised in 1989

e Considerable extensions of the standard over the years:
SQL2 or SQL92, resp., SQL3 or SQL:1999, SQL:2003

o Attention! Nearly every commercial DB product has its own ,,dialect" of SQL.
None of them implements it completely and exactly.

... and: SQL is a ,,huge* language — more than 1500 pages of standard text.

SQL.: Books

Covers CId and PSM

»Classical" (but arguably still the best)

%D, source about SQL.:
A Guide o

T'_IFS L Chris Date, Hugh Darwen:
»A Guide to the SQL Standard"

STAND

FOURTH EDITION Addison Wesley, 1997 (4th edition)
~€44

ISBN 0-201 964-260

Good new book about the new SQL standard:
Melton/Simon: "SQL:1999 Understanding Relational Language
Components", Academic Press, 2002

Basics of SQL

SQL has its own terminology of relational concepts:

datasheet table
field column

Access record row SQL
data type domain

Tables in SQL are no proper relations, but may contain duplicates and may be
ordered. Duplicates can be eliminated by the user, though.

* The name ,,Structured English Query Language* indicates that SQL is a keyword-
based language which reads like simple English: All keywords are English natural
language words. Keywords are ,,reserved* and may not be used for other purposes.

o SQL is a purely textual language without graphical elements.

SQL consists of two sublanguages:
» adata definition language (DDL) for defining databases schemas
« adata manipulation language (DML) for expressing queries and updates

Data Manipulation in SQL
‘ Foundations of Information Management (WS 2008/09) I

Data Manipulation in SQL |

- 3.1 -

SELECT
FROM
WHERE

Queries and updates in SQL: Overview

SQL data manipulation language: statements for ,,manipulating"” data

Two forms of manipulation:
« Evaluation of queries
« Execution of updates

The format of simple queries has already been addressed in connection with
Access:
SELECT-FROM-WHERE statements

But the SQL query language (as part of the SQL-DML) can do much more!

Goal of this section: Introduction to the foundations of this powerful language

You can become an expert in SQL by much more intense training and self-
studies only !

At the end of this section: Treatment of update statements in SQL
(INSERT, DELETE, UPDATE etc.)

Query types in SQL b-it

In SQL, there are two Resul’_[:
types of queries: derived table

Table expression

DB

Conditional expression

Problem (?): Only table expressions can @
be directly posed as queries by the user
(similar to selection queries in Access) !

Result:
truth value

Table expressions: Basic structure b'lt

Basic component of any SQL query: SELECT-FROM-WHERE blocks

Syntactic structure in the simplest case:

SELECT (list_of column_names) | <= columns of the result table
FROM (list_of_table_names) <= ,input”tables
WHERE condition <= selection condition

Example:

SELECT capital, population

FROM cities, countries

WHERE population >= 1000 AND
city=capital ;

Find all capitals with
more than a million
population !

In SQL., upper or lower case does not matter for table and column names.

Meaning of SELECT blocks: Principle

Meaning of a SELECT-FROM-WHERE block:

FROM . A
Combination of N
. \
all input tables WHERE \) Derived
_ 7, | tables
P - /
P
“ /
Choice of //
certain rows)/
SELEC
G ~ J /TI
Input tables)
: > Result table
Choice of
certain columns /

© 2008 Prof. Dr. Rainer Manthey LSI-FIM 9

Evaluation of example query

Let us apply this 3-step process for evaluating the example query over the ,,Europe* DB:

SELECT capital, population

FROM cities, countries

WHERE population >= 1000 AND
city=capital ;

Ed Microsoft AEEESS'[EitiES:TahE"E]é; =10l x| K2 Microsoft Access - [countries : Tabelle] 1O x|
jtgate:: EE:rbEi:EH insicht. Enfilgen Format Dateng&ti: ﬂ J Datei Bearbeiten Ansicht Einflgen Format Datensitze Exkras Fenster 7 _|5’|5|
xtras Fensker 7 =]
(a2~ @2 v+ 2| F [EB- dpa| JE-[EE Fon C|F|D-A-[E-=r e
| oity | TGy |pupu|atiun | year | country | code | . capital | area | population | -
+ Amsterdam ML 731286 2000 ARG Lt A Vienna 83850) 8023244
1+ Andarra a Vella | AND 0787 2001 ||+ Albania AL Tirane 25750 3249138
—1. Ank R 203362 2000 | |* Andarra AMD Andorra la Wella 450 72766
— Atnh ara or i7" 1551 |+ Belgium B Brussels 30510 10170241
—. 5 E”f c el o |+ Bulgaria BG Sofia 110910 BR12757
— Balme 3”3 SrE R ||+ Bosnia and Herzegovina BIH Sarajevo B1233 2656240
— BE ?_ra 2 o e |+ Belarus BY Minsk 207600 10415973
— BE:A” o Toamal o001 ||+ Switzerland CH Bern 41290 7207060
1+ Birminaham GE 1010400 2000 | |[* Cyprus Y Micosia 9250 744609
|+ Brat lg Sl 447345 2000 | |* Czech Republic CZ Frague 78703 10321120
T 5 540950 2002 ||+ Germany D Berlin 356910 B3536115 _
;tens;tz: I4I| 4 || = 11k |H |He| ;;n ?F; o ;I Datensatz: _I_IH : I—l_l_l_l’ P1Ip#| von 48 _I_I‘ .
Daterbiattans | | | i i S y [Datenblattansicht | | | | | (| i

77 cities 46 countries

Evaluation of example query (2)

SELECT capital, population

FROM cities, countries

WHERE population >= 1000 AND
city=capital ;

In the first step, a huge table containing all 46 * 77 = 3542 combinations of rows on citites
and rows in countries is formed — at least conceptually.

city country population yearl country code capital area population

3542 rows !!

This huge table is called the product of cities and countries. Never form a product unless
you make sure to ,,cut it down* immediately after — or unless you actually want it that big!

Evaluation of example query (3)

SELECT capital, population

FROM cities, countries

WHERE population >= 1000 AND
city=capital ;

In the next step, all those rows are eliminated from the enormous product table which do
not satisfy the WHERE-condition — only 46 capitals remain, of which 16 are big enough.

city country population yearl country code capital area population

16 rows !!

Still, all the columns remain — even though most of them are irrelevant for the query.

Evaluation of example query (4)

SELECT capital, population

FROM cities, countries

WHERE population >=1000 AND
city=capital ;

Finally, the unwanted columns are eliminated — i.e., only capital and population remain.
OOPS, there is a problem: We do know which population copy to take (the one originating
from cities) but the DB system doesn‘t know! Let us postpone the problem!

M couflry population M coyvﬂy w capital M popflﬁtion

16 rows !!

The elimination of columns is called the projection operation, by the way.

Conditions in the WHERE part

e The WHERE part of an SFW-block is — in its basic form — nothing but a selection
condition composed of individual comparisons of column values of the tables
mentioned in FROM with other column values or constants.

Comparisons make use of the following six comparison operators:

Comparisons can be logically combined by the three basic operators of proposi-
tional logic (called junctors), written in keyword notation:

AND OR NOT

Arbitrary nesting is possible (using brackets). There are more complex condi-
tions which we will introduce later.

The purpose of the WHERE-part is to select those rows, which satisfy the condi-
tion for inclusion into the answer table.

Excursus: Propositional logic b-it

Theory of propositions and their connecting operators: Propositional logic

A proposition (statement) is a sentence (a linguistic entity)
of which it is reasonable to say that it is true or false.

(Aristotle, Greek mathematician, 384-322 B.C.)

Examples of elementary statements:

e 5<6 true
e 8isaprime number false
e The moon is made of cheese false

Propositional operators

e Compound statements are composed from other statements by means of logical
operators (connectors).

e Binary (dyadic) operators of propositional logic:

Conjunction

Disjunction

« Unary (monadic) operator: Negation "not"

« Elementary statements as well as other compound statements may be connected
via such operators in order to form arbitrarily nested complex propositions, e.g.:

((5< 6) A (8isaprime number)) v — (The moon is made of cheese) I

Meaning of operators (1)

» QOperators are syntactical "tools", by which the meaning ("'semantics")
of compound statements can be derived from the meaning of their parts.

* How this is to be done is determined by so-called truth tables:

A B ArB)
e.q. Truth table 0 PR I T L
for conjunction 3 O I < E....L T: true
F T F F:. false
F F | F

e To be read this way: If Aistrue and B is false,
then the statement A A B has the truth value false.

Meaning of operators (2)

 Truth tables of the binary operators:

 [an B lAvE A _BlAsB]
ST [iT T T LT
.lllll_i_ lllllll Fl lllllll : llTllEllll‘ T F F
F T | iT: F T | F
F F | E° F F F

A bit unusual: Propositional or is not exclusive, it is not a real alternative,
but “subsumes™ propositional and.

» Truth table of negation:

not:

M -[>
—I'l'l>

Evaluating compound statements

Truth values of compound statements can be derived systematically from the
truth values of their parts, using the meaning of the operators involved, e.g.:

-
_A—
Va —~
F T
A A
~ ~N ™~
((5< 6) A (8isaprime number)) v — (The moon is made of cheese) I
T F F
and: A B A\/\ B | or: A B A\v B
T T T T T T not: —A 1o A
T F F T F T T F
F T | F F T | T F T
F F F F F F

Implicit and explicit references to input tables b-it

 In the example query, three names are mentioned (capital, year , city) which refer to
certain columns of the two input tables cities and countries. If you remember the schema
of each table, you know which column comes from which table. SQL remembers!

SELECT capital, year
FROM cities, countries

WHERE year >=2000 AND
city=capital ;

» By prefixing column names with their ,,parent table* name, you can make these references
explicit in a query. Doing so helps readers unfamiliar with the schema. Access always uses
this style when generating SQL from QBA queries:

SELECT countries.capital, cities.year
FROM cities, countries

WHERE cities.year >= 2000 AND
cities.city = countries.capital ;

Disambiguating references b-it

* In the original version of the example, population was used instead of year. However, both
tables have a population row! Thus, even the SQL system does not know to which row |
am actually referring to — the one in cities, or the one in countries:

SELECT capital, population
FROM cities, countries

WHERE population >= 1000 AND
city=capital ;

» For resolving ambiguities like this, it is even necessary to use table names as prefixes
in order to explicitly determine the intended reference table — mixing implicit and expli-
cit referencing is possible:

SELECT capital, cities. population
FROM cities, countries

WHERE cities. population >= 1000 AND
city = capital ;

Alias names for tables

 If you prefer, you can introduce shorthands — or even other names — for refering to the
input tables in the from clause, e.g. X for cities and Y for countries (just like variables
In mathematical formulas):

SELECT Y.capital, X.population
FROM cities AS X, countries AS Y
WHERE X.population >= 1000

AND X.city = Y.capital,

 Such shorthands (or alternative names) are called alias names (or aliases for short).
They are declared in the FROM-part using the keyword AS.

* You can mix styles of referencing: explicit (table name or alias name) or implicit, as
long as it is possible to uniquely determine which column refers to which table, e.g.:

SELECT CT.capital, population
FROM cities, countries AS CT
WHERE population >= 1000

AND city = CT.capital,

Aliases for resolving ambiguities b-it

» Using aliases is unnecessary in most cases — however, you are advised to use
them (despite the extra effort) whenever the implicit references of columns to
tables are confusing for you (or others, reading your query).

e Assoon as a table is mentioned more than once in a query, however, it is un-
avoidable to use aliases in order to resolve possible ambiguities, e.g.:

SELECT X.countryl, Y.country?2
FROM common_border AS X, common_border AS Y
WHERE X.country2 = Y.countryl

countryl X country?2
L 0 < >»®
countryl Y country?2

e Without the variables it would be unclear, which of the three adjacent countries
Is actually meant, as they have identical column names. Using the aliases as
prefix to the column names resolves the ambiguity.

Excursus: Set theory and relational algebra b-it

* In order to properly understand further fundamental operators in SQL,
It is necessary to get a basic idea of a particular variant of mathematical
set theory, called relational algebra.

* The mathematical concept of a set is of fundamental importance for almost
every area of computer science.

e The notion of a set is "defined" in an informal way, as is common practice
In mathematics (by intuition, “naive set theory").

"A set is a collection into a whole of definite, distinct objects

of our perception or our thought."

Georg Cantor (1845-1918), originator of set theory

» Sets are composed of elements (Cantor’s “distinct objects”). In a set, each
element appears exactly once (i.e., there are no duplicates). The order in
which elements appear does not matter (i.e., sets are unordered).

Examples of sets

Almost everything can be in a set.

382 256

9
417616 21

elements
of the sets

Sets are rather collections of
abstract ideas or individuals
("objects") than shopping
bags.

© 2008 Prof. Dr. Rainer Manthey LSI-FIM 25

Relations are sets, too! b'lt

Database relations (visualized in tabular form) can be regarded as sets, too. Their elements
are called tuples in mathematics:
R is a set of 3-tuples (or triples), S is a set of 2-tuples (or pairs).

R S
1 2 3 a b
2 4 5 c d
3 6 9 Xy

Sets of tuples that are no relations

» Not every set of tuples is a relation, though!

» Relations are homogeneous, i.e., contain elements (tuples) of the same kind:
» same number of components (called arity in mathematics)
e same type of components at respective positions

a relation

not a relation

1

2 4 5

3 6 9 a b
Xy

Operators for combining sets (1)

B
—— e =N]
\

—r e ———————

\

A N

Operators for combining sets (2) b-it

» There are three basic operators for combining sets in general, i.e. for constructing a
new result set from the elements of two input sets A and B:

union AUB contains all elements of A together with those in B
intersection A M B contains all elements from A which are in B, too.
difference A—B contains all elements from A which are not in B

 If applying them to sets that are relations, we have to make sure that both input sets
are ,,of the same kind“ (i.e. have the same arity and type), otherwise the result set
would not be a proper relation again. Thus, the three set operators ,,behave* a bit
differently if used as relational algebra operators.

* In SQL, there are keyword for the three operators, differing slightly from their names

in set theory:
UNION INTERSECT MINUS

Combining relations via set operators

R Q
1 2 3 12 3
2 4 5 2 6 7
3 6 9 3 6 9
4 1 5
1 2 3
RUNIONQ |, , ¢
3 6 9 duplicates eliminated!
2 6 7
4 1 5
R INTERSECT Q |1 3
3 6 9
2 6 7
R MINUS O > 4 © 4 1 5| Q MINUSR

Set operators in SQL

WD
o~ |0
O U w0

A WN (P>
oo N |0
U1 O ~N WO

(SELECT A,B FROM R) /
UNION

(SELECT A,B FROM Q)

In SQL, set operators
may be applied to any
two expressions denoting
relations of the same kind.

A B
1 2
2 4
3 6
2 6
4 1

RA operators ,,hidden* behind SELECT-FROM-WHERE

» Each clause of a SELECT-FROM-WHERE block corresponds to an operator of relational
algebra, too:

projection T, g eliminates all columns except A and B

selection O, eliminates all rows except those satisfying condition cond

product RS setofall combinations of tuples from R and S

e Example:

SELECT capital, cities.population Tcapital, citites.population
FROM cities, countries

WHERE cities.population >= 1000 AND
city=capital ;

cities X countries

Gcities.population >= 1000
AND city = capital

» The order of evaluation matters in SQL: 1) product 2) selection 3) projection

* Don‘t be fooled by SELECT corresponding to the projection part rather than selection!

The JOIN operator in SQL and RA b-it

» There is a special notation for situations, where two tables connected via a product are
logically linked via a selection condition involving one column from each table, too:

SELECT countries.capital, cities.population
FROM cities, countries
WHERE cities.population >= 1000 AND

cities.city=countries.capital ; join symbol in RA:

>

« Such linking conditions are called join conditions, and the operation is called a join in RA.
A join may appear in the FROM part in place of the comma (indicating product). The
join condition is moved to the FROM part, too:

SELECT countries.capital, cities.population
FROM cities JOIN countries ON cities.city=countries.capital
WHERE cities.population >= 1000;

* Note that JOIN is allowed in a FROM part only, not as an independent operator such as,
e.g. UNION. - In Access, this form of join is called the INNER JOIN.

Nesting blocks in SQL: The IN operator b'lt

 If only columns from one of the two tables involved is required in the result table of a
query, the other table can be accessed in an inner block nested in the WHERE part:

SELECT countries.capital
FROM cities, countries
WHERE cities.population >= 1000 AND
cities.city=countries.capital ;

SELECT countries.capital
FROM countries
WHERE countries.capital
(SELECT cities.city
FROM cities
WHERE cities.population >= 1000);

» The keyword IN (connecting a column name and a subquery) corresponds to the operator €
representing the is element of relationship between an object and a set in set theory.

NOT IN for simulating MINUS b-it

* In Access, the MINUS operator expressing set difference is unknown. However, an
identical result can be obtained using block nesting and the NOT IN operator:

(SELECT city FROM cities)
MINUS Which cities are no capitals?

(SELECT capital FROM countries)

SELECT city
FROM cities
WHERE city NOT IN (SELECT capital FROM countries)

« Apart from being a bit more intuitive, this formulation shows more explicitly that set
difference is not a symmetric operation: R MINUS S # S MINUS R

 In addition, the nesting style indicates clearly that the rows ,,surviving“ in the difference
all come from the left operand table.

Simulating intersection by means of JOIN

Access does not support the INTERSECT operator either, as it can be simulated by means
of a join on all columns of the two tables returning only those rows that have identical
values in all of these columns:

(SELECT city FROM cities WHERE population > 1000)
INTERSECT
(SELECT capital FROM countries)

SELECT city
FROM cities JOIN countries ON city = capital
WHERE cities.population > 1000

In this case, the order of the input tables does not matter. The above is equivalent to:

SELECT city
FROM countries JOIN cities ON city = capital
WHERE cities.population > 1000

Multi-table queries in SQL: Summary b-it

Within a SELECT-FROM-WHERE block, two tables can be combined in two ways:
* by simply listing the tables in the FROM part separated by a comma: product
* Dby explicit JOIN in connection with a join condition in the ON part

» Two independent subqueries can be combined using one of the three set operators in
infix notation: UNION, INTERSECT, and MINUS.

« A SELECT-FROM-WHERE block can be nested within the WHERE part of another
block by means of the (NOT) IN operator, comparing a column in the outer block with a
column in the SELECT part of the inner block.

* JOIN-ON is not strictly necessary, as it can be expressed by product and selection.

 MINUS can be expressed using NOT IN and nesting.

e INTERSECT can be expressed by a JOIN on all columns.

e Thus, SELECT-FROM-WHERE blocks with IN-style nesting and UNION are sufficient
for expressing almost all multi-table queries (this is the SQL subset supported by Access).

Duplicate elimination in SQL

e SQL answer tables are no relations in the sense of set theory and relational algebra:
Projection and union may produce duplicate answers which are not automatically

eliminated in SQL!

» Fortunately, duplicates can be explicitly eliminated by the user using the keyword
DISTINCT after SELECT:

SELECT DISTINCT Name Name

FROM countries ‘ -

WHERE Name in (SELECT country I(:;;ar?r(:zn
FROM cities —Gmmn;/—
WHERE population > 1000)

 Itis recommendable to always use SELECT DISTINCT as soon as a ,,real
projection occurs, except if the SELECT part refers to a key column only. -
There is no convincing reason for working with duplicates in SQL!

Aggregate functions b-it

e Important class of ,,built-in“~-functions in SQL.: ‘ Aggregate functions I

Cardinality
Sum
Average
Maximum
Minimum

« Computation of one scalar value from a set of scalar values (the aggregate)
originating from one column of one table:

) Aggregate —> 0

Function value

© 2008 Prof. Dr. Rainer Manthey LSI-FIM 39

Aggregate functions (2)

Examples of aggregate expressions in the SELECT-part:

j advisable in order

Compute the overall salary of all C3-professors ! /(to have a column
I

LB _N |
os*” Tu,
*

name for each

; " : column in the answer
SELECT SUM (Psalary) 3AS Total §7 | table

FROM professors AS P ™ewevesesrfl T TTTT T T T
WHERE P.Rank=,C3*

Which C3-professors are older than all C4-professors?

SELECT P.Name
FROM professors AS P
WHERE P.Rank =,C3‘ AND

P.Age > (SELECT MAX (Q.Age)
FROM professors AS Q
WHERE Q.Rank =,C4*)

Aggregate functions (3) b-it

« Often used in connection with aggregate functions:
extended SELECT-blocks with subdivision of the resultat tables in groups

 Syntactic extension: GROUP BY-clause (after SELECT-FROM-WHERE)

o Basicidea: The result of the evaluation of SELECT-FROM-WHERE (a table)
Is divided into ,,subtables* (groups) with identical values for certain
grouping columns (specified in the GROUP BY-part)

« Aggregate functions are applied to groups (as aggregates), if GROUP BY has been
specified:
€.g.. SELECT P.Rank, AVG(P.Age) AS AvgAge

FROM professors AS P
GROUP BY P.Rank

 If no explicit grouping is specified, the entire table is assumed as one big ,,group®.

Aggregate functions (4)

IHlustration with
example data:

SELECT
FROM
WHERE

P. Rank, AVG(P.Age) AS AvgAge

professors AS P
P.Name <> ,Ken*

GROUP BY P.Rank

GROUP BY ﬂ

Name

Rank

Age

Jim
Lisa

C4
C4

43
39

John
Eva

C3
C3

33

AVG

36

Tom

C2

Sorting tables in SQL

e Sorting of the result table can be specified at the end of a SELECT-block
(after GROUP BY, if present at all)

e Example:

SELECT X.Rank, X.Salary
FROM professors AS X

ORDER BY X.Rank DESC,
X.Salary ASC

e Direction” of sorting: ASC (ascending, default value if unspecified)
DESC (descending)

e The order of columns is always respected when sorting, thus introducing
multiple sorting criteria.

e Sorting can be specified independent of aggregation.

Null values (1)

In tables of a relational database there might be numerous empty cells — for various reasons
and with different meanings. In SQL, there is the feature of a null value associated with this.

Microsoft Access - [Person : Tabelle] '"- O] x|
J Dakei Bearbeiten Ansicht Einfllgen Format Datensatze Extras Fenster 7 ;Iilil
[B -] o[£ B) [éhps 20 F |2 Aa-E-=-
GRY R Y o Vv Ba- 0.
- H ey iRy o - -l Ba- o).
ID | Style| Title TitleZ Affiliation FirstHame Name =

b HM King of Great Britain Albert George %1 Windsor

11 Hihl Clueen Elizabeth Windsar

1a Hh Llueen of Great Britain Elizabeth |l Windsor

1al HEH Prince Duke of Edinburgh Philip Maunthatten |

laa |HHH |Prince of Wiales Charles Mountbatten-WWindsor

1aal Lady Princess of Wales Diana Moauntbatten-Windsor

laa? HHH |Duchess of Carrmeall Camilla Mountbatten-WWindsor

laaa HRH Prince of Wales William Mountbatten-Windsaor

laab HHH |Prince of Wiales Henry Mountbatten-WWindsor

lab HREH Princess Royal Anne Laurence

1ab1 Ml ark FPhilipps

1abZ Timothy Laurence

1aba Feter FPhilipps

1abh Lara Fhilipps -
Datensatz: 1404 [1 _» [»ei]es#] von 31 1] | _hl_l
Datenblattansicht | | | | | O

Null values (2)

o SQL offers a predefined, universal null value, intended to represent unknown or
missing information in a systematic way. The keyword NULL represents such
values.

Correct usage of NULL is difficult, partly because there are a number of
inconsequent design decisions in the SQL standard.

Null values can be interpreted in a number of different ways.

Possible interpretations are:
« Value exists, but is presently unknown.
e [tis known that in this row no value exists in the respective column.

e |tis not known if a value exists or if so, what it is like.

* Intended interpretation of null values in SQL: Value exists, but is unknown!

 Thus: Nulls are called ,,values*! Each two occurrences of a null value represent
different ,,real" values presently (still) unknown.

 However: Nulls themselves don‘t have a type but always take the type of the resp.
column-underconsideration

Null values (3)

 In queries, emptiness of a particular cell can be tested by using the keyword NULL.
Note that NULL does not represent ,,the* null value (as there are infinitely many

of them), but simply serves as a test condition applied to a particular field of a
particular row.

« One immediate consequence of this particular interpretation of empty cells alias

null values is that NULL may not be used in comparisons, i.e. the following are
not allowed in SQL.:

Name = NULL Age > NULL

 Instead, there is a special test operator IS which can be used to express checks
for ,,nullness* (i.e. emptiness of cells), e.g..

Name IS NULL Age IS NOT NULL

 Moreover, you rows on empty cells, as two different occurrences of

a null value (in two different rows) are different by definition, and thus cannot
be identified (or compared).

Null values (4)

e Aggregate functions ignore NULL ,,on purpose*!

SUM (Age): 33
COUNT (Age): 1

person

AVG(Age): 33

» Access offers a built-in function (nz), though, for transforming all NULLs in a
field by O when used in a query, e.g. nz([age],0) (nz stands for null-to-zero)

 In comparisons (and other conditions) NULL leads to usage of a three-valued
logic, i.e. a logic with three rather than two truth values:
TRUE, FALSE, UNKNOWN
Whenever NULL occurs during evaluation, UNKNOWN may result, depending
on the logical operators involved (details are beyond the scope of this chapter).

 Example: If A=3, B=4 and IS NULL C, then...
. A>B AND B >Cresultsin FALSE
. A>B OR B>Cresultsin UNKNOWN

Outer joins b-it

« Automatic generation of null values when using an OUTER JOIN-operator:
{ LEFT |RIGHT | FULL } [OUTER] JOIN

o Semantics: ,,Normal* join extended by rows filled up with NULLSs, containing
values which would otherwise not appear in a join.

e Example:
SELECT *
0 A B FROM p FULLOUTERJOIN g ON p.B>=q.B
1 2
1 3
2 1
q B _C
2 5
3 4 Pid
5 3 Always contains
INNER JOIN

as subtable !

Outer joins (2)

e LEFT and RIGHT OQUTER JOIN: Only the "non-joining" elements of the
left or right table, resp., are filled up with NULLSs.

e Example:
SELECT *
0 A B FROM p LEFTOUTERJOIN q ON p.B>=q.B
1 2
(left) 1 3
2 1
g.B C
q B C 2 S
3 2 S
- 3 4
right 3 4
(right - NULL NULL

 In Access-SQL: Only LEFT JOIN and RIGHT JOIN are supported,
no FULL OUTER JOIN; "OUTER" is omitted.

Empty tables (and not so empty ones) b-it

How does an empty table look like in SQL ?

In set theory, ,,empty“ means: without elements. Thus, an empty table does not
contain any row.

Don‘t confuse this with a table containing just one row the fields of which
all consist of NULL values — such a table is not (really) empty!

In the datasheet view of Access the difference is clearly visible:

city at_river
City | River non-empty table, consisting of a
i ~NULL-row*
city at river

City | River empty table not containing any row

Boolean queries in SQL

 How to "simulate" a yes/no-query in SQL ?

e.q.. Isthere a city with more than 4 million inhabitants?

 With table queries, only an indirect answer is possible:
An empty answer table is interpreted as ,,no".

Name . |fyeS
SELECT Name Paris non-empty
FROM city London answer table

WHERE Inhabitants > 4000 :

if no:
empty table

Name

* More reasonable, but not (yet) possible as a ,,stand-alone* query according to
the SQL standard:

‘ CHECK EXISTS (SELECT Name FROM city WHERE Inhabitants > 4000) I

Update operations in SQL: Overview

Already mentioned at the beginning of this section:
Update statements are part of the DML-sublanguage of SQL, too!

SQL offers three basic operations for changing data:

e INSERT insertion of rows
« UPDATE modification of values in columns
 DELETE deletion of rows

All three types of update operation can be combined with queries for retrieving
the rows of a particular table to be inserted/updated/deleted.

Reminder: There is the danger of a terminology conflict:

o ,Update* in the general sense refers to any kind of change
e UPDATE in SQL means column value replacement only

Recommendation: Try update statements in Access and observe how action

queries of type insertion/modification/deletion are automatically transformed
into SQL statements, and vice versa.

INSERT-Operation

e Format of insertions:

‘ INSERT INTO <table-name> [(<list-of-columns>)] <tab|e-expression>|

e Two variants:

» Direct reference to one or more rows to be inserted, e.g

keyword for direct
specification of rows

pd

Notation of a tuple
in SQL

INSERT INTO professors (Name, quld)epartment)
» VALUES (,Cremers, ,C4¢, ,111°)

 Indirect identification of the rows to be inserted via a query, e.qg.

INSERT INTO professors
SELECT *
FROM researchers ASR
WHERE R.qualification = ,PhD*

UPDATE- and DELETE-operation

 Format of modifications:

UPDATE <table-name>
SET <list-of-assignments>
[WHERE <conditional-expression> |

Modifies all rows of "table name" satisfying the WHERE-part according to the
assignments of values to columns given in the SET-part.

Syntax of an individual assignment:

<column-name> = { <scalar-expression>| DEFAULT | NULL } I

Example: UPDATE professors
SET Name = ,N.N.*

WHERE Dept = ,II°

assignment (action)
condition (test in the ,,old"
state)

a

a

Quite similar: Deletions

DELETE FROM <table-name>
[WHERE <conditional-expression> |

Data Definition in SQL

‘ Foundations of Information Management (WS 2008/09) I

Data Definition in SQL |
&C?EATE TABLE

- 3.2 -

N—

N

J

Schema definition in SQL b-it

The DDL-part of SQL is a language for defining a relational DB schema, I.e.,
a collection of table structures. Before a database can be populated with data,
Its schema has to be defined.

SQL offers a number of operations for defining a schema:
CREATE TABLE, CREATE VIEW, CREATE DOMAIN etc.

In addition to defining the structure (i.e. the type) of the tables, a number of
semantic rules can be associated with the schema. There are three kinds of such
rules:

* View definitions (also called deductive rules)

e Integrity constraints (normative rules)

e Triggers (active rules)

Once a schema has been defined and data have been inserted into the resulting
database, it is possible to modify the structure and the rules of a database by
means of special operations of the SQL-DDL.: schema evolution

CREATE TABLE: Principle

e Most important DDL-operation: Creation of a new table

CREATE TABLE <table-name> L:]nique witr:n one and
(<lists-of-table-elements>) ; the same schema

« "Table elements" are
 definitions of name and data type of each column, and
 constraints referring to the newly created table.

e Syntax of a table definition:

CREATE TABLE <table-name>
<column-name,> <type,> [<column-constraints,>],

: Integrity constraints
<column-name,> <type,> [<column-constraints,>

 for individual columns
- for the entire table

<column-name, > <type > [<colu
[<table-constraints>]

CREATE TABLE: Example b-it

Example:
SQL-statement defining a table FootballMatch containing the results of

football matches in the national league:

Table name
CREATE TABLE FootballMatch
(
(Date date,
HomeTeam text,
GoalsH number(15) DEFAULT NULL

CHECK (>=0O0R IS NULL),
GuestTeam text,

Table GoalsG number(15) DEFAULT NULL
elerents < CHECK (>=00R IS NULL),
Round number(15) NOT NULL
CHECK (>0 AND < 35),

PRIMARY KEY (Date, HomeTeam),
FOREIGN KEY (HomeTeam) REFERENCES Teams,
_ FOREIGN KEY (GuestTeam) REFERENCES Teams

)i

CREATE TABLE: General structure b-it

Each table definition consists of two parts: The definitions of the individual
columns, and (possibly) constraints valid for the entire table:

CREATE TABLE FootballMatch
(
e Date date,
HomeTeam text,
GoalsH number(15) DEFAULT NULL
CHECK (>=00R IS NULL),
Col_ur_n_n < GuestTeam text,
definitions GoalsG number(15) DEFAULT NULL
CHECK (>=00R IS NULL),
Round number(15) NOT NULL
_____ N o ___________CHECK(>0AND<35), _ || _
Table g PRIMARY KEY (Date, HomeTeam),
constraints = FOREIGN KEY (HomeTeam) REFERENCES Teams,
_ FOREIGN KEY (GuestTeam) REFERENCES Teams
)

CREATE TABLE: Column definitions

CREATE TABLE FoothallMatch
Each column definition (

itself consists of two Date date,
parts, too: HomeTeam text,
GoalsH number(15)|[DEFAULT NULL

ICHECK (>=0OR IS NULL),

» the declaration of a GuestTeam text,

column name and a GoalsG number(15)[DEFAULT NULL

type of its values ICHECK (>=0OR IS NULL),
* (possibly) special Round number(15)|NOT NULL

constraints for the CHECK (>0 AND < 35),

values in this column

Syntax of column definitions:

‘ <column-name> <data-type> [<column-constraints>] I

unique withfd_ |
the same table

CREATE TABLE: Column constraints b'lt

CREATE TABLE FootballMatch
Each column definition (left-hand side remains
itself consists of two Date date, implicit: current column
parts, t0o: HomeTeam text, N\
’ GoalsH number(15)| DEFAULT)¢0LL\
. CHECK (>=00R IS NULL),

 the declaration of a GuestTeam text,

column name and a GoalsG number(15)| DEFAULT NULL

type of its values CHECK (>=0OR IS NULL),
* (possibly) special Round number(15)| NOT NULL

constraints for the CHECK (>0 AND < 35),

values in this column

Syntax of column constraints: [NOT NULL | UNIQUE]

[PRIMARY KEY]
[DEFAULT {<literal>| NULL }]
[REFERENCES <table-name>]

[CHECK <condition>]

CREATE TABLE: Table constraints

The second part of a table definition is optional. It consists of one or more
table constraints, normally expressing a restriction on several columns:

CREATE TABLE FootballMatch
(

PRIMARY KEY (Date, HomeTeam),
FOREIGN KEY (HomeTeam) REFERENCES Teams,
FOREIGN KEY (GuestTeam) REFERENCES Teams

)

Syntax of table constraints:

[UNIQUE (<list-of-column-names>)]

[PRIMARY KEY (<list-of-column-names>)]

[FOREIGN KEY (<list-of-column-names>)
REFERENCES <table-name>]

[CHECK (<condition>)]

Constraints in table definitions

Table definitions (CREATE TABLE) contain two very similar kinds of
constraints:

e column constraints
« table constraints (also called: row constraints)

Column constraints are abbreviations of certain special forms of table constraints
where the name of the resp. column remains implicit, e.g.

e column constraint;

Type number(15) |CHECK (>0 AND < 35),

« table constraint: N o=

CHECK (Type >0 AND Type <35)

The condition part of such a CHECK constraint has to be satisfied in each
admissible (legal, consistent) state of the database.

UNIQUE and NOT NULL

UNIQUE-option: definition of a key (or: candidate key)
 single-column key:
in a column definition: <column-name> ... UNIQUE
e multi-column key:
separate UNIQUE-clause as table constraint:
UNIQUE (<list-of-column-names>)

Semantics: No two rows will ever have the same value in columns belonging to
a key.

Exception: Null values — NULL may occur several times in a UNIQUE-column.

per table: Arbitrarily many UNIQUE-declarations are possible.

In a table with UNIQUE-declarations no duplicates (identical rows) can exist!

Exclusion of null values for individual columns: <column-name> ... NOT NULL

PRIMARY KEY and DEFAULT

Per table: At most one (candidate) key can be declared the primary key.
 single-column primary key:
in column definition : <column name> ... PRIMARY KEY
e multi-column primary key:
separate clause: PRIMARY KEY (<list-of-column-names>)

In addition: No column within a primary key may contain NULL!

PRIMARY KEY is not the same as UNIQUE NOT NULL !
(in addition: Uniqueness of the p. key within the table)

Not a real ,,constraint"”, but rather similar in syntax:
Declaration of a default value for columns of a table:
Value which is automatically inserted if no explicit value is given
during the insertion of a new row, e.g.

‘Type number(15) DEFAULT 0 I

Foreign key constraints b'lt

 2nd special form of constraint within a table declaration:

‘ foreign key constraint I (aka referential constraint)

o Situation: Column(s) of the table declared (called A) reference(s) (i.e., contains
values of) a candidate key or primary key of a another (,,foreign®)
table B

Columns forming the

foreign key Condition: A-columns contain only values
actually occurring in the referenced B-column(s)!

Foreign key constraints (2)

Syntax of the corresponding constraint (as table constraint):

r
| FOREIGN KEY (<list-of-column-names>)
l REFERENCES <table-name> [(<list-of-column-names>)

CREATE TABLE t,
(&, INT PRIMARY KEY,

b, references a,

If .target columns* are missing:
primary key assumed

abbreviated form as
column constraint

/

CREATE TABLE t, ¥
(b, INT REFERENCES t,

Foreign key constraints (3) b-it

« Complete syntax of a ,,referential constraint* provides for various optional

extensions:
FOREIGN KEY (<list-of-column-names>)
REFERENCES <base-table-name> [(<list-of-column-names>)]

[MATCH { FULL | PARTIAL }]

[ON DELETE { NO ACTION | CASCADE | SET DEFAULT |
SET NULL}]

[ON UPDATE { NO ACTION | CASCADE | SET DEFAULT |
SET NULL}]

‘ »Referential actions* Ispecify what happens in case of integrity violations

« Detailed discussion of all these extensions is beyond the scope of this short
introduction.

o Access treats references and referential integrity quite similarly:
« with change propagation: ON UPDATE CASCADE
» with delete propagation: ON DELETE CASCADE

Global constraints in SQL

Not supported by any commercial DB system till ‘ Assertions I
now, but defined in the SQL standard:

Assertions serve as a means for expressing global integrity constraints not tied
to a particular table, but ranging over several table.

_ CREATE ASSERTION <constraint-name>
Syntax: CHECK (<conditional-expression>)

In principle, assertions are sufficient for expressing all imaginable constraints,
I.e. all "local™ forms of constraints are redundant.

On the other hand, many constraints can only be expressed via assertions, but not
by means of table constraints.

Example: CREATE ASSERTION lazy professor
CHECK NOT EXISTS
(SELECT * FROM professor
WHERE Name NOT IN (SELECT Teacher
FROM courses);

Integrity checking in SQL

e Important topic related to SQL constraints:
Modalities of checking for constraint violations

 Changes in SQL are usually part of greater units of change called transactions:
» Transaction: Sequence of DML statements viewed as ,,indivisible units"
e Transactions are either executed completely, or not at all!
e Transactions always have to lead to consistent DB states satisfying all
integrity constraints stated in the resp. DB schema.
 more detailed discussion of the concept ,,transaction": later!

« Important motivation for introducing transactions:
Some transitions from a consistent state into a consistent follow-
up state are only possible via inconsistent intermediate steps!

Consequence for integrity checking during transaction processing:
Checking of constraints should (more or less always) take place
at the end of a transaction!

Integrity checking in SQL (2)

* In SQL however: Unless defined otherwise, integrity checking always happens
immediately (i.e., directly after the execution of each update).

« Motivation: Many simple table constraints can and ought to be checked imme-
diately as they are independent of any other updates.

« But in particular for ,referential cycles*:

Checking at transaction end is inevitable!
e.q..

C,: ,Each course is given by a professor!"

C,: ,.Each professor has to give at least one course!"

course

professor

When hiring a new professor a consistent state can be reached only
via a transaction consisting of two individual insertions:

INSERT INTO professor

INSERT INTO course

Each intermediate state would be inconsistent: No sequence possible !

Integrity checking in SQL (3)

e Thus: Two forms of integrity checking in SQL

‘IMMEDIATE and DEFERREDI

Meaning: IMMEDIATE-constraints are immediately checked, for DEFERRED-

constraints checking is deferred to the end of the current transaction.
Unfortunately: Without explicitly stating one of these alternatives, IMMEDIATE
Is assumed (which somehow contradicts the idea of a transaction).

This default assumption can be changed for individual constraints by declaring

them as | INITIALLY DEFERRED. I

HLINITIALLY™, because the checking status can be changed dynamically during
a running transaction:
SET CONSTRAINTS { < list-of-constraints > | ALL }
{ DEFERRED | IMMEDIATE }
In addition: Some constraints can be declared NOT DEFERRABLE. But the
even more important NOT IMMEDIATE does not exists in SQL!
In summary: Integrity checking in ,,full" SQL can be a difficult affair !

Views
« Predefined queries for computation of derived tables as in Access can be declared

in an SOL schema as well: .
Q Views

* Views are defined in a separate CREATE VIEW statement, simply assigning a
name to a query (formulated in SQL-DML), e.g.:

/ Name

CREATE VIEW metropolis AS
(SELECT ID, Name, Inhabitants, Country
} Query

FROM city
WHERE Inhabitants >=1000) ;

« According to the latest edition of the SQL standard, views may even refer to
themselves. Such views are called recursive. In this case, the keyword RECUR-
SIVE has to be given in front of VIEW.

* Recursive views are very useful for traversing data representing graphs such as
maps or hierarchies (e.g., ,,Find all connections from X to Y of arbitrary length!*)

Queries over views

e Queries involving a view are interpreted by expanding the view name, i.e. by
textually replacing it by the query associated with it in the view definition:

€.9.. CREATE VIEW C4-profs

AS (SELECT Name, Dept
FROM professors

v WHERE Rank =,C4%)

N\

e v
’ SELECT qume
SELECT Name FROM (SELECT Name, Dept
FROM C4—profs - FROM professors
WHERE Dept =, 111" WHERE Rank = ,c4*) AS X

WHERE X.Dept =,I11I°

* Note that this technique does no longer work for recursive views, as expansion
would never terminate! Other, more elaborate techniques are required in this
case, investigated within the special area of deductive database research.

Trigger and active databases b'lt

Already in early versions of SQL and in first relational systems an automatic
triggering of follow-up changes by the DBMS as a reaction to changes explicitly
stated by users or application programs has been suggested.

« Declaration of such implicit changes and their combination with triggering events

can be done within an SQL schema, too: :
Trigger I

e Other notion for trigger: Active rule
 Name of a DBMS supporting triggers: Active DBMS
« Name of the corresponding research area: Active databases

e Inthe SQL92-Standard a trigger concept was still missing.

e but: Most commercial DB products already provide triggers in a rather similar
form since many years (ORACLE, DB/2, Sybase, Informix, e.g.).

e Inthe new SQL3-Standard (1999) triggers have been standarized for the first time.

Active rules b'lt

« Active rules are called ECA-rules as well, tgus referring to the three components
of such rules:

E “event*
C "condition“
A "action"

 Example of an ECA-rule (in pseudo-code):

E ON modify(account(A), V_new)
2 IF V_new < credit(A)
DO block_account(A)

Active rules (2)

General meaning of an active rule:
Additional, automatically triggerd ,,background activity"

~ourface process" (e.g. a transaction)

} (suspended)
Observe\ ' Y2 YaY VYol
EI C : A }
».Background activity"
} ; ? ; } React | Y
Check I May recursively trigger
other active rules!

SQL triggers: an example

Example of an SQL trigger:

Trigger name

Time of triggering
~C / Triggering
CW TRIGGER firstCou‘Fsg/‘ update
AFTER INSERT ON professors
REFERENCING NEW ROW AS Newcomer
FOR EACH ROW
" WHEN (NOT EXISTS

e (SELECT *
Condition] FROM courses
\ WHERE Name = Newcomer.Name)
[BEGIN ATOMIC
. INSERT INTO courses
Action

) VALUES (Newcomer.Name\NULL, 4-hrs.);
INSERT INTO exercises
VALUES (Newcomer.Name,

ULL, 2-hrs.)

,, rransition variable"

