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Preface

Preface

Materialized views have recently seen a renewed interest in the research and commercial commu�
nitites because of their applications in warehousing� retailing� billing� visualization� integrity con�
straints� query optimization� and decision support� All leading database vendors are currently
implementing in their systems materialized views in some form� Several database research groups
in academia are also studying materialized views� A workshop on materialized views was held in
conjunction with the SIGMOD ���	 conference in June ���	�

The purpose of the book is to collect together important work that has been done on views� and to
provide a reference for students and implementors from which to base their work� The book will also
encourage further research and will make it easier to implement materialized views in commercial
systems�

Ashish Gupta
Inderpal Singh Mumick
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REJUVENATION OF MATERIALIZED VIEWS





�
INTRODUCTION TO VIEWS

Ashish Gupta� Inderpal Singh Mumick

� Introduction

What is a view� A view is a derived relation de�ned in terms of base �stored� relations� A
view thus de�nes a function from a set of base tables to a derived table� this function is typically
recomputed every time the view is referenced�

Why are views interesting� Views are needed because usually the actual schema of the database
is normalized for implementation reasons and the queries are more intuitive using one or more
denormalized relations that better represent the real world� Then de�ning a new relation as a
view allows queries to be intuitively speci�ed� The increasing demand for non�record interfaces�
like object�oriented and multi�dimensional interfaces� is increasing the demand for multiple non�
normalized views of record oriented base data� Just as indexes supplemented simple access methods
to cope with demand for increased e�ciency� views supplement basic query constructs to cope with
the demand for �higher�level� views of data�

What is a materialized view� A view can be materialized by storing the tuples of the view
in the database� Index structures can be built on the materialized view� Consequently� database
accesses to the materialized view can be much faster than recomputing the view� A materialized
view is thus like a cache � a copy of the data that can be accessed quickly� Materialized views
eliminate the need to expand and recompute the view de�nition each time the view is used�

Why use materialized views� Like a cache� a materialized view provides fast access to data�
the speed di�erence may be critical in applications where the query rate is high and the views are
complex so that it is not feasible to recompute the view for every query� for example on line analytical
processing �OLAP�� Further� a view may underly many higher level interfaces that are each queried
seldom but together require that the view be materialized�

What is view maintenance� Just as a cache gets dirty when the data from which it is copied is
updated� a materialized view gets dirty whenever the underlying base relations are modi�ed� The

�
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process of updating a materialized view in response to changes to the underlying data is called view
maintenance�

What is incremental view maintenance� In most cases it is wasteful to maintain a view by
recomputing it from scratch� That is� the heuristic of inertia often applies �only a part of the view
changes in response to changes in the base relations�� Thus it is cheaper to compute only the changes
in the view to update its materialization� Algorithms that compute changes to a view in response
to changes to the base relations are called incremental view maintenance algorithms�

Views are strongly related to� and can form the basis of� integrity constraints and triggers� In this
chapter we also explore these similarities and discuss the relationships�

� Example

Consider a retailer that has multiple stores across the united states and the country is divided into
multiple regions for administrative and accounting purposes� Each retailer carries many items and
has an elaborate relational database�warehouse for analysis� marketing and promotion purposes�
Consider some of the tables in such a database and their cardinality�

pos�storeID� itemID� date� qty� price� � �� ���� ���� ����

stores�storeID� city� region� � ����

items�itemID� name� category� cost� � ��� ����

The pos table represents point of sale transactions� with one tuple for every item sold in a transaction�
The tuple has the Id of the item sold� the id of the store selling it� the date of sale� the quantity of
the item sold� and its selling price� The stores table has location information about each store �
namely its id� city� and geographical region� The items table describes each item � namely its id�
name� product category and cost price per unit�

The above data can be used in many di�erent ways�

For example� the regional marketing manager might query the database to �nd out the names and
product categories of the items bought from stores in that particular region� The query for region
��Pacific NW�� can be written as�

SELECT DISTINCT �name�category�
FROM items� pos� stores
WHERE stores�region 	 
Paci�c NW� AND

stores�storeID 	 pos�storeID AND

pos�itemID 	 items�itemID�

The above query will be posed by every regional manager to enable a routine inventory analysis�
Each query requires that the tables items and pos be joined on attribute �itemID�� Materializing
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this join as a view will enable the managers� queries to be e�ciently answered by avoiding joining the
pos table with a table of 
�� ��� rows �cardinality of items table�� In particular� the materialized
view would be�

CREATE view items sold�name� category� storeID� AS
SELECT DISTINCT �name� category� storeID�
FROM items� pos
WHERE pos�itemID 	 items�itemID�

Note� the view includes attribute storeID to enable its use in the target query� When either the
table pos or items changes� the above view can be easily incrementally maintained�

Consider the business development division of this store chain that wants to know the total rev�
enue generated for each store by each category of items� Further� the division is also interested in
monitoring the total sales for each region� The two queries are as follows�

�Q�� SELECT storeID� category� sum�qty�price� FROM pos� items
WHERE pos�itemID 	 items�itemID GROUPBY storeID� category�

�Q�� SELECT region� SUM�qty�price� FROM pos� stores
WHERE pos�storeID 	 stores�storeID GROUPBY region�

Both these queries require that the pos table be joined with another table and then aggregated� The
pos table will typically be millions of rows because it records each transaction� In our example� it
has �� ���� ���� ��� rows� Thus� it is expensive to repeatedly aggregate the pos table� An alternative
is to �rst partially aggregate the pos table as follows�

DEFINE view total sales�itemID� storeID� total� AS
SELECT itemID� storeID� sum�qty�price� FROM pos GROUPBY itemID� storeID�

The above view will have far fewer rows than table pos� In particular� if we assume that every
store sells about ��� the items that the chain carries� then we will get ����� 
�� ������ rows in view
total sales which is a factor of �� smaller than table pos� The above view can be used in place of
table pos to compute queries Q� and Q� as follows�

�Q�� SELECT storeID� category� SUM�total� FROM total sales� items
WHERE total sales�itemID 	 items�itemID GROUPBY itemID� name�

�Q�� SELECT region� SUM�total� FROM total sales� stores
WHERE total sales�storeID 	 stores�storeID GROUPBY region�

In addition to avoiding a join with a table that is �� times larger� the join can be made e�cient by
building indexes on the itemID and storeID columns of view total sales� The view can then be
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e�ciently joined with tables items and stores to answer queries Q� and Q�� Materialized views
make the above optimizations possible� Note� non�indexed joins are orders of magnitude slower than
indexed joins� When rows are added to the table pos� the materialized view total sales can be
incrementally maintained by simply incrementing the column �total� for the correct row in the view
or by adding a new row into the view�

� Views and Integrity Constraints

Integrity constraints are a way of enforcing conditions on the data inside a database� They are
required to ensure consistency in the data contained in a repository� For example� an integrity
constraint might require that the age of a person be a positive number� Constraints can also relate
multiple tables� For example� integrity constraint IC� might require that every itemID in the pos
table necessarily occur in the items table� This would be a �referential integrity� constraint� Con�
straints can be more general� corresponding to arbitrarily complex conditions� Commercial database
systems like Oracle provide constraints and thereby enable much cleaner application development
wherein the constraints need not be embedded into the code of applications that manipulate data�

Constraints are closely related to views as explained below� Consider referential integrity constraint
IC� speci�ed above� namely that each itemID in table pos also occur in table items� Now consider
the view bad itemID�

�ICV � DEFINE view bad itemID AS

SELECT itemID FROM pos

WHERE itemID NOT IN �SELECT itemID FROM items��

Constraint IC� is violated whenever view bad itemID is non�empty� In general� an integrity con�
straint can be expressed using a view such that the view is non�empty whenever the constraint
is violated �Gup���� Realizing the constraint as a materialized view then translates to material�
izing an empty view� Checking the constraint when the underlying relations change� corresponds
to maintaining the view and indicating a violated integrity constraint whenever the view becomes
non�empty�

In fact some of the early work on checking integrity constraints �KSS�� uses as their underlying basis
algorithms for incremental maintenance of materialized views� The work on incremental maintenance
of materialized views applies to constraint checking as explained above� The algorithms may have
to be implemented di�erently because views and constraints are often used di�erently and are also
considered at di�erent times in the lifecycle of a database �for example� constraints often are enforced
within a transaction whereas view updates are propagated after a transaction commits��

� Relationship to Rules and Triggers in Active Databases

Another related area that has been studied in some detail is that of rules and triggers in active
databases �WC�	�� Rules have associated with them trigger conditions that when satis�ed by the
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database cause an action to be executed� For example� a trigger condition may check whether more
than �
� units of an item are sold in one day and the action may be to alert the manager of that
store� The semantics of rules and how they are implemented is well researched and is not a topic
we will cover here� Please refer to �WC�	� for a comprehensive treatment of active databases�

Materialized views relate to triggers and rules in many ways� The �rst is the use of materialized
views to capture the conditions associated with rules in the same way as with integrity constraints�
However� the mapping is not as simple as in the case of constraints because rules require the notion
of state change� For example� a rule may �re whenever the associated condition changes from false
to true but not if the condition stays true� Thus� if a view were used to represent the condition part
of a rule� then updates to the view matter but not its contents� Thus� techniques for incremental
view maintenance are clearly applicable for e�ciently checking trigger conditions�

Materialized views are important in one other aspect in this scenario� They enable trigger conditions
to be speci�ed on derived relations and not only on base relations as is assumed in most cases� For
example� consider a rule that monitors all those regions whose total sales are below average� This rule
can be speci�ed on the following derived relation �same as that de�ned by query Q� in Section ���

DEFINE view regional sales AS

SELECT region� SUM�total� FROM total sales� stores
WHERE total sales�storeID 	 stores�storeID GROUPBY region�

The above view de�nition itself uses a materialized view� The violation condition that determines
when to �re the required rule can be expressed as the following view�

DEFINE view rule violated AS

SELECT region FROM regional sale
WHERE total � �SELECT AVG�total� FROM regional sale��

When view rule violated is non�empty the required rule is violated and the appropriate action
can be taken�

Conversely� the use of trigger driven rules in maintaining materialized views is also well acknowledged�
Thus� incremental view maintenance algorithms can be implemented using rules that �re whenever
the base relations are updated� Further� many of the optimizations that identify irrelevant updates
can be made a part of the trigger conditions� For example� the rules that update view total sales

may have a condition that if the quantity column of a new pos tuple is � then the rule need not �re �if
the item is already in the view�� This condition avoids updating materialized view total saleswhen
the view is una�ected� Note� a � quantity update may capture inquiries as opposed to purchases
� an important market research tool� �CW��� discuss the implementation of a view maintenance
algorithm using the Starburst rule system�
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� Active Elements in Databases

Materialized views� integrity constraints� rules� triggers� standing orders are di�erent types of active
elements in databases and are strongly correlated� Thus it is not surprising that some of them can be
implemented in terms of others � that is� they all do not provide mutually orthogonal functionality�
Further� they all require going out of the domain of SQL in implementing them� Many issues arise
in implementing active elements in a database� Below we mention some of the issues though the
book does not cover all of them�

Interaction with Transactions Theoretically� a transaction indicates a unit of work� However�
transactions are rarely simple and often are composed of many smaller units of work �like nested
transactions�� Further� �unit of work� was de�ned keeping in mind when changes to the database
must be committed� This unit may not be the same for when some other actions need to be taken�
Thus� it is not possible to always associate the consummation of an active element with traditional
transactional boundaries� For example� an integrity constraint may be such that it need not be
checked after each SQL statement but only after the entire transaction� However� some integrity
constraints might indeed be so crucial that they always hold and thus require checking after each
operation� Thus� when should an integrity constraint be checked� Similarly� some materialized view
may need updating only after a transaction is complete whereas another view that is used inside the
same transaction that a�ects it� may require that it be kept current at all times�

Scalability Active elements add signi�cant computational power to relational databases and do not
always fall within the expressivity of SQL� For example� active elements are inherently recursive in
nature� Thus� they are not easy to implement in conjunction with relational constructs like indexes�
query optimizers� replicated data� ACID transactions� etc�� The execution engine of a RDBMS needs
to be enhanced to accommodate active elements and consequently poses on it con�icting demands
and hamper scalability in more ways than one� �a� The ability to add more features is hampered
given that the execution semantics are no longer that of only SQL but more involved� �b� It is more
di�cult to distribute data and to connect disparate databases becauses many active elements force
centralized decision making� �c� Their recursive nature increase the possibility of potentially fatal
feedback loops and again hamper unrestricted �and autonomous� speci�cation�

� Historical Work

Materialized views were investigated in the �����s as a tool to speed up queries on views and
to provide access to old copies of data �AL���� Several view maintenance algorithms were pro�
posed �NY��� Pai��� SI��� BLT�	� LHM��	� BCL��� SP��b� QW���� analytical models for the cost
of view maintenance were developed �Han�� SR��� SF���� and the impact of materialized views on
the performance of queries was studied �Han�� BM��a�� The use of view maintenance algorithms
in maintaining integrity constraints was also recognized �BC�� KSS��� A classi�cation and survey
of several view maintenance algorithms appears in �GM�
�� and is reproduced here in Chapter ���
However� implementations of materialized views in research prototypes and commercial systems
were missing �with the sole exception of ADMS �Rou����� The bene�t of materialized views to
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applications was never proven� and no killer application came up to force the implementation of
materialized views�

Now materialized views are witnessing a resurgence due to a variety of new applications as discussed
in the following section of the book�





�
MAINTENANCE POLICIES

Ashish Gupta� Inderpal Singh Mumick

ABSTRACT

The maintenance of materialized views is a central problem in the area of materialized views� A maintenance

policy speci�es the timing when maintenance occurs� In this chapter we introduce the basic terminology

about maintenance policies� Since the same policy name has in the past been used for di�erent maintenance

policies� this chapter is important in establishing a and de�ning a consistent notation�

� Maintenance Steps

The use of materialized views in any scenario hinges on the views being �consistent� with the
underlying data they capture� Thus� views have to be maintained just as constraints have to be
checked� rules have to be �red or any other active element responded to� Maintenance of a view
involves two main steps�

A step to compute the changes to the view that result from the changes to the base data� We
call this step propagate�

A second step to apply the changes �computed by the propagate step� to bring the materialized
view table up�to�date� We call this step refresh�

� Maintenance Policies

A view maintenance policy is a decision on when a view is refreshed� As in these other areas� the
implementation and sematics of applications change radically depending on when the maintenance
is done� Note� the question of �how� is also important but often is an e�ciency issue� We discuss
the �when� issue further in this chapter because it helps better understand the applications and
challenges discussed in the following chapters� A view can be refreshed within the transaction that
updates the base tables� or the refresh can be delayed� The former case is referred to as immediate

��
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view maintenance� while the latter is called deferred view maintenance� When a refresh is delayed to
occur outside the transaction that updates the base tables� there are several possibilities on when the
refresh actually occurs � just before a query on the view �lazily�� after a certain number of changes
have occurred �forced delay�� or at pre�established time intervals �periodically�� A view maintenance
policy does not specify when changes are propagated� other than the fact that propagate must occur
before refresh�

We now list the various maintenance policies�

Immediate Views� The view is refreshed immediately upon an update to a base table used to
derive the view� as a part of the transaction that updates the base table� Immediate maintenance
allows fast querying� at the expense of slowing down update transactions�

Immediate views have to be consistent with the tables they are de�ned over� as they exist in
the current state�

Deferred Views � The view is refreshed in a separate transaction T�� outside the transaction T�
that updates a base table used to derive the view� Further� the refreshing transaction T� must
be serialized after the updating transaction T�� Deferred maintenance does not signi�cantly
slow down update transactions�

Several di�erent deferred maintenance policies can be de�ned�

Lazy Deferred� The view is refreshed as late as is possible to delay the refresh� while guaran�
teeing that all queries on the materialized view generate the same answers as if the view
was virtual� Lazy deferred views need not be consistent with the tables they are de�ned
over� but queries over lazy deferred views have to be answered as if views are consistent�
and consistency is achieved by making the lazy deferred view consistent at query time�
thereby slowing down queries� Often� the term deferred maintenance is loosely used to
mean lazy deferred maintenance�

Periodic Deferred �Snapshot�� The view is refreshed periodically at pre�established times �e�g��
every six hours� every day� etc��� in a special refresh transaction� Periodic deferred main�
tenance allows fast querying and does not slow down updates� but queries can read data
that is not up�to�date with base tables�

The term snapshot maintenance is synonymous with periodic deferred maintenance� A
view that is maintained in a periodic deferred manner is called a snapshot �

Snapshots are required to be consistent with the state of the deriving tables that existed
at the time of the last refresh�

Forced Delay� The view is refreshed after a pre�established number of changes have occurred
on the base tables used to derive the view �e�g�� �ve tuples have been inserted into the
base table��

Forced delay views are also required to be consistent with the state of the deriving tables
that existed at the time of the last refresh�

Immediate View Maintenance� The immediate maintenance approach has the disadvantage
that each update transaction incurs the overhead of propagating the changes to the base tables and
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refreshing each view that is derived from the changed base tables� The overhead increases with the
number of views� and the approach is not scalable with respect to the number of immediate views�

Further� in some applications� immediate view maintenance simply is not possible� For example�
consider a data warehouse that integrates data from several component databases into materialized
views at the warehouse� A component database cannot delay committing the local transactions until
they refresh materialized views at the remote data warehouse�

Deferred View Maintenance� Deferring view maintenance removes the propagate and refresh
overhead on update transactions� However� deferred maintenance imposes di�erent overhead on the
update transactions � the changes to the base tables must be recorded in a log so that they are
available for a later maintenance operation� Deferred maintenance also allows changes from several
update transactions to be batched together into a single propagate and refresh operation�

However� lazy deferred maintenance imposes signi�cant overhead on all query transactions� since a
query may have to wait for a materialized view to be refreshed� When applications can tolerate stale
data� the query performance can be improved by using forced delay or snapshot maintenance� When
applications need a stable data store that is insulated from all changes to the base tables �e�g�� a
data warehouse that needed to run long decision support queries�� snapshot maintenance can give
excellent performance�

� Choice of Maintenance Policies	

An application has to make a view immediate if it expects a very high query rate and�or real�time
response requirements� For example� consider a cellular billing application� wherein the balance due
is de�ned as a view on cellular call data� and is used to block future cellular calls� Clearly� this view
must be immediately maintained� However� immediate maintenance is not scalable with respect
to the number of views� so a system cannot de�ne many immediate views� Deferred and snapshot
maintenance are scalable with respect to the number of views� so it is desirable to de�ne most views
as deferred or snapshot� The following example illustrates how di�erent view maintenance policies
may be chosen�

EXAMPLE ��� Consider the previous retail database of point of sale �pos� information from
several stores� extended with information about suppliers� supplies� and customer information� The
pos table is itself extended to contain information about returns made by customers� Tables pos�
customers� supplier� and supplies are maintained in the database� The pos table contains the
detailed transaction data� The customers and supplier tables contain information about customers
and suppliers� respectively� The supplies table contains information about items supplied to a store
by each supplier� The following materialized views are built�

CustReturns� De�ned as the join between customers and pos transactions that are marked as
returns� This table may be queried by stores when processing a return and needs to be current�
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TotalItemReturns� Total amount and number of returns for each item �aggregate over CustReturns��
This view is used for decision support�

LargeSales� Customers who have made single purchases of more than ������ �join between
customers and pos�� This view is used for decision support� marketing� and promotions�

ItemStoreStock� For each item and store� the total number of items in stock in the store �join
over aggregates over pos and supplies�� This is used to trigger re�stocking decisions and is
queried frequently�

ItemSuppSales� Total sales for each item� supplier pair �aggregate over join of pos� supplies
and supplier�� The view is used for decision support�

ItemProfits� Contains the total pro�ts for each item category �aggregate over join of ItemSuppSales
and supplies�� This view is also used for decision support�

Let us consider the desired maintenance policies for each view� CustReturns should provide up�to�
date results since it is used for making return decisions� However� queries to this view are likely to
be relatively infrequent� and the view could be maintained only when it is queried �deferred main�
tenance�� TotalItemReturns and LargeSales are used for decision�support and marketing� need a
stable version of data� and can be maintained periodically �snapshot maintenance�� ItemStoreStock
is monitored frequently and is used to trigger re�stocking decisions� It thus needs to be maintained
using an immediate maintenance policy� ItemSuppSales and ItemProfits are used for decision
support� and can be maintained periodically say once a day�
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APPLICATIONS OF MATERIALIZED VIEWS

Ashish Gupta� Inderpal Singh Mumick

� Introduction

While database vendors consider supporting some form of materialized views� application develop�
ers are already building in materialized views into application code� In this chapter we illustrate
some of the applications of materialized views� Most of the applications use materialized views or
materialized view maintenance techniques to obtain fast access to derived data� lower CPU and disk
loads� to reduce communication requirements� reduce code complexity� and sometimes to even reduce
storage requirements� After discussing the applications of materialized views here� we will describe
some of the problems the applications present in Chapter ��

Materialized views are �nding a number of applications� spurred on by increasing computing power
and falling disk prices� As Table � shows� some of these are new and novel applications� while others
arise from a fresh look at traditional applications� We will show that several existing applications can
managed more e�ciently� and with fewer errors� using materialized views� Some of these applications

Traditional Applications New Applications
Banking Data Warehousing�
Billing Data Mining
Network Management Data Replication
Query Optimization Situation Monitoring
Integrity Constraints Data Visualization
Switching Software Mobile Systems

Distributed CD�ROM Services
Advanced Messaging Services
Data Pumping

Table � Applications of Materialized Views

�
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represent a new way of modeling existing functions� some appear far�fetched until you see exactly
how materialized views can be applied� and still others illustrate new concepts and thinking�

We are sure that more applications remain to be discovered !

� Fast Access� Lower CPU and Disk Load

Materialized views �nd applications in any problem domain that needs quick access to derived data�
or where recomputing the view from base data may be expensive or infeasible� or where queries
impose very high disk and CPU loads� This theme underlies most of the applications discussed in
this chapter�

For example� consider a retailing database that stores several terabytes of point of sale transactions
representing several months of sales data� and supports queries giving the total number of items
sold in each store for each item the company carries� These queries are made several times a day�
by vendors� store managers� and marketing people� By de�ning and materializing the result� each
query can be reduced to a simple lookup on the materialized view� consequently it can be answered
faster� and the CPU and disk loads on the system are reduced� View maintenance algorithms keep
the materialized result current as new sale transactions are posted�

As another example� consider a transactional system with orders and items relations� where a large
number of queries take a join between the orders and items relations� We can precompute this
join� and store it as a materialized view� Each query can now use the materialized view� and be
answered quicker� At the same time� the CPU and disk loads on the system are reduced� as the time
and I�O required to compute the join for every query are no longer needed�

� Data Warehousing

DataWarehouses �Kim�	� Poe�	� are an active area of research and development� All major database
vendors� including Informix �MetaCube�� Oracle�IRI Express�� and Sybase �IQ� have announced data
warehousing products� Red Brick Systems and NCR�Teradata are marketing purely warehousing
systems� Almost every major corporation is investing heavily into building corporate warehouses�

Despite all of the warehousing activity� there is no universal agreement on what a data warehouse
means� To some people� a data warehouse is the database of record � the central data repository
of a corporation� These people believe that a data warehouse must be able to store a very large
amount of detailed information� and be able to combine or integrate data that is stored in di�erent
systems within the corporation� To other people� a data warehouse is a system that stores summary
tables and supports OLAP queries� To yet others� a data warehouse is any system that stores data
snapshots �AL��� � stable copies of data that do not change in sync with the operational data stores�
and hence can be used for complex and long decision support queries�
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These three functions are not disjoint� and can be provided in the same system� For our purpose� a
system that provides one or more of the functions listed in Table � will be called a data warehouse�

�� Collects and stores data from several database into a database of record �data integration��
�� Stores summary tables� and answers OLAP queries�
�� Provides a stable copy of the data for decision support queries�

Figure � What is a Data Warehouse�

Materialized views can be useful in each of these three functions� In fact� it is clear that materi�
alized views technology is critical for building good warehouse systems �GM�	�� We illustrate how
materialized views can be applied for each of these functions�

�
� Data Integration in Data Warehouses

A database that collects and stores integrated data from several databases is often described as
a data warehouse� The warehouse usually integrates data from multiple sources� and provides a
di�erent way of looking at the data than the databases being integrated�

Data about related entities� such as customer data in a corporation� or available jobs data in the
internet� is often scattered into several data sources� Some of the data sources keep the data in
databases� while others may keep the data in �le systems� It can be very useful to provide an
integrated view over all the data sources of interest� and to provide a uniform interface to access all
of this data� For example� it is critical for a corporation to have a complete understanding of its
customers� As another example� it is much easier for each person looking for a job to look at one
place for job listings� rather than �nd and go out to each and every source of job listings�

Data integration requires one to resolve modeling di�erences� semantic di�erences� query capability
di�erences� and inconsistencies between data sources� These are immense problems� One way to do
so is to de�ne wrappers on each data source which are responsible for doing the translation of data
into a common data model and into a common schema�

Assuming we have taken care of the above problem� there are two architectures of doing the inte�
gration� the virtual view model� and the materialized view model� In either model� an integrated
view� or a set of views� are de�ned over the di�erent data sources� The view describes how the data
is going to be combined together� Common ways to combine data include taking a union� taking an
outer�join �GJM��� or using complex matching �ZHKF�
��

Virtual View Model� In the virtual view model� the integrated database consists purely of the
�virtual� view de�nitions� a querying interface� and a querying engine� No data is stored in the
integrated database� Users ask queries over the virtual views� and the query engine translates these
into queries over the remote data sources� Each data source� possibly through its wrapper� answers
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the query� and sends results back to the integrated database� The query engine is responsible for
combining these results into an answer to the original query�

Materialized View Model� In the materialized view model� the data from remote data sources
is brought into the integrated database� The integrated views are computed using these data sets�
materialized� and stored in the integrated database� User queries are answered by the query engine
by looking up data in the local materialized views�

An integrated database using the materialized view model is known as a data warehouse� The
materialized view model requires a lot of initial set�up work� All of the relevant data from the
remote data sources has to be extracted and translated through the wrappers� The full integrated
views then need to be computed� and written out into materialized views� In contrast� the virtual
view model requires almost no initial data movement and translation� However� the query response
time in the materialized view model is much better than in the virtual view model� Further� queries
can be answered even if some of the remote data sources are unavailable� On the �ip side� the
materialized view model requires more storage that the virtual view model�

The remote data sources stay active� and continue to support current applications� This means
that updates continue to occur on the remote data sources� The problem of keeping the integrated
database synchronized with the remote databases is now the same as the problem of maintaining
materialized views in a distributed setting�

To be able to maintain materialized views in the integrated database� we assume that each data
source can log the changes that occur at the source� and that the wrapper picks up these logs
of changes� and sends them to the integrated database whenever they need to be applied to the
materialized views� It is possible that the data sources do not have the ability to log the changes�
in which case the wrapper needs to provide a way to extract the changes from the data source� In
general� extracting the changes from a data source can be expensive� and could require that the
entire database be cached at the wrapper�

Once the log of changes comes to the integrated database� view maintenance techniques �Part III�
are used to apply the changes to the materialized views� Chapters 
 and �� are specially devoted to
maintaining views in an integrated database warehouse�

�LMSS�
b� presents another model of data integration� They consider views de�ned using some
remote and some local relations� They materialize the view partially� without accessing the remote
relation� by retaining a reference to the remote relation as a constraint in the view tuples� The model
needs access to the remote databases during queries and thus di�ers from a typical warehousing
model�

EXAMPLE ��� As an example of a data warehouse that stores integrated data� consider a univer�
sity where the library� registrar�s o�ce� and the computer science department each keeps a database
of student information� The computer science department maintains a relation cs phd containing�
for each student in the department� his student identi�er �StuID�� the name of his advisor� number
of years in the Ph�D� program� whether the student has �nished his course requirements� and the
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qualifying exam taken� if any� The registrar�s o�ce maintains the relation registrar that contains�
for each student� her name� address� phone extension� the number of units the student is registered
for� and the tuition paid� We assume that if a student is not registered then registrar does not
have a tuple for that student� The relation library states the borrowing privilege for each student�
The three relations reside in three di�erent databases as illustrated by Figure �� Each relation has

Component
 Database

Component
 Database

Component
 Database

(ex: registrar) (ex: library)

QUERIES

Modifications (Provisioning) Modifications (Provisioning)Modifications (Provisioning)

Modifications

(ex: cs_phd)

(ex: univ_students)
Warehouse Views

Data Integrator

Translator / Monitor Translator / Monitor Translator / Monitor

Figure � Integrated Database as a Warehouse

a key� which we underline in the schema below�

cs phd�StuID�Advisor�Y ear� Courses�Qual��

registrar�StuID�Name�Address� Phone�Units� Tuition��

library�StuID�Borrowing Privilege��

The university graduate o�ce may want to look at all attributes of all students� regardless of what
databases these appear in� For this purpose� the university de�nes an integrated view by joining the
three relations on the attribute StuID as follows �we use a syntactic variant of SQL� and we use a
subset of attributes from each relation to make the view de�nition easy to read��




� Chapter �

�B� CREATE VIEW univ student AS

SELECT StuID�Name�Address�Phone�Borrowing Privilege� Y ear
FROM cs phd�StuID�Y ear� j�j registrar�StuID�Name�Address� Phone� j�j

library�StuID�Borrowing Privilege��

The symbol j"j is used as shorthand for the keyword �full outer�join�� Repeated variable names
are used to represent equi�joins� Intuitively� the above outer join view contains the tuples in the
�inner� join of the three base relations on the attribute StuID� and also contains all the tuples of
the three relations that do not contribute to the inner join� The latter tuples have NULL values
for the attributes of the relation that did not contribute a joining tuple� As an example� consider
the following database �considering only the relevant attributes� cs phd # f�s�� �rst�� �s�� second�g�
registrar # f�s�� john� holly ave� �����g� library # f�s�� yes�� �s�� no�g� The integrated view
univ student is�

StuID Name Address Phone Borrowing Privilege Y ear

s� john holly ave ���� yes �rst
s� NULL NULL NULL NULL second
s� NULL NULL NULL no NULL

�
� On�Line Analytical Processing in Warehousing

A data warehouse often collects detailed data� from one or multiple sources� so that marketing�
�nancial� and business analysis can be done on the data� The analysis can be used to detect trends
and anomalies� make projections� or to make business decisions� When such analysis involves asking
a large number of aggregate queries on the detailed data� the analysis is called on�line analytical
processing� or OLAP�

OLAP warehouses use a special starjoin or snow�ake data model �Kim�	�� The aggregate queries
asked in OLAP can be related to each other using a lattice� and a data cube operator �GBLP�	� is
available to compute all related aggregates with one query� Given that the detailed data �called the
fact table� in an OLAP warehouse can be several hundred gigabytes� it is infeasible to answer a lot
of aggregate queries by scanning the detailed data� Materialized views must be used to pre�compute
and store a lot of summary tables for the warehouse to have acceptable performance� We illustrate
these concepts through an example�

Star Schemas

Consider the warehouse of retail information from Chapter � Section �� with point�of�sale �pos�
data from hundreds of stores� The point of sale data is stored in the warehouse in a large pos table�
called a fact table� that contains a tuple for each item sold in a sales transaction� Each tuple has
the format�
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pos�storeID� itemID� date� qty� price��

The attributes of the tuple are the id of the store selling the item� the id of the item sold� the date
of the sale� the quantity of the item sold� and the selling price of the item� The pos table is allowed
to contain duplicates� for example� when an item is sold in di�erent transactions in the same store
on the same date�

In addition� the warehouse also has dimension tables� which contain information related to the fact
table� Let the stores and items tables contain store information and item information� respectively�
The key of each relation is underlined�

stores�storeID� city� region��

items�itemID� name� category� cost��

Data in dimension tables often represents dimension hierarchies� A dimension hierarchy is essentially
a set of functional dependencies among the attributes of the dimension table� For our example we
will assume that in the stores dimension hierarchy� storeID functionally determines city� and city
functionally determines region� In the items dimension hierarchy� itemID functionally determines
name� category� and cost�

In general� an OLAP warehouse will have one or two large fact tables� and a number of smaller
dimension tables� Aggregate queries in the warehouse have the following common form� They take
a join of a fact table with one or more dimension tables� groupby some of the dimension attributes�
and compute aggregation functions� Figure � gives examples of four such queries�

The joins in the queries Q��Q� of Figure � are in the shape of a star � in that all dimensions tables
join into the fact table which is at the center of the star� The dimension tables do not join with
each other� For example� in our scenario� the dimension tables stores and items tables will join
into the fact table pos� which is at the center of the star� Such joins are called star joins� and the
OLAP database schemas are called star schemas�

Data cube

The date cube �GBLP�	� is a convenient way of thinking about multiple aggregate views� all derived
from a fact table using di�erent subsets of group�by attributes� For example� given the pos table�
one can think of grouping it by �storeID� itemID� date�� or by �storeID� itemID�� or by �storeID�
date�� or by �itemID� date�� or by �storeID�� or by �itemID�� or by �date�� or just treating it as one
group �no groupby clause�� The query�

�C�� SELECT storeID� itemID� date� COUNT���� SUM�qty�� MIN�date�
FROM pos

CUBEBY storeID� itemID� date �
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�Q�� SELECT storeID� itemID� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos

GROUPBY storeID� itemID� date

�Q�� SELECT city� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos� stores
WHERE pos�storeID 	 stores�storeID
GROUPBY city� date

�Q�� SELECT storeID� category� COUNT��� AS TotalCount� MIN�date� AS EarliestSale� SUM�qty� AS TotalQuantity
FROM pos� items
WHERE pos�itemID 	 items�itemID
GROUPBY storeID� category

�Q�� SELECT region� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos� stores
WHERE pos�storeID 	 stores�storeID
GROUPBY region

Figure � Example OLAP queries

computes each of the eight groupby queries that can be obtained by grouping on a subset of �storeID�
itemID� date��

Data cubes are popular in OLAP because they provide an easy and intuitive way for data analysts
to navigate various levels of summary information in the database� In a data cube� attributes are
categorized into dimension attributes� on which grouping may be performed� and measures� which
are the results of aggregate functions� A data cube with k dimension attributes is a shorthand
for �k aggregate queries� each one de�ned by a single SELECT�FROM�WHERE�GROUPBY block� having
identical aggregation functions� identical FROM and WHERE clauses� no HAVING clause� and one of
the �k subsets of the dimension attributes as the groupby columns�

Lattices The aggregate queries represented by a data cube can be organized into a lattice� For
example� the data cube for the pos table �query C�� can be represented by the lattice of Figure ��
Construction of the lattice corresponding to a data cube was �rst introduced in �HRU�	�� The
dimension attributes of the data cube are storeID� itemID� and date� and the measures are COUNT�$�
and SUM�qty�� Since the measures computed are assumed to be the same� each point in the �gure
is annotated simply by the group�by attributes� Thus� the point �storeID� itemID� represents the
cube view corresponding to the query

�SI� SELECT storeID� itemID� COUNT���� SUM�qty�
FROM pos

GROUPBY storeID� itemID �

As another example of a cube query�
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(storeID, itemID, date)

(storeID, itemID) (storeID, date) (itemID, date)

(storeID) (itemID) (date)

( )

Figure � Data Cube Lattice�

�C�� SELECT storeID� itemID� date� COUNT���� SUM�qty�� MIN�date�
FROM pos� stores� items
CUBEBY storeID� city� region� itemID� category� date �

computes each of the sixty four groupby queries that can be obtained by grouping on a subset of
�storeID� city� region� itemID� category� date�� However� due to the functional dependencies between
the dimension attributes� some of these sixty four queries are redundant� A groupby on �storeID�
city� gives the same results as the groupby on �storeID��

Such redundant computations can be avoided by noticing that the various dimensions represented by
the group�by attributes of a fact table often are organized into dimension hierarchies� For example�
in the stores dimension� stores can be grouped into cities� and cities can be grouped into regions�
In the items dimension� items can be grouped into categories� A dimension hierarchy can also be
represented by a lattice� similar to a data�cube lattice� For example� Figure 
 shows the lattices for

storeID

city

region

none

itemID

category

none

Figure � Dimension Hierarchy Lattices�

the store and item dimension hierarchies� Note that the bottom element of each lattice is �none��




� Chapter �

meaning no grouping by that dimension� Furthermore� although the store and item dimensions
depicted here are total orders� partial orders where some elements in the hierarchy are incomparable
are also possible such as in the time dimension� where weeks and months do not strictly contain
each other�

We can construct a lattice representing the set of views that can be obtained by grouping on each
combination of elements from the set of dimension hierarchies� It turns out that a direct product of
the lattice for the fact table along with the lattices for the dimension hierarchies yields the desired
result �HRU�	�� For example� Figure 	 shows the lattice combining the fact table lattice of Figure ���
with the dimension hierarchy lattices of Figure 
�

(storeID, itemID, date)

(storeID, category, date) (city, itemID, date)(storeID, itemID)

(storeID, date)(storeID, category) (city, category, date)(city, itemID) (region, itemID, date)

(storeID) (city, category) (region, category, date)(city, date) (itemID, date)(region, itemID)

(city) (itemID)(region, category) (category, date)(region, date)

(category)(region) (date)

( )

Figure � Combined lattice�

The role of Materialized Views in OLAP

As should be clear from the above discussion� OLAP involves computing a lot of aggregate queries�
If each of these queries were computed from the fact and dimension tables� the system woul spend
all its time scanning large fact tables� and will be able to support very limited querying� Further� it
will not be possible to have interactive response times needed by data analysts�
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OLAP warehouses speed up querying and system throughput by materializing a large number of
summary tables� A summary table is a materializing aggregate view� Figure  shows four summary
tables corresponding to the queries of Figure �� each de�ned as a materialized SQL view�

CREATE VIEW SID sales�storeID� itemID� date� TotalCount� TotalQuantity� AS
SELECT storeID� itemID� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos

GROUPBY storeID� itemID� date

CREATE VIEW sCD sales�city� date� TotalCount� TotalQuantity� AS

SELECT city� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos� stores
WHERE pos�storeID 	 stores�storeID
GROUPBY city� date

CREATE VIEW SiC sales�storeID� category� TotalCount� EarliestSale� TotalQuantity� AS

SELECT storeID� category� COUNT��� AS TotalCount� MIN�date� AS EarliestSale� SUM�qty� AS TotalQuantity
FROM pos� items
WHERE pos�itemID 	 items�itemID
GROUPBY storeID� category

CREATE VIEW sR sales�region� TotalCount� TotalQuantity� AS

SELECT region� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity
FROM pos� stores
WHERE pos�storeID 	 stores�storeID
GROUPBY region

Figure � Example summary tables

Note that the names of the views have been chosen to re�ect the group�by attributes� The character
S represents storeID� I represents itemID� and D represents date� The notation sC represents the
city for a store� sR represents the region for a store� and iC represents the category for an item� For
example� the name SiC sales implies that storeID and category are the group�by attributes in the
view de�nition�

As sales are made in the stores� changes representing the new point�of�sale data come into the OLAP
warehouse� The OLAP warehouse then has the task of applying these changes to the summary tables�
Using the incremental maintenance approach� the warehouse can be updated either immediately as
soon as a changes are received� or the update can be deferred until a time when a large batch of
updates is applied to the warehouse at once� For example� the Walmart decision support systems
stores all changes in separate �les� and applies them in a nightly batch window�

In Part IV of this book� we review several papers that discuss the role of materialized views for
OLAP warehouses�
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�
� Stable Copy for Warehousing

Consider a small retailing company selling toys� with a database storing all sales transactions�
product information� and shipping information� Each sale is recorded in the database as the sale is
made at the cash register during the day� Similarly� information about new products is entered into
the system as they arrive� and shipping details are recorded as packages are shipped out�

The company has sales analysts who ask decision support queries� some of which are similar to
the OLAP queries of Section ���� and some of which need to look at detailed sales and shipping
transactions�

Suppose the performance of the database system permits the analysts to work on the same copy
of the data that is being modi�ed by the new sales and shipping transactions� However� it is not
acceptable to the analysts that the data they look at should change while they are analyzing the
data� in between several queries made to the system during an analysis session� For example� an
analyst may be looking at the sales for each toy� Having found that sales for sesame street toys are
running very high� the analyst might want to compare the morning sales against the afternoon sales
for the toys� To obtain meaningful results� and to be able to follow chains of exploration similar to
this example� the analyst does not want the data to change between his queries�

The application thus requires a materialized view over the detailed data to be made available to the
analysts� with the maintenance of the materialized view being done at periodic intervals� say every
eight hours� A materialized view that is maintained periodically is called a snapshot� The snapshot
could be in the same database where the operational data is kept �provided the performance of the
system can support the operational and decision�support needs�� or more commonly� the snapshot
could be in a separate database�

� Data Replication

Every major database vendor provides replication servers to help replicate data from one database
into another database� The replication servers allow one to control exactly what data gets replicated
and how often it gets replicated�

There are numerous applications of replication servers� Customer and account data in a bank needs
to be replicated into a remote site for disaster recovery� A mobile sales force needs copies of a part of
the central inventory database for day to day operations� To build an integrated warehouse� selected
data from the remote data sources needs to be replicated into the warehouse� as a way to obtain the
log of changes occurring at the remote data sources� Selected data from the data warehouse needs
to be replicated into data marts� A data mart is a copy of a selected portion of the data warehouse
meant for local processing� For example� while the sales data for the entire retailing corporation
is kept in one warehouse� each regional o�ce may want a copy of the summary data that pertains
to that region� Each product manager may want a copy of the summary data that pertains to her
product� Such smaller subsets of the warehouse are called data marts�
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The data replica managed by replication servers can be de�ned as a view over the database that is
the source for the replica� Most replication servers recognise the need for replicas that correspond
to general SQL queries stored as materialized views� The techniques to support join and aggregate
materialized views can be used to support such replicas� The techniques for determining updates
relevant to a view can help in reducing the changes that must be propagated by the replication
server from the source site to the replica site�

� Data Visualization

Data visualization is the art of creating visual images from large sets of data� so that the viewer may
develop an understanding of the data� Data visualization tools typically give the user control over
the data set being viewed� and the visual images being shown� Graphs� maps� and perspective walls
are common examples of visual images� Use of a visualization tool is an interactive experience � the
user selects a data and a visual image� develops some understanding of the data� and then tries to
explore parts or neighbors of the data set that looks interesting� The user may also chose to change
the type of visual tool used to display the data sets�

Data visualization applications thus broadly consist of two components � a data querying module�
and a graphical display module� The data querying module identi�es and computes the data to be
visualized� and the graphical display module displays the computed data� As the user learns about
the data by looking at the display� she modi�es the queries to select a slightly di�erent data set� and
the display module then displays the modi�ed data set� For the application to be interactive� it is
important that the computation of the new query� and its display occur in seconds�

Materialized views �t in naturally in the above framework� The querying module de�nes a view�
computes it� and materializes the view� The materialized view is then sent to the display module for
an on�screen display� The materialized view may be stored into a table or into an in�memory data
structure desired by the display module� When the user wants to look at slightly di�erent data� she
changes the view de�nition� and wants the display has to be updated accordingly� Materialized view
adaptation technology �Chapter � �GMR�
a�� can be used to incrementally compute the changes
to the materialized view in response to changes to the view de�nition� Assume that the display
module is incremental� This means that a currently active display can be changed in response to
some changes to the data set� without recomputing the entire display from the new data set� For
example� when displaying a set of restaurants on a map� a new restaurant can be shown by adding a
point� A restaurant can be removed by deleting its point� without redisplaying the map and all other
restaurants on the map� The changes to the materialized view can thus be given to the incremental
display module� and the display can be quickly changed to re�ect the new query by the user�

EXAMPLE 	�� Consider the following relations E �employees�� W �works�� and P �projects��

E�Emp��Name�Address�Age�Salary��

W �Emp��Proj��Hours��
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P �Proj��Projname�Leader��Location�Budget��

The key of each relation is underlined� Consider a graphical interface used to pose queries on
the above relations using SELECT�FROM�WHERE�GROUPBY� and other SQL constructs� For instance�
consider the following view de�ned by query Q��

�Q��� CREATE VIEW V AS

SELECT Emp
� Proj
� Salary
FROM E " W
WHERE Salary � ����� AND Hours � �� AND E�Emp
 # W�Emp


Query Q� might be speci�ed graphically using a slider for the Salary attribute and another slider
for the Hours attribute� As the position of these sliders is changed� the display is updated to re�ect
the new answer�

Say the user shifts the slider for the Salary attribute making the �rst condition Salary � �
����
The answer to this new query can be computed easily from the answer already displayed on the
screen� All those tuples that have Salary more than ����� but not more than �
���� are removed
from the display� This incremental computation is much more e�cient than recomputing the view
from scratch�

Other changes to the view de�nition may require more work� For instance� if the slider for Salary is
moved to lower the threshold of interest to Salary � �
���� then �a� the old tuples still need to be
displayed and �b� some more tuples need to be added� namely� those tuples that have salary more
than �
��� but not more than ������ Thus� even though the new query is not entirely computable
using the answer to the old query� it is possible to substantially reduce the amount of recomputation
that is needed� and just give a few extra data points to the display module for visualization� Further�
the user starts seeing results for her query with a minimal wait time�

A more detailed discussion of this example� as well as techniques to adapt a materialized view in
response to changes in the view de�nition are presented in Chapter ��

An interface for such queries in a real estate system is reported in Chapter �� �WS���� where they are
called dynamic queries� Data archaeology �BST���� is a similar application where an archaeologist
discovers rules about data by formulating queries� examining the results� and then changing the query
iteratively as her understanding improves� By materializing a view and incrementally recomputing
it as its de�nition changes� the system keeps such applications interactive�

� Mobile Systems

Palmtop computers� also known as Personal Digital Assistants �PDA� are commonplace� Currently�
these are used mostly for managing addresses� calendars� notes� and to do lists� It is envisioned
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that the PDA�s will be combined with Geo�Positioning Systems �GPS�� and Personal Communica�
tion Services �PCS� o�ered over wireless cellular systems to o�er a wide range of data services to
mobile customers� For the sake of discussion� let the envisioned device be called a Personal Data
Communicator �PDC��

For instance� one would like to support queries of the following form from mobile users� including
when they might be traveling in a car�


Which police stations are within a � mile radius��


Which is the nearest Pizza Hut��


What is the tra�c status on the various routes to my destination��

One way of providing a �subset of� such services is to include all the data needed to answer such
queries into the PDC� However� as the nature of the above queries illustrates� the data sets will
be large� and these queries will impose signi�cant processing loads on the PDC� Even if we could
support the data and processing requirements� the data sets would need to change as one travels
from one area to another� Further� within one area itself� data such as tra�c status� or restaurant
locations� change with time�

A second way of providing such services is for the PDC to communicate with a server� very much
like the PDC has to connect with a wireless network� A di�erent server could be used for di�erent
types of mobile services� The PDC then does not maintain the data needed to answer the queries�
and does not do the query computation� Assume that the connection is mostly over a wireless
network� such as a cellular network� Such a connection has limited bandwidth� is expensive� and it
is paramount to minimize the data transferred between the server and the PDC�

EXAMPLE 
�� Consider a scenario where a mobile PDC user� traveling in her car� asks for
restaurants within a 
 mile radius� The PDC �rst connects to the yellow pages server over a
cellular network� The PDC then transmits the user id� the query� and the user�s own geographical
position �using the GPS subsystem�� The server opens a pro�le for the user� computes the query
over its database� and sends a map with the location of restaurants marked on the map� along with
information about each restaurant�

The user travels for a mile� and repeats the query� How should this query be answered�

The naive implementation is for the server to recompute the query� and send the new answer back
to the PDC� In other words� the new query is treated as being totally independent of the old query�

A better way to implement the second query is to utilise the answers to the earlier query already
available at the PDC� The server gets the new query� and computes the change in the answer resulting
from the movement of the user� For example� the server may now include three new restaurants� and
remove two of the restaurants that had quali�ed earlier� The server now transmits only the changes
to the PDC� The PDC applies these changes to the cache� maintained as a materialized view� and
presents the new materialized view to the user�
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There are a number of di�erent ways to use materialized views to optimize the data communication
between the server and the PDC� For example� the PDC could compute the di�erential query
needed to compute the changes between the old and new queries� so that the server does not need
to remember the last query asked by each user�

� Switching software

Network switches� such as the Lucent 
ESS �
th Electronic Switching System�� are massive comput�
ers responsible for routing and completion of telephone calls� and for providing options such as call
forwarding� call waiting� and answering services� The switches have large databases to control their
operations� We consider two such data sets here�

EXAMPLE ��� The �rst data set we consider is for terminating calls into subscriber homes� A
switch has a number of physical ports� each with its portID� Subscribers of telephone service have
telephone lines running from a physical port in the switch to their home� Subscriber lines are
identi�ed by telephone numbers �telNum�� which are di�erent from physical ports� Internally� the
switch maintains a mapping table that maps each telephone number onto a physical port�

portMap�telNum� portID�

The portMap table is updated when a new subscriber comes in� or when an existing customer changes
her number� or when a physical port becomes defective� The switch also stores a customer table of
service options selected by each subscriber�

customer�telNum� forwardingNum� callWaiting� answeringPort�

The telephone number is the key� If call forwarding has been activated� forwardingNum gives the
number to which calls must be forwarded� otherwise forwardingNum # �� callWaiting is a �ag to
indicate whether call waiting is active� If an answering service has been selected� the port number
of the voice mailbox is given by the answeringPort �eld�

In order to complete a call� the switch needs to join these tables� as it needs to know the physical
port number to which the incoming call must be routed� as well as the features to be activated on
that physical port number� While the above tables are disk resident� the high volume of calls and
the real�time call�completion needs require that the switch keep the join pre�computed in memory as
a materialized view� Further� the materialized view must be maintained incrementally in response
to selection of options by customers and changes in the physical port mappings�

EXAMPLE ��� The second data set we consider is for routing outbound calls� A switch has a
number of trunk routes� each one leading to another switch� Every long�distance call has to be
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routed by the switch where the call originates onto one of the outgoing trunks� based upon the
current tra�c conditions on the trunk and the switch at the other end of the trunk� There exist
tables giving ��� the tra�c on each trunk� ��� the tra�c on remote switches� ��� the mapping from
outbound trunks to the switch at the other end of the trunk� and��� the area code�s� terminating
in each switch� Routing of all long�distance calls in the US is done based upon the three digit area
code� The preferred outbound trunk or trunks for each area code can be de�ned as a complex view
upon all these data tables using joins and aggregations�

routing�areaCode�trunkNum�

The routing of an outbound call can thus be accomplished by computing the routing tuple for the
area code of the destination of the call�

However� the switch is required to complete a call very fast� in seconds� and cannot a�ord to do the
joins and aggregations for each call� The switch must de�ne a materialized view that computes and
stores the routing information in memory� and must incrementally maintain the materialized view
in response to changes to any of the tables that derive the view�

The above two examples are indicative of the fact that most of the switch functions are driven by
complex mapping of data sets� The performance requirements for the switch are such that all the
complex mappings must be pre�computed and stored in memory� Consequently� there is a lot of
derived data sets in the switch� In fact� a signi�cant fraction of the very large code base of a switch
is devoted to the maintenance of these views and the preservation of integrity constraints to ensure
that the derived data sets are consistent with each other�

The derived data sets and integrity constraints in a switch should be treated as materialized views�
and appropriate view maintenance techniques should be used� The task is complex since the data
sets are kept as C%% data structures in memory� A formal model of de�ning and maintaining such
views is needed� However� doing so could help reduce the complexity of the switch software�

 Network Management

Consider a computer network consisting of a number of nodes� arranged hierarchically as shown in
Figure �� Each node represents a router in the network� A node n gets a request to transmit packets
to another node m in the network� The node n can send the incoming packets to its parent� or to
one of its children� with a request that the packet be sent further to node m�

Management of such a network requires monitoring the tra�c �owing through the network� and
taking steps to avoid congestion and loss of packets� Routing and bu�ering algorithms are built into
the nodes to do so� and human intervention is also permissible�

Each node keeps statistics of the number of packets entering or leaving the node over the last �
minute� 
 minutes� and �� minutes� The number of packets that are dropped� the average waiting
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Figure 	 Hierarchical Organization of Nodes in a Network

time for a packet� and the average size of a packet are also tracked for the same time periods� To
manage the network� we require that these statistics be aggregated at each hierarchical level� so that
the statistics at each node n represent the aggregate of the statistics of all nodes that are descendants
of n in the network� We can de�ne the aggregates at each node as views over the aggregates at its
children nodes� However� computing these views as virtual views on every query is infeasible�

For e�ective network management� the views at each node must be materialized� The views need
to be maintained at short periodic intervals� View maintenance technology is needed to de�ne the
changes that must be propagated from a node to its parents� so that the views at the parents can
be maintained e�ciently without looking at any remote data�

� Chronicle Systems in Banking and Billing

Banking and billing systems deal with a continuous stream of transactional data� This ordered
sequence of transactional tuples has been called a chronicle �Chapter �� �JMS�
��� Debit�credit
transactions in a banking system� and telephone call records in a telecommunications billing system
are examples of chronicles� One characteristic of a chronicle is that it can get very large� and it
can be beyond the capacity of any database system to even store the chronicle� far less access the
entire chronicle� for answering queries� Consequently� the data is stored for only a speci�c period
of time �this can vary from a few weeks� to a few months� to a few years�� and even then this data
typically forms the largest data set in the system�

The banking and billing systems however need to answer queries over the entire chronicle to support
their operations� In order to validate debit transactions� the banking system needs to check whether
the balance in a customer�s account� which is an aggregate over all her transactions in the past� is
su�cient to cover the debit� A cellular billing system needs to query the total usage and charges
accumulated by a customer to ensure that the customer is within the credit limit before completing
a new cellular call�
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The banking and billing systems therefore must de�ne� build� and maintain summaries in their
applications to enable them to answer the queries needed to support their operations� Materialized
views provide a way to automate the building and maintenance of the summaries that allow the
system to answer queries over the chronicle without accessing the chronicle� At the same time� the
application is simpler� less prone to damaging �nancial errors� and it is easier and faster to add new
types of summaries�

EXAMPLE �� �Banking Example�
Consider a large bank with millions of customers� and millions of transactions every month� The
bank keeps two main tables�

customer�accountNum� name� address��

ledger�accountNum� transactionType� date� location� amount��

The customer table stores the account number� name� and address of each customer� The ledger
table stores one record for each transaction between a customer and the bank� giving the account
number� type� date� location� and the amount of the transaction� The amount �eld is positive for
deposits into the account� and negative for withdrawals from the account�

The balance amount in an account can be de�ned using the query�

�Qb� SELECT accountNum� SUM�amount� AS balance
FROM ledger

GROUPBY accountNum�

The balance query is of paramount importance to the bank� Every withdrawal transaction must �rst
query the balance to ensure that there is enough money in the account to support the withdrawal�
Further� these balance queries must complete within ��� seconds� A customer can also call and check
her balance� In addition� the monthly account statement must list the starting and ending balance
at the end of the month�

The number and performance requirements of the balance query are such that it is not feasible to
compute the balance from the ledger table on each query� The bank thus adds an extra attribute
to the customer table�

customer�accountNum� name� address� balance�

and requires that the balance attribute always re�ect the result of the query Qb� The burden of
maintaining the balance attribute is upon the application code� For example� all transactions that
update the ledger must also update the balance attribute of a customer� For banking transactions�
which must be optimized for performance� and must replicate data for perfect accounting and jour�
naling� the added complexity of application code is signi�cant enough to cause publicly embarrassing
errors�
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In a well publicized incident on February ��� ����� every ATM withdrawal by customers of Chemical
Bank �since renamed Chase Manhattan Bank� to their account twice �Tim���� In other words� if you
withdrew ���� from a Chemical Bank ATM on that day� your balance was decreased by ����� If you
had ���� in your account to start with� and had written a check for ��
� that came in for payment
on February ��� the check was returned unpaid� The mistake a�ected thousands of customers� and
caused thousands of bounced checks before it was discovered�

The fault was found to be an extra line of code in a new version of automatic teller machine�ATM�
software released the previous night� The extra line caused an extra debit of the balance �eld !

If we were to model the balance �eld as a materialized view� we can achieve the performance
requirements of the bank� and avoid the application complexity of maintaining the balance� Let the
materialized view be de�ned as�

�V b� CREATE VIEW balanceView�accountNum� balance� AS

SELECT accountNum� SUM�amount� AS balance
FROM ledger

GROUPBY accountNum�

The maintenance of the balance is now the responsibility of the database system� The application
code for transactions that update the ledger do not need to compute the new balance� Further�
the database system does not have to maintain the balance within the transactions that updates the
ledger� The database can use a deferred approach to do the maintenance later� as long as it can
guaranty that queries read the correctly updated balance value�

Telecommunication billing system need to query and maintain several summary �elds similar to the
balance �eld in a banking system� Usage and charges of various types accumulated from a phone
number are examples of such �elds� Materialized views can be de�ned to compute and store the
summaries of interest over the chronicle of telephone records� View maintenance techniques are
needed to maintain these summaries as new transactions are added to the chronicle� but without
accessing the old entries in the chronicle �Chapter �� �JMS�
���

�� Distributed CD�ROM Services

Several large reference data sets are distributed by CD�Roms� Common data sets include geograph�
ical maps� road maps� telephone directories� encyclopedias� product catalogs� and help manuals�
However� these data sets change frequently� and the users either need to get updated CD�Roms �usu�
ally for a fee�� or they need to live with out�dated information� In fact� the characteristics of some
of these data sets �e�g� telephone directories� are such that any published CD�Rom is guaranteed to
be out of date before it even reaches the �rst user�

We propose a new type of information service� enabled by materialized views technology� that
provides current information to users of CD�Roms� The premise of the service is that while data
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changes frequently� the changes are small compared to the full data set� We illustrate the concept
using the telephone directory data�

Let a version of the telephone directory that is current as of January �� ���� be distributed to
subscribers of the service� Any changes since January �� ��� are stored in an incremental database
on a central server managed by the provider of the directory service� The incremental database is
small� assumed to �t in memory� and can be queried very fast� The user of the directory service
asks directory queries using the software that came on the CD�Rom� A user query Q is handled as
follows�

The query Q is computed locally on the data in the CD�Rom� A local answer A is generated�

If the user is connected to the network� the query Q is also shipped to the directory server�

� The server evaluates the query against the incremental database of changes since January
�� ���� and computes an incremental answer &A�

� the incremental answer is shipped to the user�

The directory software combines the local answer A with the incremental answer &A� if any� to
compute the complete answer to the user query�

Several variations and enhancements of the basic service described here are possible� For example�
there can be several versions of the CD�Rom data that have been distributed amongst users� As
another variation� the service provider may choose to distribute changes up to a certain date over
the network� so that they can be stored on the user�s hard disk� and the incremental queries can be
executed on the user�s machine�

The computation of the incremental answer &A� and the combination of the incremental answer
with the local answer to compute the �nal answer is very similar to doing view maintenance� The
local answer corresponds to a materialized view over the base data in the local CD�Rom� The set
of changes at the server represent the changes to base data� The computation of the incremental
answer corresponds to computing the changes to the materialized view� The combination of the
incremental answer with the local answer corresponds to refreshing the materialized view�

�� Advanced Messaging Services

Electronic messages� such as email or voicemail are common means of communications� A message
is typically sent from one user to another by naming the other user� or from one user to a set of other
users either by explicitly naming the recipient users� or by using mailing lists� For example� a user
�John� can send an email message to every student in The Stanford Computer Science Department�
provided such an email list has been de�ned earlier� The recipient of messages has a mailbox to
receive incoming messages� The recipient typically has little or no control on what gets into her
mailbox�
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One can envision advanced messaging systems where a sender can specify the recipients of a message
through views� and a recipient can specify her mailboxes as materialized views over a large conceptual
message store� We illustrate the concepts through examples�

��
� Views for the Sender

Consider three mailing lists

�� csStudents� A list of all students in the computer science department at Stanford University�

�� undergradStudents� A list of all undergraduate students at Stanford University�

�� aiStudents� A list of all students doing work in arti�cial intelligence at Stanford University�

A professor of arti�cial intelligence wishes to send an email to all undergraduate students in order to
encourage them to do arti�cial intelligence� The professor desires that the email not be sent to any
student who is already working in arti�cial intelligence� The professor must de�ne a new mailing
list as a view�

CREATE VIEW aiTargets�name� AS
SELECT name FROM csStudents� undergradStudents
WHERE csStudents�name 	 undergradStudents�name

EXCEPT

SELECT name FROM aiStudents �

Assuming each mailing list is a unary relation of names� the above view de�nition de�nes a new
mailing list which should be the target of the mailing by the professor� If we have a separate relation
giving additional information about the students� such as the courses taken by the students� we can
use that information as well in de�ning the new mailing list views� Depending upon how frequently
these new lists will be used� they could be materialized and maintained by the system�

��
� Materialized Views for the Recipient

Imagine that all the messages sent from a user to another user of an email service is available in the
relation�

emailStore�messageID� from� to� date� subject� body�

A message sent to multiple users is represented by multiple tuples with the same messageID� one
tuple for each recipient� The emailstore relation can be viewed as a chronicle� as de�ned in
Section �� since new messages can be inserted� but old messages cannot typically be removed�
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A user of the email service can now specify the contents of her mailbox as a view over all the messages
that were sent to her� or that she has the authority to read� For example� for a user �Mary�� the
statement V � below de�nes a view InMailbox that contains the messages that were sent to �Mary��
but were not sent to anyone else� The view junkMailbox de�ned by statement V � contains messages
that had �� or more recipients�

�V �� CREATE VIEW InMailbox�messageID� AS
SELECT messageID
FROM emailstore e�
WHERE e��to 	 
Mary� AND

� 	 �SELECT COUNT�e��to�
FROM emailstore e�
WHERE e��messageID 	 e��messageID� �

�V �� CREATE VIEW junkMailbox�messageID� AS
SELECT messageID
FROM emailstore e�
WHERE e��to 	 
Mary� AND

�� � �SELECT COUNT�e��to�
FROM emailstore e�
WHERE e��messageID 	 e��messageID� �

Using special function that understand the semantics of the message �elds� we can de�ne mailboxes
for work related messages �Statement V ��� for messages about conference announcements �Statement
V ��� or for messages about current talks �Statement V 
��

�V �� CREATE VIEW workMailbox�messageID� AS
SELECT messageID
FROM emailstore e
WHERE e�to 	 
Mary� AND

domain�e�from� 	 
stanford�edu� �

�V �� CREATE VIEW conferenceMailbox�messageID� AS
SELECT messageID
FROM emailstore e
WHERE e�to 	 
Mary� AND

keyword�
conference�� IN e�subject �

�V �� CREATE VIEW talksMailbox�messageID� AS
SELECT messageID
FROM emailstore e
WHERE e�to 	 
Mary� AND

keyword�
talk�� IN e�subject AND
e�date 	 today�� �
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The de�nition of the last view uses a special function today�� that returns the current date� Thus�
the talksMailbox always shows messages about the talks on the day when the mailbox is viewed�

Mailboxes can even be de�ned as pairs or triples of messages� Each of the mailboxes de�ned by
a user can then be materialized as a set of message identi�ers and the associated messages� An
appropriate language may be de�ned for the mailboxes so that each mailbox can be incrementally
maintained as a new message enters the system�

�� Data Pumping

A data pumping service pumps data into several users� machines that are distributed over a network�
giving each user the ability to view only that portion of the data that is of interest to the user�
Further� the user has the ability to see the data in the format and layout she prefers� Push and
broadcast technologies also refer to similar concepts�

Data pumping services are becoming very common over the Internet� Pointcast is perhaps the best
known example of such a service� Pointcast lets each user de�ne a pro�le specifying the data sets
of interest� and the frequency at which the data should be refreshed� For example� the user can
specify that she wants to look at stock prices and business news stories on Apple and Microsoft� and
that she should be informed of the new stock prices and the newly released business stories every ��
minutes� Pointcast pumps the data by broadcasting data� and having a client process at each user
site listen in to the broadcast data and capture the data that is of interest to the user�

Materialized views provide a framework within which to study several of the performance problems
faced by data pumping services like Pointcast� The analogy of user pro�les to materialized views
is straight�forward� Each user of a data pumping service de�nes a view� or several views� over the
data that is to be pumped to the users� The user then requires the views to be materialized locally
to the user� which happens to be remote from the data server that contains the date to be pumped�

We thus have a situation where hundreds� thousands� or even millions� of materialized views have
been de�ned remotely from a data source� Each materialized view could be in a separate remote
machine�

Now� as the data in the source changes� we need to maintain the materialized views at the user
machines� A good solution to the problem of maintaining a large number of materialized views over
a common set of data sources would give us a scaleable data pumping service�

�� Query Optimization

One of the primary problems in database applications is that of quick response time to user queries�
Query optimization has been gaining in importance especially with the advent of decision support
systems that require support for e�cient ad�hoc querying� Further� new applications warrant more
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sophisticated optimization that was not required in OLTP systems� A frequently used optimization
technique in code optimization� assembly line design� and even day�to�day living is to identify shared
work in di�erent tasks and to do the shared work only once for all the tasks� Materialized views
o�er the same opportunity� Thus� if a database system maintains several materialized views� the
query optimizer can use these materialized views to answer queries even even when the queries do
not mention the views�

EXAMPLE ���� Consider the university database of Example ��� and in it a materialized view
maintained by the CS department to keep track of the students enrolled in the PhD program�

CREATE VIEW cs phd AS

SELECT StuID�Name�Address� Phone� Y ear
FROM cs phd�StuID�Y ear� � registrar�StuID�Name�Address� Phone��

Now consider a query that �nds the addresses of all �rst year students to mail them an orientation
package�

�Q� SELECT Name�Address�Phone
FROM cs phd�StuID�Y ear� � registrar�StuID�Name�Address� Phone�
WHERE Y ear 	 
first���

Query Q can be answered using view cs phd as follows�

SELECT Name�Address� Phone
FROM cs phd WHERE Y ear 	 
first���

The above rewrite avoids a join when view cs phd is a materialized view�

Note� the user need not be aware of what views are materialized because the optimizer makes the
choice of whether to use the view� the user builds their applications in terms of the base tables�
The use of the optimizer is critical because blind reuse of materialized views is not always the best
strategy �due to missing indexes� tertiary storage etc��

The determination of when a query can be answered using one or more existing views is especially
useful in OLAP applications where people routinely roll�up to higher levels of aggregation thereby
enabling a direct reuse of the underlying detailed views� For example� consider the data cube lattice
of Figure �� An analyst might �rst want to see the total sales for each item and store� and cache
this aggregate as a materialized view V � Subsequently� when the analyst wants to roll�up the view
to see the total sales for each item� the new query can be computed by aggregating the materialized
view V thereby avoiding access to a much larger sales�transactions table� The following example
illustrates a more complicated reuse of a materialized view�
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EXAMPLE ���� Consider a data warehouse with historical sales data for a large chain of depart�
ment stores with the following relations�

item�itemID� item name� category� manufacturer��

store�storeID� street addr� city� state��

sales�salesID� itemID� storeID� month� year� sale amt��

The item relation contains information about each stocked item� The store relation contains the
address of each store� The sales relation contains one tuple for every sale that is made� Consider
a typical decision support application that computes the toy sales made by stores in the state of
California during each of the past six years�

SELECT year� SUM�sale amt�
FROM sales� store� item
WHERE sales�storeID 	 store�storeID AND

sales�itemID 	 item�itemID AND

sales�year �	 ���� AND

item�category 	 
toy� AND

store�state 	 
California�
GROUPBY year�

Now suppose a yearly sales view is materialized� listing the total yearly sales by item and store
for stores in the state of California�

CREATE VIEW yearly sales AS

SELECT sales�storeID� sales�itemID� sales�year� SUM�sale amt� AS total
FROM sales� store
WHERE sales�storeID 	 store�storeID AND

store�state 	 
California�
GROUPBY sales�storeID� sales�itemID� sales�year�

Notice that the materialized view involves the relations sales and store� while the query involves
the relations sales� store� and item� Using algorithms in �GHQ�
� for answering aggregate queries
using materialized aggregate views we can transform the query into one that uses the yearly sales

materialized view�

SELECT yearly sales�year� SUM�total�
FROM item� yearly sales

WHERE item�itemID 	 yearly sales�itemID AND

item�category 	 
toy� AND

yearly sales�year �	 ����
GROUPBY year�
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View yearly sales has several orders of magnitude fewer tuples than relation sales because the
view has information about only one state and makes no distinction between months and di�erent
transactions� Thus� the query using the materialized view is likely to be much more e�cient than
the query over the base relations�

�RSU�
� LMSS�
a� discuss the problem of answering a conjunctive query �SPJ query� given a set
of conjunctive view de�nitions� Optimization of aggregation queries using materialized views is
discussed in �CKPS�
� GHQ�
� SDJL�	�� The view adaptation results of �GMR�
a� can be used to
optimize a query using only one materialized view� Materialized views are being used to optimize
queries in commercial systems like the Informix Universal Server and the Red Brick DBMS� The Red
Brick solution is more ambitious and includes the ability to dynamically alter the set of materialized
views in response to a changing query load�

�� Integrity Constraint Checking

As discussed in Chapter �� most static integrity constraints can be represented as a set of views
such that if any of the views is nonempty then the corresponding constraint is violated� If the
system satis�es all the constraints then the initial set of views is empty� Subsequently� when the
underlying database changes then checking constraints translates to maintaining the corresponding
views� Thus� view maintenance techniques can be used to e�ciently check integrity constraints�
Further� materialized Views yield a powerful way to implement integrity constraints in real systems
because not all constraints are always satis�ed in a system and views are useful to capture the
exceptions that should not repeatedly surface�

EXAMPLE ���� Consider an inventory system that requires the quantity of each stocked item
to be less than ��� unless approved by the store manager� For the constraint to hold� the query
that selects items with quantity � ��� should yield an empty result set� If the query results are
non�empty then the constraint is violated for all those items that have not been approved by the
manager� This same query provides for the managers approval a list of the errant items� The results
of the query can be materialized to keep a record of the approved items� Subsequently the constraint
is checked by ensuring that the materialized view does not grow in size� If the materialized view
does grow� then the insertions yield a new list for the manager�s approval�

Chapter � describes in detail the EKS system that implements a common framework for main�
taining views and checking constraints� Often� the expression to check integrity constraints can be
simpli�ed when the constraint holds before the modi�cation� i�e�� the corresponding views initially
are empty �BB��� BC�� BMM��� CW��� LST�� Gup��� NY���� This intuition is similar to using
the contents of a view to maintain the view�

EXAMPLE ���� For the constraint from Example ���� let the materialized view contain a single
approved item � namely �toys� with quantity ������ If the underlying database is updated to add
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another �toy� it is possible to incrementally maintain the view to re�ect that �toy� now has quantity
����� by using only the contents of the view and the update �without looking at the underlying
database�� The corresponding constraint is checked equivalently � the update does not cause any
new constraint violation because �toy� would have to be an approved item to be in the materialized
view to begin with� By keeping materialized the view corresponding to the constraint� the checking
process becomes more e�cient�

�� Distributed Situation Monitoring

Distributed situation monitoring applications� �SSMR�	� have four common characteristics� a situ�
ation� data sources� a decision maker � and standing requests for information�

A situation is the state of a large progressing plan� or a sequence of events� that must be monitored�
The current situation is represented piecewise in a set of distributed� heterogeneous� and autonomous
data sources� Each data source maintains some information relevant to the �big picture�� but none
represents the global situation in its entirety�

The decision maker is a human being responsible for steering the state of the situation towards goal
states and away from undesirable or unrecoverable states� The decision maker must therefore be
able to rapidly predict the approach of desirable and undesirable global states� However� predicting
the states can be di�cult� since�

�� The decision maker deals in terms of the �big picture�� and is not necessarily aware of the
location or contribution of the various data sources�

�� The decision maker is interested only in key decision�relevant indicators� not with the entirety
of available information�

The solution is to de�ne and automatically monitor the key indicators� or standing requests for
information �SRIs�� SRIs are predicates expressed in terms of a federated schema de�ned over data
in the remote data sources� When the SRI is satis�ed� an alert is sent to the decision maker� SRIs
make it possible for the decision maker to focus on his job� and not deal with large scale data
transformation and �ltering problems�

EXAMPLE �	�� Consider an airlift of relief supplies to a disaster area� The relief plan must
coordinate many activities in parallel� including� loading �ights from supply warehouses� refueling
aircraft and feeding relief personnel enroute� and unloading aircraft� Highly constrained schedules
must be produced which ensure refueling without overburdening the refueling stations� Status
information maintained at both civilian and military airbases along the entire route is needed to
monitor the relief plan� as is warehouse inventory information� local weather reports� �ight plans�
and aircraft characteristics�

�We thank Len Seligman and Ken Smith for contributing to this section�
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An SRI can be used to determine an airbase�s capacity to receive incoming refueling �ights� MOG
��Maximum on ground�� is a complex function of many factors at an airbase including physical
runway space� fuel levels� and warehouse capacity� By monitoring the MOG level of enroute airbases
in an SRI� the decision maker can focus on decision�critical information� and head o� an impending
crisis by redirecting planes when necessary�

Materialized views are a necessary component of distributed situation monitoring� In the traditional
federated database architecture described in �SL���� queries against the federated schema �such as
SRIs� are decomposed� executed at relevant data sources� and the answers are returned and combined
at the site of origin� Due to many impeding factors such as� intermittently connected mobile data
sources� the need to possibly contact all data sources when only one relevant change has occurred�
and the computational overhead of reconciling data source heterogeneity� computing views� and
computing SRIs from base data� this approach is too time�costly to be feasible�

Instead� anywhere a decision maker can issue queries� a custom set of materialized views is maintained
such that all SRIs can be answered based solely on information in these local views� As illustrated
in Figure �� as remote changes occur at the data sources� they are propagated and used to maintain
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   A Collection of
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SRI SRI2 n

Source DB
1

Source DBm

Event
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Figure 
 Situation Monitoring

the materialized views� Changes in the views trigger the re�evaluation of SRIs� possibly resulting in
issuing an alert to the decision maker�
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CHALLENGES IN SUPPORTING

MATERIALIZED VIEWS

Ashish Gupta� Inderpal Singh Mumick

� Introduction

We discuss the technical and implementation problems that exist in the �eld of materialized views�
Solutions to these problems will increase the bene�t from materialized views to several of the appli�
cations discussed in the previous chapter� The problems are presented in three categories�

General problems� relevant to using materialized views in any application domain�

Application speci�c problems� relevant to using materialized views in a speci�c application
domain�

Database integration problems� relevant to integrating materialized views into commercial
database products�

While some of these problems have been partially solved� this chapter provides a number of open
problems for the research community� Further� this chapter can be used by the database vendors or
application developers to focus on problems that are relevant to the application at hand� Citations
to the recent work addressing these problems are included�

� General Problems

This section discusses some of the challenges in materialized views independent of the application in
which they are being used� The problems span the spectrum of issues like how to e�ciently maintain
views� how to use them� how to implement materialized views� and the performance tradeo�s in using
views�

View Maintenance Algorithms�

�
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How to maintain views that use aggregation and�or foreign functions� The problem of aggre�
gate views has been only partially addressed in �GMS��� GL�
� Qua�	� MQM��� OLAP and
warehousing applications make it important to deal with aggregate views that are more general
than SUM� MIN� etc�� The need for foreign function views is made important by data integra�
tion applications and more general data types as used by Illustra and other Object relational
systems�

How to maintain sets of views� The view maintenance process is a series of steps many of
which may be shared between di�erent views that are being maintained together� For example�
consider two views V and W � where view V is the join of three relations R�S� and T and view
W is a join of relations R and S� Thus� V can be computed from W making preferable a
maintenance expression that �rst maintains W and then V � A di�erent maintenance strategy
would result if W were not a subcomponent of V because then it might not be advantageous to
�rst maintain the join of R�S �depending on size of deltas� possible join orders� etc��� Thus� the
interrelationship between the views in the set determines how information �ows from one view
to another making preferable some maintenance paths over others� A very important example
of such views is that of the aggregation lattice in a roll�up hierarchy of a multi�dimensional data
source�

How to treat di�erent kinds of updates� It is not always advantageous to model updates of
existing tuples using deletions and insertions� For one� the model causes information loss because
an update of an existing tuple implies the continuing existence of a tuple whereas a deletion
does not� For example� updating an attribute A in a table T can be translated into an update
on an existing tuple in a view V if V has the key of T � However� if the update were modeled
as a deletion followed by an insertion� then maintaining V might involve joining T with some
other relation� Thus it is useful to have maintenance algorithms that model updates of existing
tuples as �rst�class operations� Updates can be further classi�ed as increments� decrements�
non�key� etc�� and yield special cases that may be more easily maintainable�

Further� how do maintenance algorithms change when the granularity of change may be captured
by a function that speci�es how an atomic value changed� For example� if one of the attributes
of a relation is a document and changes to the document are captured by an application then
how are those changes applied to a view that has copied the document�

How to maintain views in the presence of incomplete information� Most view maintenance
algorithms assume that the underlying relation and often the old contents of the view are
available� However� that assumption is not always true �for example� in a data warehous�
ing environment where the underlying relations are not always available�� The work on self�
maintenance �BCL��� GJM�	� explores some such scenarios where the underlying relations are
not present� The work on local�checking �Gup��� considers the case where only the updated
relation is present� What algorithms are needed to exploit the availability of an arbitrary subset
of the underlying relations�

How to use auxiliary data� If the database system has available the results of other queries then
these results can be used to incrementally maintain the view� This problem becomes especially
important because it feeds back into maintenance with incomplete information �QGMW�	�
MQM���
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How to use semantic information� Often� a database system has available integrity constraints�
functional dependencies� and constraints on the possible values for attributes� This information
is useful in view maintenance because it helps identify irrelevant updates and optimize compu�
tations� For example� primary key information is used to e�ciently handle updates and also to
propagate deletions to views�

How to maintain selected parts of views� Often� queries over a view select only a single tuple
or a small subset of tuples� When using deferred maintenance� we would like to maintain only
those view tuples that are selected by the query� What algorithms and data structures are
needed for partial maintenance of views�

What is the complexity of view maintenance� How do we identify query languages that can be
maintained in a given space and time� For example� the dynamic complexity classes of �PI��� and
the incremental maintenance complexity of �JMS�
� characterize the computational complexity
of maintaining a materialized copy of the view� �PI��� show that several recursive views have a
�rst order dynamic complexity� while �JMS�
� de�ne languages with constant� logarithmic� and
polynomial incremental maintenance complexity�

Using Materialized Views�

How to determine whether a given query can be answered using one or more of the available
views� For example� the result of the query �name and age of people with age��� can be used
to answer the query �name and age of people with age��
� Some work on the problem has been
done by �YL�� CKPS�
� GHQ�
� LMSS�
a� SDJL�	� but a lot of unexplored angles remain�
The problem is especially interesting in the context of aggregate views and OLAP queries�

What are the bene�ts of reusing a view� �CKPS�
� discusses how a system�R style query
optimizer may make this determination� What are the general cost metrics associated with
materializing and reusing views� How does one factor in the cost of maintenance� �BM��a�
also studies this problem in the context of single join queries� A more detailed study will be
useful for determining dynamically whether to use a view and further to identify which views
to materialize and when to drop a view�

Implementation of View Maintenance�

How to keep track of the validity of a view� If a query can use a table and a view� how does
the optimizer know that the states of the two are consistent� It is important to �expire� views
as the underlying relations are updated� Just as in locking� di�erent granularities for expiry
make sense because not the whole view need be invalidated at once� What are the ways of
tomb�stoning and maintaining views in part in order to use only the valid portions�

When are materialized views maintained � before the transaction that updates the base relation
commits �immediate maintenance�� or after the transaction commits �deferred maintenance��
When doing deferred maintenance� how do we choose between lazy� periodic� and forced delay
strategies�
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Can di�erent maintenance policies be used for di�erent views in a system� How would we
de�ne consistency in such a case� Are there interactions between di�erent maintenance policies�
Preliminary work in this area is presented in �CKL����

What transaction consistency guarantees are possible when the view maintenance is deferred�
How do we develop and implement concurrency control algorithms to guarantee serializability
in presence of deferred views� When can we do maintenance outside the querying transaction�
Preliminary work in this area is presented in �KLM����

How to minimize the down time for a system while maintenance is done� Shadowing and
versioning schemes� batching updates� and computing net e�ects of updates before refreshing
the views are ways to minimize down time during maintenance�

What data structures are needed to store updates� Even though the views may be relational�
keeping updates as a table may not be the most e�cient representation� Some updates are
best kept as an index structure thereby making the update process that of an index merge�
Further� updates may be annotated with counts to represent insertions and deletions both as
mathematical operations and avoiding multiple iterations �one iteration to handle deletions and
a second one for insertions�� thereby reducing the number of scans�

� Application Speci�c Problems

This section discusses the problems posed by some of the applications discussed in Chapter ��

�
� Data Warehousing

Data warehousing is one of the most attractive applications of materialized views� and also presents
some of the most interesting problems in this area� As we did in the applications chapter� we will
�rst discuss the problems in using materialized views for data integration� and then we will discuss
the problems in using materialized views for OLAP�

Data Integration� Using materialized views for data integration leads to the following challenging
problems�

What operations should the view de�nition language provide to enable an integration of data
from di�erent sources� Outer�joins �GJM��� and general matching �ZHKF�
� have been pro�
posed�

While the materialized views are available for view maintenance in a data warehouse� access to
the remote databases may be restricted or expensive� It is thus bene�cial if the view maintenance
can proceed without accessing the remote databases� Such a maintenance property is called
self�maintainability� How do we make the views self�maintainable� When does it help to make a
warehouse view self�maintainable� What are the self�maintenance algorithms� �BCL��� GJM�	�
QGMW�	� represent initial work on self�maintainability�
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When a view is not self�maintainable� what are the other views that can be materialized at the
warehouse so that the collection of views can be self�maintained�

The remote databases need to communicate their updates to the warehouse� Depending on
the capabilities of the remote databases� they may send the actual changes� the SQL in�
sert�delete�update statements� or database snapshots� Can data replication facilities in database
products be used to send a log of changes� How does one run view maintenance in each scenario�

When a view is not self�maintainable� and a remote database needs to be accessed to maintain
it� how do we guarantee consistency of the materialized view� One such algorithm is given
by �ZGMHW�
�� who also show how a modi�cation to a remote database can be counted twice
during view maintenance if one is not careful�

A materialized view in a warehouse may be modi�ed directly at the warehouse� either to make
annotations or to clean up erroneous data� Thus� the materialization is no longer derived
exactly according to the de�nition of the view� What type of changes should be permitted
at the warehouse� How does one maintain such views without losing the warehouse�speci�c
modi�cations� How does one propagate such changes back to the data sources�

OLAP� OLAP queries involve a lot of aggregates� and multiple materialized views �called summary
tables in the OLAP domain� must to be materialized to support the aggregate queries� The number
and nature of summary tables has a signi�cant impact on OLAP query performance� database size�
and update times� so that choosing the appropriate summary tables� and maintaining the summary
tables e�ciently are crucial to the performance of the OLAP warehouse� Consequently� we are
presented with the following problems�

What algorithms should be used to maintain aggregate views� OLAP queries can involve joins
of one or more fact tables with several dimension tables� with groupby and aggregation� Multiple
level of aggregations may be taken� as when computing the minimum total quantity sold by a
store in each state� Joins between aggregated tables may be taken� as when comparing the sales
at each store for the last three quarters� Algorithms to maintain such views e�ciently need to
be developed� For example� �MQM�� shows how single block select�from�where�groupby views
may be maintained�

An OLAP warehouse will have multiple materialized summary tables� These are often related
in that there may be several summary tables de�ned over the same fact table� but with di�erent
combinations of dimension tables� groupings� and aggregations� Is it possible to take advantage
of their inter�relationships when maintaining them in a batch process� For example� when
the summary tables are all a part of the same data cube� they can be arranged in a lattice�
and maintained together using lattice relationships �MQM��� What about the cases when the
summary tables are not a part of the data cube� Can such summary tables still be arranged in
an �extended� lattice� What are the algorithms to arrange an arbitrary set of summary tables
into a lattice� Is it pro�table to modify a given set of summary tables so that they do �t into
a lattice�
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It is desirable� especially as companies go international and the nightly batch windows disappear�
to be able to update the warehouse and summary tables while allowing the database to be read
for queries� How can we do so without slowing down the updates� How can we guarantee
stability and consistency to the queries that execute while the update process is running�
Versioning has been proposed as one way to achieve concurrent updates and queries �QW���

The performance of OLAP queries can be improved by storing more and more summary tables�
However� each summary table causes two overheads� Firstly� the summary table consumes
extra space� and we may not have large amounts of extra space in a warehouse� Note that a
warehouse has large amounts of base data to start with� Secondly� each summary table needs to
be maintained after the base tables are updated� The OLAP warehouses are typically updated
in batch during a nightly batch window� The nightly batch window involves updating the base
tables �if any� stored at the warehouse� and maintaining all the materialized summary tables�
The warehouse is usually unavailable to readers while the summary tables are being maintained�
due to the large number of updates that need to be applied� Since the warehouse must be made
available to readers again by the next morning� the time available for doing the all the updates
and the maintenance is limited� Further� the length of the nightly batch window itself shrinks
when a company goes nationwide� and then when it goes international� In short� the total time
available for maintenance can be a limiting factor in the number of summary tables that can
be made available in the warehouse�

Given hundreds of possible summary tables in a warehouse� how should we chose the summary
tables that should be materialized while satisfying the storage space and maintenance time
constraints� What about a situation when the space and maintenance times are not hard
constraints� but represent costs in the system� How do we optimize a combination of query
performance� space cost� and maintenance time cost� when choosing the summary tables to
materialize� Most of these problems are NP complete� A framework to think about the problem
of choosing materialized views is presented in �Gup��� A greedy heuristic solution for choice
of data cube views under space constraints is discussed in �HRU�	��

Warehouses have very few� if any� deletions and updates of existing tuples in the fact tables�
Most of the changes involve insertion of new tuples into the fact table� How do we optimize the
maintenance of the summary tables given that all updates are insertions into base tables� For
example� suppose that in a retailing warehouse� the newly inserted sales transactions are always
for a new date� Consider a summary table for which date is a groupby �eld� The newly inserted
sales transactions can only cause insertions into the summary table� How can we optimize
maintenance and availability of such views�

�
� Data Replication

Data replication is currently supported by database vendors as a way to replicate individual rela�
tions or entire databases in a distributed system� Data replication works by capturing the changes
occurring at the source site using triggers� or by looking at the log� The changes are then shipped
to the destination site� where they are applied on the replica�
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We would like to replicate generic views� including join and aggregate views� over base tables that
may reside at multiple sites� This requires that we develop maintenance algorithms that work
with change logs coming from distributed sites� Further� we would like to minimize the amount of
information that is shipped from the source sites to the destination site �data subscription problem��
One issue is whether some of the computation needed to maintain the view should occur at the
source site� For example� consider a site A that needs to maintain an aggregate of a table R at site
B� Site B can ship all changes to table R onto site A� or site B can do partial aggregation of the
changes to table R locally� and ship only the aggregated result to site A� The latter scheme has the
advantage that the amount of data being shipped is reduced� However� it also has the disadvantage
that site B must be aware of exactly what views are being maintained at site A� A mechanism to
translate materialized view de�nitions at site A into the aggregations that must be done and shipped
from site B is needed� A similar issue arises when the views at site A are selections� projections� or
joins over tables at site B� When the views are over tables from multiple sites� we may want to set
up semi�join style reducer programs for doing maintenance�

Maintaining the logs that capture the updates to base tables poses interesting problems when mul�
tiple replicas are maintained because each delta in the log now applies to a subset of the replicas
and has to be phased out when it has been propagated to all the replicas�

�
� Data Visualization

Data visualization applications present problems of two types for materialized views�

The �rst issue is that views need to be maintained in response to changes in the view de�nition�
rather than in response to changes in the base data� For instance� in Chapter 
� Example 
��� we
considered an environment where a user changed the selection conditions in the view de�nition� and
wanted the system to respond to such changes� The problem of updating a view in response to
changes in the view de�nition is called view adaptation �GMR�
a��

The second issue is that data visualization tools often store data in memory� in specialized data
structures� In such a scenario� we need view adaptation techniques that directly maintain views
stored in the specialized data structures� When designing the internal data structures� one should
write interfaces that permit individual data points to be inserted� deleted� or updated� The refresh
step of view maintenance must then directly use this interface to change the in�memory data struc�
tures� How should the database support materialized views so that such extensions to the refresh
step can be easily de�ned as user functions�

�
� Mobile Systems

Users of mobile systems typically ask spatial queries� related to the location of the user and the
queried objects�
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How do we maintain the spatial queries as a user moves� The movement of a user can be modeled in
two ways� The �rst model considers the user�s position to be a data point� A movement by the user
then corresponds to a change in the base data� and the view must be maintained in response to such
a data change� The second model considers the user�s position to be a part of the query de�ning
the view� A movement by the user then corresponds to a change in the view de�nition itself� and
the view must be adapted in response to such a de�nition change�

�
� Switching Software

The problems in using materialized views in switching software are very similar to the second issue for
data visualization� in that switches also keep data in main memory� in special data structures� The
view data needs to be modi�ed upon changes to data in the underlying relational system� or upon
direct changes in the main memory system� A main memory implementation of the maintenance
algorithms is needed� How should views be de�ned over data in main�memory that is not tabular�
When can maintenance algorithms for such views be derived automatically�

�
� Chronicle Systems in Banking and Billing

Chronicle systems in banking and billing store a number of aggregate views� or derived columns that
can be de�ned as aggregate views� These views and�or derived columns often need to be updated
after every insertion to the chronicle� Such an update can impose a signi�cant overhead in high
transaction environments such as billing and banking� It is thus important to allow only those
aggregate views that can be maintained very e�ciently� For example� we may chose aggregate views
for which the complexity of maintenance is very low �JMS�
�� How should we chose the storage
structures so that all the aggregate views that must be updated after a transaction can be updated
with a minimal number of I�Os� How do we ensure that the di�erent views a�ected by a single
transaction do not duplicate maintenance computations�

The amount of transactional data in a chronicle system can be very large� and it is often not
possible to store the transactional data beyond a certain period of time �typically a few months��
However� suppose we are given a set of interesting aggregate queries we would like to answer as if
the entire transactional data was stored in the system� Can we identify aggregate views that we can
materialized� so that the queries can be answered even after most of the transactional data has been
discarded� Such views must also be maintainable after the transactional data has been discarded�

�
� Distributed CD�ROM Services

Consider a distributed CD�Rom telephone directory service with thousands of subscribers� each
having a certain version of the directory CD�Rom� The central server needs to run incremental
queries for a subscriber over the data set that has changed �log� since the version used by the
subscriber� How should the changed data set be maintained as the number of versions increases�
When the number of versions is small� say ����� the server may be able to store a separate log for
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each version� However� as the number of versions becomes larger� we must share the logs between
di�erent versions� How should the sharing be done� How can we e�ciently extract the logs relevant
to a particular subscriber�

Now consider a situation where the service provider distributes two or more data sets on a CD�Rom�
and the user can ask queries involving joins of these data sets� The incremental queries at the server
now involve joins between the logs and the main data sets� Thus� the server must also maintain
di�erent versions of the main data sets� one for each version of the data set with any user� How
should we share the data sets between di�erent versions� Can we de�ne the log and data set versions
as views over a common data store�

�
 Advanced Messaging Systems

Use of views to de�ne mailing lists and incoming mailboxes represents a new and novel application of
views� Mailing lists are unary tables of email addresses� and mailboxes are unary tables of messages�
What are the languages in which these views should be de�ned� The self�maintainability issue
is important for mailbox views� since we would like to maintain a mailbox without accessing all
past email messages that have been sent through the system� The language design should take
self�maintainability into consideration� The maintenance policy of the mailboxes is another issue�
Should the mailboxes be maintained immediately� as soon as a message enters the system� or should
they be maintained in a deferred manner� when the messages are read� It appears that a two tiered
approach may be necessary� wherein some mailboxes are maintained immediately� and others are
maintained in a deferred manner� For example� a mailbox that shows messages about talks being
delivered �today� should be maintained in a lazy or periodic deferred manner�

�
� Data Pumping

The data pumping paradigm presents the obvious problem of maintaining thousands of materialized
views in a distributed framework� A naive solution is to broadcast all changes to the datasets
to each client that stores materialized views� and let each client maintain its views locally� This
solution requires that the views at each client be self�maintainable� and that each client be willing to
receive and process changes to all data sets� even those data sets that are irrelevant to the interests
of the node� While the self�maintainability assumption is reasonable� we believe that the second
requirement presents signi�cant overhead upon client resources� especially when the clients are PC�s
and the data sets are huge� Thus� we need a solution wherein each client only gets the changes
relevant to the views at the client� For example� is it possible to cluster views into �equivalence�
classes where the views in each class have the same set of relevant updates� All the views may not
be strictly equivalent with respect to relevant updates in which case how should they be grouped
approximately� What are the algorithms for clustering views into a manageable number of classes
whose maintenance can be optimized at the data server�
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�
�� Distributed Situation Monitoring

Recall that a distributed situation monitoring systems has a three layered architecture � data sources�
a federated cache� and the SRI monitors� Each of these levels de�nes a view over the data in the
lower level� The �rst problem is choosing what all views should be materialized� and at what level�
One would like to avoid materializing the same information multiple times in the federated cache
and in several of the SRI�s� However� the SRI�s actually trigger events� so a trigger must be de�nable
when a change occurs at a SRI�

The data subscription problem discussed in Section ��� on data replication and in Section ��� on
data pumping is also one of the major problems in distributed situation monitoring� Delivering data
from the sources to the federated cache involves four big steps�

Extraction of data from the data source�

Transfer of data to the federated system�

Cleansing of data�

Maintenance of views using the cleansed data�

Each of these steps is expensive� For example� transfer from mobile data sources is not guaranteed
since connections are intermittent� Some data cleansing must be done by hand �resolving inconsis�
tencies� �lling in missing values�� Therefore it is important to minimize the amount of data delivery
by �ltering out the irrelevant data� since data irrelevant to the cached views must go through all
the four steps� A technique where the data sources are given relevance tests to apply on all updates
before transmitting them to the federated cache would be very useful�

Di�erent materialized views at the federated cache may be refreshed at di�erent times� depending
upon the availability of the data sources from which the data is derived� One needs to understand
the relative consistency of di�erent views� and the impact on queries that access materialized views
that are mutually inconsistent� For example� consider an SRI for tracking the movement of a ship
using two separate data sensors� The �rst data sensor tracks the latitude of the ship� and transmits
the latitude every minute to the federated cache� The second sensor tracks the longitude of the ship�
and transmits the longitude every hour to the federated cache� The SRI uses a query over these two
data sets� and observes that the ship is moving in a zigzag manner through the ocean� when the ship
is actually sailing in a straight line� Can we provide a way to understand such mutual inconsistencies
between materialized views consisting of data having mixed levels of currency� Should we disallow
queries over mutually inconsistent data� Can we provide a way to specify �currency requirements�
for materialized view data� and then infer how often the underlying data sets must be refreshed�
Alternatively� given the refresh speci�cations of underlying data sets� can we infer whether the
currency requirements can be achieved or not�
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� Database Systems

This section discusses some of the issues that are relevant for supporting materialized views in
commercial database systems�

How should SQL be extended to support materialized views� Is there a need for a language
construct for the user to specify that a view should be materialized� and the maintenance
policy that should be used to maintain them� Should a user be able to give an SQL command
to ask for a view to be maintained� Or should view materialization be treated purely as
an optimization technique hidden from the user� The ANSI SQL standard currently does not
support materialized views� and there is an attempt not to include optimization level commands
in SQL� However� snapshots and forced delay materialized views result in observable di�erence
in query answers� and so at least these should be supported in the ANSI SQL standard�

Should the materialization of a view have a separate name from the view itself� For example�
one may ask that a view V � be materialized into a table M � Then� queries over V would
conceptually lead to evaluation of V as a virtual view� Queries over M would look up the
materialized table� whether or not it has been maintained since the last updates to the base
tables�

How should the existing query optimizers be extended with knowledge of materialized views�
The query optimizers should be capable of optimizing queries by using materialized views� as
well as optimizing the maintenance expressions for all the views in the system�

Should the system be able to maintain deferred views at any time there is spare capacity in
the system� Lazy deferred maintenance imposes extra overhead of query transactions� Perhaps
by doing the maintenance asynchronously� sometime between the update and the query� the
maintenance overhead can be borne at a time when the database system is not busy� However�
if the maintenance delay is built into the semantics of snapshot view� that we may require that
snapshots be maintained only at scheduled intervals�

When a system has multiple materialized views� with di�erent maintenance policies� it becomes
di�cult for the user to understand exactly the mutual consistency of the data in these mate�
rialized views� Can we somehow group the views together so that the mutual consistency is
easy to understand� Is the viewgroup model of �CKL��� an appropriate model for doing the
grouping�

What is the impact of materialized views on the concurrency control algorithms in the system�
What special data structures are needed to ensure that view maintenance activities do not cause
extra con�icts with queries and update transactions�

If materialized views were to be supported as a layer on top of a database system� what minimal
features might we require from the core database system so that the implementation is e�cient�
For example� it is evident that the system will need to provide a mechanism to track changes�
and store them in an internal table where they can be accessed by the maintenance algorithms�
Further� such change tables should be managed by the database system so as minimize con�icts
between maintenance operations and user queries and updates�
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How does a system dynamically decide the set of materialized views� The queries posed to the
system should determine this set� Further� which indexes should be built on the materialized
set� How to decide this set dynamically� Should the index maintenance itself be incremental
if the view is maintained incrementally�

Some class of views are updateable � especially those needed in many replication systems� For
example� a sales database that is horizontally partitioned and replicated by many sales agents
who deal with mutually exclusive geographic areas� How does the underlying system support
updateability� How does it resolve resulting con�icts�

Metadata management is an important issue� How should materialized views be tracked to
allow Database Administrators to e�ectively manage the system�



Part II

APPLICATIONS OF MATERIALIZED VIEWS





��

Applications of Materialized Views

This part of the book contains six chapters about of the applications that are driving the work on
materialized views�

Chapters 
 and 	 address data integration and data warehousing� The next two chapters focus on
reuse of views to answer queries in a variety of contexts� in particular query optimization� Chap�
ter �� discusses the use of materialized views in the context of a real estate application� Chapter �
describes techniques for supporting interactive modi�cation of user queries to enable applications
like visualization� mining� and decision support� Each chapter contains other speci�c applications
as targeted by their authors� The perspective of each author with regard to the target application
is di�erent than our perspective in characterizing applications in Chapter �� Hence the reader will
notice that the techniques in individual chapters apply to multiple application areas from Chapter ��

Chapter 
 de�nes the concept of self�maintainable views � namely views that can be maintained
using only the contents of the view and the database modi�cations without accessing any of the
underlying databases� Self�maintainability is a desirable property for e�ciently maintaining large
views in applications that require fast response and high availability� For example� DataWarehousing
wherein views integrate data from multiple databases� In addition to warehousing� self�maintainable
views are useful in data visualization �where a view captures a rendition that can be quickly updated
in response to a stimulus without accessing all of the underlying data�� in mobile systems �where
precious bandwidth is saved by transmitting only updates�� in integrity constraint checking� in
chronicle systems� and others�

Chapter 	 uses materialized views for data integration wherein objects in di�erent databases together
constitute a larger object in the real world � i�e� one object in the integrated system is obtained
by combining objects from multiple di�erent databases� This problem is central to information
integration in Cooperative Information Systems� Materialized Views are used to model the combined
object� The chapter describes a framework for data integration that captures the choices available
for building a data integration system using materialized views� ��� The �matching� criterion used
to combine component objects� For example� object may be combined using �look�up� tables�
user�de�ned functions� boolean conditions� historical conditions� and intricate heuristics� ��� The
proportions of the integrated data that is materialized� ��� The rate at which the underlying data
objects may change� ��� the maintenance strategy for the materialized integrated object� and �
� the
frequency with which changes are propagated from the underlying data to the integrated objects�
The authors have built a data integration system that allows users to chose di�erent points in
the above solution space� Di�erent points in this solution space better suit di�erent applications
described in Chapter �� For example� a chronicle system needs simple matching criterion� high
rate of change of underlying sources� full materialization of views� and incremental maintenance� In
contrast a warehousing system needs lower update frequency but complex matching criterion� The
chapter lays the foundations for analyzing the tradeo�s for di�erent applications�

Chapters � �� and � discuss how to use materialized views to answer queries� The question has two
components � ��� can the given query be reformulated to use the available views� and ��� does the
reuse of views save resources like computation time� A solution to problem ��� is useful by itself
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because it can be used to answer queries when materialized views are available but the underlying
data is not available� The results are useful in applications like query optimization� visualization�
mobile systems� mining� replication� warehousing� switching software� decision support etc�

Chapter  considers problems ��� and ��� when the views and queries are Select�Project�Join queries�
The chapter solves problem ��� by addressing how a relational query optimizer should choose one
of the possible alternatives for reusing views� Note� always using a materialized view can result in
signi�cantly worse executions than if no views were used to answer a query� The chapter presents
a simple� readily implementable extension to the widely used system�R style dynamic programming
algorithm to enable a cost�based decision for deciding whether or not to use materialized views
to answer a query� Chapter � considers problem ��� for SPJ views and queries that may also use
disjunction and comparison operators� The chapter gives algorithms and complexity analysis of the
solutions for the problem�

Chapter � considers a variant of problem ��� � namely when the query is a variant of the view�
Such scenarios are common when users interactively and dynamically change their queries and
expect to see results quickly� The chapter considers all possible rede�nitions of SQL Select�From�
Where�Groupby�Union�Except views and shows how the new view can be �adapted� from the old
materialized view� sometimes using extra stored information� Data archaeology� data visualization�
decision support are some applications considered in the chapter�
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ABSTRACT

In this chapter we de�ne the concept of self�maintainable views � these are views that can be maintained

using only the contents of the view and the database modi�cations� but without accessing any of the

underlying databases� We derive tight conditions under which a view is self�maintainable� and we give

algorithms to self�maintain several types of select�project�join views upon insertions� deletions and updates�

Self�Maintainability is a desirable property for e�ciently maintaining large views in applications where fast

response and high availability are important� One example of such an environment is Data warehousing

wherein views are used for integrating data from multiple databases�

� Introduction

Most large organizations have related data in distinct databases� Many of these databases may
be legacy systems� or systems separated for organizational reasons like funding and ownership�
Integrating data from such distinct databases is a pressing business need� A common approach for
integration is to de�ne an integrated view and then map queries on the integrated view onto queries
on the individual systems� This model is not good for applications where response time is critical�
or for decision support applications with complex queries� Further� in this model� the availability
of the integrated view is the lowest denominator of the availabilities of all databases touched by a
query� Finally� such query transaltion can become almost impossible when some of the underlying
�databases� are actually �at �les� or other non�relational systems�

We propose an alternative model� good for applications where fast response to queries and high
availability are important� The integrated view is materialized and stored in a database� Queries
on the view are then answered directly from the stored view� This approach involves the additional
storage expense for the materialized integrated view� Also� we need to maintain the integrated view
current as the underlying databases change� Maintaining the integrated database current requires
e�cient incremental view maintenance techniques�

	�
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It may be expensive or impractical to obtain much more than just a periodic report of local updates
from each underlying database� Even if an underlying database does not provide relational query
support� one can require it to provide a log of changes it makes� Under such circumstances� it
becomes crucial that the integrated view be self�maintainable �Self�M�� meaning that view mainte�
nance should be possible without requiring access to any underlying database� and without access to
any information beyond the view itself and the log of the changes� Self�M can be used in data ware�
housing environments not only to e�ciently maintain views but also to vaoid concurrency control
problems faced by generic view maintenance strategies �ZGMHW�
��

We study the syntactic restrictions for SPJ view to be self�M� and gives the corresponding mainte�
nance algorithms� Using the syntactic restrictions it is possible for a data integrator to write self�M
views that are e�ciently maintainable� Thus� even if a view itself is not self�M� a super�set of the
view may often be self�M� The full version of this chapter appears as �GJM����

Results

We de�ne the self�maintenance problem as the problem of maintaining a view in response to
insertions� deletions� or update �collectively referred to as modi�cations� using only the view and
the set of changes to the referenced relations �without access to the full referenced relations��
We obtain complete conditions and syntactic restrictions under which SPJ views �which are
views de�ned using the select�from�where clause of SQL� are self�M with respect to insertions�
deletions� and updates and present algorithms for their self�maintenance�

We model updates directly for the purpose of view maintenance� We show that view main�
tenance is easier when updates are modeled directly rather than as a set of deletions and
insertions� in particular updates can often be self�maintained even when insertions cannot be
self�maintained�

� Background and Notation

We consider SPJ views� i�e�� SELECT �'�JOIN views written using SELECT �FROM �WHERE clauses� A
SP �SELECT �'� view is a SPJ view with only one relation occurrence in the FROM clause�

De�nition ��� �Distinguished Attribute�� An attribute A of a relation R is said to be distin�
guished in a view V if attribute A appears in the SELECT clause de�ning view V �

We use keys to de�ne updates and to derive self�maintenance algorithms� A relation may have
several keys� and any one of these could be used for any of the results we derive �key�R� refers to
the key attributes of R��

De�nition ��� �Updates�� For a relation R that has a key� a tuple in R is said to be updated if
one or more attributes of the tuple are assigned a value di�erent from its original value� An update
to tuple r that results in tuple r� is represented as ��r� r���
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For each of the three types of modi�cations �inserts� deletes� and updates� we identify classes of
views that are self�M with respect to the modi�ed relation R� We omit mentioning �with respect to
modi�ed relation R� when the context makes it clear that relation R is modi�ed� Also� henceforth
the phrase �with respect to R� implicitly assumes that R is used in the view under consideration�

De�nition ��� �Self Maintainability with respect to a Modi�cation�� A view V is said to be
self�M with respect to a modi�cation type �insertion� deletion� or update� if for all database states�
the view can be self�maintained in response to a modi�cation of that type to the base relations�

De�nition ��� �Local and Join Predicates�� Consider a predicate p� (X� in the WHERE clause
of a view� p� (X� is said to be a local predicate if all variables in (X appear in a single relation in the
FROM clause� Otherwise� p� (X� is said to be a join predicate �

De�nition ��	 �Derivation tree �RSUV�����Informal� A derivation tree for a tuple t is a tree
representation of the manner in which the tuple is derived from base relations� For a tuple t in a
base relation� the derivation tree consists of a single node labeled with tuple t� For a tuple t in a
view de�ned as a join between relations R�� � � � � Rk� a derivation tree consists of a root node labeled
with the tuple t� and one child node for each of the tuples �r� � R�� r� � R�� � � � � rk � Rk� that join
to derive tuple t�

De�nition ��
 �Tuple Derivation�� Consider view V de�ned using relation R� and possibly other
relations� A tuple r in R derives a tuple v in V if r appears in some derivation tree for tuple v�

In the chapter we consider SP and SPJ views that are satis�able �Shm��� That is� there exists a
database for which the view is non�empty� Unsatis�able views are always empty and hence trivially
self�M� Also� we assume that the views do not include valid predicates �like �X � �� OR X � �����

� Self�Maintenance for SPJ Views

Whether a view is self�M depends on both the de�nition of the view and on the type of modi�cation�
and also on other �ner distinctions such as which attribute of a relation is updated� or the actual value
of the modi�ed attribute� or the presence of functional dependencies and other integrity constraints�
In this chapter we restrict ourselves to classifying self�maintainability with respect to the relation
being modi�ed� the type of modi�cation� and key information� We do not consider the other �ner
granularity distinctions in this chapter�

Insertions Views are self�M for insertions only under very limited circumstances� We prove that it
is not possible to self�maintain an SPJ �select�project�join� view joining at least two distinct relations
upon an insertion into a component relation� Even a view involving a self�join of a relation with
itself may not be self�M�
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Theorem ��� The self�maintainability of an SPJ view in response to insertions is decidable� and
can be tested in time exponential in the number of self joins in the SPJ view�

Proposition ��� An SPJ view that takes the join of two or more distinct relations is not self�M
with respect to insertions�

Proposition ��� All SP views are self�M with respect to insertions� An SPJ view dened using
self�joins over a single relation R is self�M if every join is based on key�R��

Algorithm Outline� For SP views self�maintenance can be done by a selection and a projection
on the newly inserted tuples� For an SPJ view with self�joins on a key each newly inserted tuple
joins only with itself� so the view de�nition is evaluated on only the set of inserted tuples�

Deletions

Theorem ��� An SPJ view V that takes the join of one or more relations R�� � � � � Rn is self�M
with respect to deletions to R� if and only if� for every database instance� and for every occurrence
of relation R� in the view denition� the following holds� Given a tuple t in view V � let a derivation
tree for the tuple t use the tuple r in R� for the stated occurrence of R� in the view denition� Then�
it is possible to identify the key of such a tuple r of R� from the tuple t and the view denition�
without referring to the contents of any of the relations Ri�

A su�cient condition for the conditions of Thm ��� to be true is when� for some key of relation R��
each key attribute is either retained in the view� or is equated to a constant in the view de�nition�
Then� given a tuple t in the view� we can identify the tuple r of R� from the key attributes�

Algorithm outline for views satisfying Theorem ���� For deleted tuple r in relation R��
check key�r� satis�es any predicates that equate key attributes to constants in the view de�nition�
Then� look for tuples in the view that have the same values on the remaining key attributes as the
deleted tuple� Delete all such tuples from the view�

Updates Updates have been modeled as deletions followed by insertions in previous view mainte�
nance work� This model may lose information that could be useful for incremental view maintenance�
Also� such a representation of an update means that a view is self�M with respect to updates only if
the view is self�M with respect to both inserts and deletes� In fact� the following lemma may suggest
that indeed the above conclusion holds for self�maintenance in response to updates�

Lemma ��� Let V be an SPJ view� and R one of the relations in the FROM clause� such that there is
at least one predicate on R� Then� the view maintenance problem for V in response to any insertion
or a deletion into R can be reduced to the view maintenance problem for V in response to an update
to R�
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However� a view may be self�M with respect to updates even it it is not self�M with respect to both
insertions and deletions because by modeling an update directly� not as a delete plus an insert� we
retain the link between the deleted and inserted tuples� Thus� often most of the attributes of the
new tuple that needs to be inserted into the view can be obtained from the deleted tuple� enabling
self�maintenance�

The information about the �deleted� view tuple that is retained by directly modeling updates fa�
cilitates self�maintenance in two respects� the conditions for self�maintenance becomes less onerous
than in the case of simple insertions� so that many views that are not self�M with respect to inser�
tions can be self�M with respect to updates� and the computational e�ort required to perform the
insertion is decreased� whether or not the view is self�M�

Whether a view is self�M depends upon the attributes being updated� The following de�nition
captures the property that enables self�maintenance�

De�nition ��� �Exposed Variable�� Given a view de�nition V � a variable� or equivalently� an
attribute� A� of a relation used in the view de�nition is said to be exposed if it is involved in some
predicate� A variable that is not exposed is called a non�exposed variable�

A non�exposed attribute does not a�ect the combinations of tuples that contribute to the view�

Theorem ��� A SPJ view V that joins two or more distinct relations is self�M with respect to
updates to relation R� if and only if either�

The updated attributes are non�exposed and are not distinguished with respect to view V � or

The updated attributes are non�exposed with respect to view V and V is self�M with respect to
deletions to the relation R��

Algorithm Outline� The algorithm involves joining the modi�ed tupels with the view on the key
attributes to obtain the new value for the modi�ed view tuple�

� Related Work

Autonomously Computable Views of �BCL�� Blakeley et al� �BCL��� de�ned a view to be
Autonomously computable with respect to a given update if the view can be maintained using only the
materialized view for all database instances for only the given instance of the update� Autonomously
Computability thus di�ers from self�M in that it considers a speci�c instance of the update� while
self�M is de�ned over all possible updates� The update language of �BCL��� is more powerful � it
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permits deletions and updates to be speci�ed using arbitrary conditions� In contrast� they do not
consider views with self joins and do not use key information for deriving self�M conditions�

View Maintenance� View maintenance �BLT�	� CW��� GMS��� HD��� Kuc��� UO��� bas been
generally studied as a problem to compute the changes to the view given the changes to the under�
lying relations� while having access to the view and the underlying relations� �TB��� GB�
� deduce
instance speci�c conditions for maintaining views without accessing base relations� Also� the above
work models updates as deletions % insertions and not directly as updates that may be more easily
maintainable�

Self�M is also indirectly related to work in data integration and updatable views�

� Conclusions and Future Work

We propose materialized views as a way to provide fast access to integrated data in a data warehouses
We de�ne self�maintainability as a desirable property for such views that allows the integrated data
to be updated in response to modi�cations to the base relations without accessing the base relations
and thereby avoiding remote accesses and concurrency control� We discuss syntactic restrictions
that ensure self�maintainability of SPJ views� We �nd that SPJ views are self�M with respect to
deletions and updates to non�exposed attributes if the keys of the joined relations are included in the
view� Also� SPJ views are usually not self�M with respect to insertions� Modeling updates directly�
and not as deletions % insertions� facilitates view maintenance and can make some views self�M with
respect to updates�

An important application of the results is that they provide guidance to a designer on how to de�ne
views in the integrated database so that they may be maintained e�ciently� Many times simply
keeping an extra attribute can make a view self�M� and greatly reduce the maintenance work� We
recommend that integrated views be de�ned so as to be self�M for as large a class of modi�cations
as possible�

Future Work This chapter opens up a new area of work on view maintenance issues for data ware�
housing� How can functional dependencies� more general than keys� be used for for self�maintenance�
How to self�maintain a set of views� How to self�maintain aggregate views�
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ABSTRACT

This chapter addresses the problem of object matching� that is� determining when object representations
�e�g�� OIDs� in di�erent databases correspond to the same object�in�the�world� Traditional approaches to
data integration based on query pre�processing and query shipping typically use universal keys to perform
object matching� and cannot e�ciently support more intricate object matching criteria�

We present a framework for data integration that is based on partial or full materialization of integrated
views� that can e�ciently handle very intricate object matching criteria� e�g�� involving boolean condi�
tions and user�de�ned heuristics� Materialized data is maintained using techniques generalized from active
databases�

To establish a context for our research� this chapter presents a taxonomy of the solution space for supporting

and maintaining integrated views� The chapter also describes a prototype that we are implementing for

data integration� that supports intricate object matching� and incremental maintenance of materialized

information�

� Introduction

One of the most important computer science problems today is to develop �exible mechanisms for
e�ectively integrating information from heterogeneous and geographically distributed databases� A
wide range of techniques have been developed to help resolve this problem� including approaches
based on creating virtual integrated views and query pre�processing and shipping �e�g�� �BLN�	�
SL��� DH��� SBG���� ACHK����� creating materialized integrated views �e�g�� �WHW��� WHW���
KAAK����� foundational work on languages and conceptual models for data integration �e�g�� �HM���
Wie����� maintaining consistency between multiple databases �e�g�� �SRK����� and supporting trans�
actions against multiple databases �e�g�� InterSQL �ME�����

�This research was supported in part by NSF grant IRI�������	 and ARPA grants BAA�����
�� and ������RT�
AAS�
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A fundamental issue that has not been resolved concerns the problem of object matching� that is�
determining when object representations �e�g�� object identi�ers in the object�oriented paradigm�
or keys in the relational paradigm� in di�erent databases refer to the same object in the world��
This problem is central to integrating information in the context of Cooperative Information Sys�
tems �CIS�� because data integration so often involves combining information about the same object
from di�erent sources� Most previous approaches to integrating data from heterogeneous databases
assume that for each type of object�in�the�world there is some form of �possibly derived� universal
key �DH��� ACHK��� WHW��� WHW���� Indeed� the traditional approach of virtual integrated
views and query�shipping is essentially limited to this paradigm� if more intricate object matching
criteria are used� then correlating data from di�erent databases about the same set of objects is quite
expensive� and this expense is borne with each query� An important discussion of object matching
is presented in �KAAK���� which describes an approach to data integration being developed as part
of the Pegasus prototype multidatabase system �ADD����� In addition to providing a philosophical
discussion on the problem matching� that paper presents an approach based partially on material�
ization that can be used to store and access information about matching object representations�

In the present chapter� we describe a framework and prototype tool that can support object matching
based on criteria which are much richer than universal keys and that go beyond the options discussed
in �KAAK���� In particular� the framework can accommodate a variety of complex criteria� including
�look�up tables�� user�de�ned functions� boolean conditions� historical conditions� and intricate
heuristics� Our framework supports rich object matching criteria through the controlled use of data
materialization� The primary advantage of materialization is that expensive matching information
need be computed only once� In this sense� our approach can be viewed as an extension of research
reported in �WHW��� WHW��� KAAK���� Unlike that work� our approach places major emphasis
on the issue of incremental maintenance of the materialized match information�

In our framework� incremental maintenance is provided by using active modules �Dal�
� BDD��
�
� these are software modules that include a rule base� an execution model for rule application� and
optionally a local persistent store� Active modules incorporate features of active databases �HW����
without necessarily being tied to a DBMS� In our framework� an active module might operate on
the same machine as one of the source databases� or might operate on a separate machine� As used
here� active modules can be viewed as a speci�c approach for implementing mediators in the sense
of �Wie���� Our framework can support a variety of incremental update mechanisms that can work
with legacy as well as state�of�the�art DBMSs�

The new approach developed here for object matching can be integrated with previously devel�
oped techniques to provide rich support for integrating data from automonous and heterogeneous
databases� In our framework� special match classes are materialized� that hold correspondences be�
tween matching object �representation�s from two or more databases �possibly along with related
information about these objects�� The match classes can be queried directly� or used in conjunction
with data from source databases to create other� more intricate derived classes� These other derived
classes might be virtual or materialized� If materialized� they can be maintained incrementally using
activeness� and if virtual� they can be accessed using traditional query pre�processing and shipping

�In �KAAK��	 the term �proxy object� is used to refer to an object representation	 and the term �entity object� is
used to refer to an object in the world�
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techniques� It is also straightforward to incorporate constraint monitoring into our framework� Im�
portantly� the constraints might refer to the integrated view� and hence to data that spans two or
more databases�

This chapter makes four speci�c contributions towards database interoperation� To provide context
for the research presented here� we �a� present a taxonomy of the solution space for supporting and
maintaining integrated views� with an emphasis on situations where part or all of the integrated view
is materialized� At a more concrete level� we �b� provide a detailed framework for supporting intricate
OID match criteria� We are currently developing a prototype implementation of this approach�
From an architectural perspective� our prototype uses a specialized class of active modules� called
here integration mediators� We also �c� describe how the framework can be extended to support
and maintain rich integrated views� where all or part of the view is materialized� Finally� we �d�
develop a preliminary version of a high�level Integration Speci�cation Language �ISL�� along with a
description of how to translate ISL speci�cations into integration mediators� The focus of the present
chapter is on supporting a stand�alone integrated view of portions of two heterogeneous databases�
we plan to extend this framework to handle multiple databases� and to extend it for integrating
imported data into a local data set �as arises when using a federated architecture �SL�����

Supporting rich object matching criteria is not the only motivation for materializing integrated
views� Two other motivations are� �a� if access time to remote data is substantial �e�g�� due to
network delay� but response time is critical� and �b� if the computer holding the integrated view
is not continuously connected to the source databases� as might occur if the integrated view is
stored in a portable computer used in the �eld� Thus� our work on using activeness to perform
incremental maintenance of materialized data is useful even if the object matching criteria in use
are straightforward�

The issue of maintaining materialized information in our framework is closely related to the ma�
terialized view update problem� We follow here the general spirit of �CW��� Cha���� where active
database rules can be used to capture relevant updates against the source databases� and appropriate
�possibly restructured� updates can be transmitted to the processor maintaining the materialized
copy� That work assumes that the source databases have full active database capabilities �as will
probably be true in the future�� The taxonomy presented in this chapter o�ers a broader perspec�
tive on how materialized information might be maintained� This is used to generalize work such
as �CW��� Cha���� by supporting a variety of incremental update mechanisms that can work with
legacy as well as state�of�the�art DBMSs�

Section � reviews concepts and technology that our framework builds on� Section � gives a motivating
example that illustrates our approach to data integration� and then describes an integration mediator
that supports an integrated view of the example data� Section � presents the taxonomy of the
space of approaches to data integration� Section 
 presents the details of our current prototype for
data integration� including a description of ISL and how ISL speci�cations can be translated into
integration mediators� The status of our prototype and future directions are discussed in Section 	�
Due to space limitations� the presentation in this chapter is somewhat abbreviated�
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� Preliminaries

This section brie�y describes three technologies that are used in the development of our frame�
work for data integration� namely active modules� immutable OIDs for export� and KQML Agent�
Communication Language�

�
� Active modules

In its broadest sense� an active module �Dal�
� BDD��
� is a software module that incorporates�

a rule base� that speci�es the bulk of the behavior of the module in a relatively declarative
fashion�

an execution model for applying the rules �in the spirit of active databases��

�optionally� a local persistent store

An active module can be viewed as capturing some of the spirit and functionality of active databases�
without necessarily being tied to a DBMS� In particular� the separation of rules �logic�policy� from
execution model �implementation�mechanism� allows a more declarative style of program speci��
cation� and facilitates maintenance of the active module as the underlying environment evolves�
Reference �Dal�
� describes an implemented prototype system that uses several active modules with
di�erent execution models to support complex interoperation of software and database systems�

A key enabling technology in the development of active modules has been the Heraclitus DBPL
�HJ��� GHJ�	�� This implemented language incorporates syntactic constructs that permit the �exi�
ble speci�cation of a wide range of execution models for rule application� and for specifying di�erent
kinds of rules �having a range of expressive powers�� Heraclitus is based in the relational paradigm�
a team at CU Boulder is currently developing H�O �BDD��
�� an extension and generalization of
Heraclitus for the object�oriented database paradigm� The current experimentation with the frame�
work described in this chapter is based on Heraclitus� and we expect the port to H�O to be relatively
straightforward�

As noted in the Introduction� we develop in this chapter a specialized class of active modules� called
here integration mediators� which are focused on supporting integrated views of data from multiple
heterogeneous databases�

�
� Immutable OIDs for export

If an integration mediator materializes matches between object representations from di�erent data�
bases� then it may be necessary for the mediator to refer to objects from the source databases� If
a source database is relational� then a printable key will typically be available for referring to the
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objects� In contrast� in the object�oriented paradigm� concrete and conceptual objects�in�the�world
are typically referred to by object identi�ers �OIDs�� In some cases a printable key may be associated
with objects represented in an object�oriented database� but this is not guaranteed�

While the notion of object identi�er �OID� is central to the object�oriented database paradigm� there
is no broad consensus as to exactly what an OID is� A common assumption at the formal level is
that the particular value of an OID is irrelevant� and only the relationship of the OID to values and
other OIDs in a database instance is important �Bee���� Indeed� in some practical systems �e�g��
AP
 �Coh�	�� the actual physical value of an OID may change over time even though it continues
to refer to the same object�in�the�world� This might arise� for example� as a result of an automatic
background garbage collection or other physical re�organization� In other systems �e�g�� Exodus
�CDRS�	�� physical OIDs are in fact addresses on disk and are essentially immutable�

We are interested in the general problem of integrating data from multiple object�oriented databases
operated by essentially di�erent groups� and we wish to disrupt their paradigm for physical OIDs
as little as possible� However� if an integration mediator materializes matches between object rep�
resentations from di�erent databases� then it may be necessary for the mediator to refer to speci�c
OIDs from the source databases� Signi�cant disruption may occur if the OIDs of source databases
are mutable as a result of background operations�

In our framework we generally assume that the physical OIDs associated with a given entity class
in a source database are immutable� If a source database does not use immutable OIDs� then we
follow the technique of �EK���� and assume that these source databases have been extended to
support immutable OIDs for export� �Reference �EK��� uses the phrase )global OIDs� for this��
A simple approach for a source database to support immutable OIDs for export is to maintain a
binary relation with �rst coordinate holding internal� physical OIDs� and second coordinate holding
symbolic �export� OIDs� The essential requirement is that the �export� OIDs are immutable �
they remain constant even if their associated physical OIDs change� e�g�� as the result of garbage
collection� The binary relation need not give a translation for all of the physical OIDs� but only for
the ones that need to be exported to the integration mediator�

�
� KQML

In our framework the underlying databases and the active module performing data integration may
reside on a single or on di�erent computers� While the choice of communication protocol between
the various systems is largely irrelevant� in our prototype implementation we are using the Knowl�
edge Query and Manipulation Language �KQML� �FLM��� This was developed by the DARPA
External Interfaces Working Group as part of a larger e�ort to develop a standard technology for
communication between software agents� KQML is a protocol that de�nes a conversation model
within which autonomous and asynchronous programs can exchange messages� Within this proto�
col� each message is assumed to have a certain purpose or �attitude�� such as that it is tell�ing the
recipient a new fact� ask�ing the recipient a question� or reply�ing to a previous message� KQML
provides a standard format for packaging messages� so that their purpose and other information is
easily obtained� The message contents might be a query in a standard or ad hoc query language� or
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interface Student �

extent students�

string studName�

integer��	 studID�

string major�

string local
address�

string permanent
address�

Set�Course� courses
taken�

�

interface Course �

extent courses�

string courseName�

��� ���

�

Subschema of StudentDB

interface Employee �

extent employees�

string empName�

integer��	 SSN�

Division division�

string address�

�

interface Division �

extent divisions�

string divName�

��� ���

�

Subschema of EmployeeDB

Figure � Subschemas of StudentDB and EmployeeDB in ODL syntax

might be a data set formatted according to some protocol� Various implementations of the KQML
Application Program Interface �API� are available� which support the protocol and communication
between applications in contexts of both local and wide area networks�

� An Example Problem and Its Solution

This section gives an informal overview of our framework for data integration� A simple example of
data integration is presented� with primary focus on the object matching problem� An approach to
supporting an integrated view using an �integration mediator� is then presented� The integration
mediator materializes the integrated view and also other data from the source databases that is
needed for incrementally maintaining the view�

In the example we assume that there are two databases� StudentDB and
EmployeeDB� that hold information about students at a university and employees in a large nearby
corporation� respectively� The relevant subschemas of the two databases are shown in Figure ��
An integration mediator� called here S E Mediator� will maintain correspondence information about
persons who are both students and employees� This information can be used to construct integrated
view of data from both source databases�

A host of issues are raised when attempting to perform this kind of data integration in practical
contexts� The primary emphasis of the present chapter is on three fundamental issues�

�a� Mechanisms to support rich object matching criteria�
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�b� Mechanisms to maintain replicated �possibly derived� data�

�c� �Since our solution to �b� involves rule bases�� mechanisms to automatically generate rules for
a given data integration application�

We are also developing

�d� mechanisms for using the object correspondence information in the construction of rich inte�
grated views� and

�e� mechanisms to monitor constraints concerning the integration of multiple data sets�

In this section we consider each of these issues with respect to the example problem�

With regards to issue �a�� we assume in the example that a student object s matches an employee
object e �i�e�� they refer to the same person in the real world� if ��� either s�local address #
e�address or s�permanent address # e�address� and ��� their names are �close� to each other
according to some metric� for instance� where di�erent conventions about middle names and nick
names might be permitted� The �closeness� of names is determined by a function� called here
close names��� that takes two names as arguments and returns a boolean value� It should be noted
that no universal key is assumed for the class of student employees� and that the traditional approach
based on a virtual integrated view and query shipping would be prohibitively expensive� We now
propose an e�cient mechanism to provide an integrated view for the example�

To support the object matching criteria between students and employees� we propose that the local
persistent store of S E Mediator holds three classes� a class called Stud match Emp and two auxil�
iary classes that are used to facilitate incremental updates of the objects in Stud match Emp class�
Speaking intuitively� Stud match Empwill hold pairs of matching Student and Employee objects� For
this example� the two auxiliary classes are Stud minus Emp and Emp minus Stud� Stud minus Emp

will hold one object for each student in Student who is not an employee� and analogously for
Emp minus Stud�

Figure � shows the interfaces of the three classes in more detail� �Subsection 
�� below develops
a mechanism for automatically generating class speci�cations of an integration mediator from the
matching criteria and other input�� Here the Stud minus Emp and Emp minus Stud classes include
the attributes needed to perform matches� The Stud match Emp class holds all of the attributes from
both Stud minus Emp and Emp minus Stud�

We now turn to issue �b�� that of incrementally maintaining the three classes just described� Two
basic issues arise� �i� importing information from the two source databases and �ii� correctly modi�
fying the contents of the three classes to re�ect changes to the source databases� With regards to �i��
we assume for the present that both source databases can actively report the net e�ects of updates
�i�e�� insertions� deletions� and modi�cations� to S E Mediator� �Other possibilities are considered
in Section ��� The net e�ects are wrapped in KQML messages� Upon arriving at S E Mediator� the



�� Chapter �

interface Stud
minus
Emp �

extent stud
minus
emps�

string studName�

integer��	 studID�

string local
address�

string permanent
address�

�

interface Emp
minus
Stud �

extent emp
minus
studs�

string empName�

integer��	 SSN�

string address�

interface Stud
match
Emp �

extent matchs�

string studName�

integer��	 studID�

string local
address�

string permanent
address�

string empName�

integer��	 SSN�

string address�

�

Figure � Class interfaces of S E Mediator

R��

on message
from
Student
database

if create Student� x� sn� sid� maj� ladd� padd� ct�

then �create Stud
minus
Emp� new� x�sn� x�sid� x�ladd� x�padd��

pop Student
database
queue	�

R��

on create Stud
minus
Emp� x� sn� sid� ladd� padd�

if �exists Emp
minus
Stud�y� en� ssn� addr� and

close
names�x�sn� y�en� and

�x�ladd � y�addr or x�padd � y�addr��

then �delete Stud
minus
Emp�x�� delete Emp
minus
Stud�y��

create Stud
match
Emp�new� x�sn� x�sid� x�ladd� x�padd�

y�en� y�ssn� y�addr�	�

Figure � Sample rules for maintaining local store of the integration mediator

messages are placed in the queues assigned to the corresponding source databases� A rule base can
be developed to perform �ii�� Two representative rules responding to the creation of new Student

objects in the source database StudentDB� written in a pidgin H�O �BDD��
� rule language� are
shown in Figure �� Intuitively� the two rules state�

Rule R�� If an object of class Student is created� create a new object of class Stud minus Emp�

Rule R�� Upon the creation of a Stud minus Emp object x� if there is a corresponding object y of
class Emp minus Stud that matches x� then delete x and y� and create a Stud match Emp object
that represents the matching pair�
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DEFINE VIEW Expertise

SELECT d�divName� c�courseName

FROM c IN StudentDB�Course� s IN StudentDB�Student�

e IN EmployeeDB�Employee� d IN EmployeeDB�Division�

m IN Stud
match
Emp

WHERE s�studID � m�studID and c IN s�courses
taken and

e�SSN � m�SSN and d IN e�division�

�a� De�nition of view Expertise expressed in extended OQL

DEFINE VIEW Expertise
internal

SELECT m�divName� c�courseName

FROM c IN StudentDB�Course� s IN StudentDB�Student�

m IN Stud
match
Emp

WHERE s�studID � m�studID and c IN s�courses
taken�

�b� Query that implements this view under one solution based on partial materialization

Figure � Constructing a rich integrated view

The complete rule base would include rules dealing with creation� deletion� and modi�cation of
objects in both source databases�

With regards to the issue of �c� automatically generating rule bases for data integration applications�
we shall introduce a high level integration speci�cation language �ISL� in Subsection 
��� With the
help of the set of rule templates described in Subsection 
��� an ISL speci�cation can be translated
automatically into a rule base that maintains object correspondence information�

We now consider �d� the issue of constructing rich integrated views based on the object correspon�
dence information� As mentioned in the Introduction� match classes can be used along with data
from the source databases to include intricate derived classes in an integrated view� Intuitively� a
match class can be used as a kind of �glue� to form a �join� between information about objects in
di�erent databases� We illustrate this with a simple example� Suppose we want to de�ne a derived
class Expertise that includes a pair �dn� cn� whenever there is a student working in the division
with name dn that has taken a course with name cn� The de�nition of this class� expressed as a
view in extended OQL� is given in Figure ��a�� The notation EmployeeDB�Employee indicates class
Employee of the EmployeeDB database� i�e� part of the query de�ning the view is from EmployeeDB

database� The class Stud match Emp is used to specify the correspondences between objects from
the StudentDB and EmployeeDB databases�

The class Expertise de�ned in Figure ��a� might be supported in S E Mediator as virtual� fully ma�
terialized� or partially materialized� If a virtual approach is used� then queries against the class would
be broken into three pieces� one each for StudentDB� for EmployeeDB� and for the Stud match Emp
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No Spectra Range

� Matching Criteria key � lookup�table � compar� � history
� Materialization fully materialized � hybrid � fully virtual
� Activeness of Source su�cient activ� � restricted � none
� Maintenance Strategies incremental update � refresh

 Maintenance Timing event triggered � periodic

Table � Solution space for object matching when integrating data

class� �The particular execution plan used would depend on the query�� Suppose now that the cost
of query shipping to EmployeeDB is considered to be very high� A solution based on partial material�
ization is as follows� An attribute divName �division name� is included in both the Stud match Emp

and Emp minus Stud classes� and is maintained by S E Mediator in a materialized fashion� In this
case� the integration mediator could internally use the query of Figure ��b� to support the derived
class Expertise�

Finally� we consider �e� the issue of constraints that apply to the integrated view� As a simple
example� suppose that the employer wants to enforce the constraint that it employs no more than ���
students� This cannot be enforced in either of the source databases independently of the other� On
the other hand� it is easy to specify a rule in S E Mediator that monitors the size of Stud match Emp�
and takes corrective action if this size becomes larger than ���� Importantly� the rules that monitor
constraints can be quite independent from the rules for identifying corresponding objects and for
maintaining replicated data�

� A Taxonomy of the Solution Space for Data Integration

The solution presented in the previous section for the Student�Employee example represents just
one point in the space of possible approaches to solving data integration problems based on object
matching� This section attempts to identify the major spectra of this solution space�

Our taxonomy is based on �ve spectra �see Table ��� The �rst two spectra are relevant to all solutions
for object matching when integrating data� and the latter three are relevant to solutions that involve
some materialization� We feel that these spectra cover the most important design choices that must
be addressed when solving a data integration problem� Within each spectra we have identi�ed what
we believe to be the most important points� relative to the kinds of data integration problems and
environments that arise in practice� Of course� much of our discussion of the latter three spectra is
also relevant to the use of materialization in contexts other than object matching�

Before discussing the spectra individually� we indicate where the solution of the previous section
�ts in the taxonomy� With regards to Matching Criteria �Spectrum ��� there is only one pair
of corresponding classes in the Student�Employee example� with matching based on comparison
of attribute values� The solution assumed full materialization �Spectrum �� and that the source
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databases were su�ciently active �Spectrum ��� The Maintenance Strategy �Spectrum �� used was
incremental update� and Maintenance Timing �Spectrum 
� was event triggering by the source
databases�

�
� Matching Criteria

In some cases the problem of identifying corresponding pairs of objects from di�erent databases can
be straightforward� in other cases this can be quite intricate or even impossible� We mention some
key points from the spectrum� combinations and variations of these can also arise�

Key�based matching is the most straightforward one� it relies on the equality of keys of two
objects to match them� WorldBase �WHW��� and SIMS �ACHK��� are two examples using
this approach� A generalization of this is to permit keys that involve derived attributes� as in
�DH����

Lookup�table�based matching uses a lookup�table that holds pairs of immutable OIDs or keys of
corresponding objects�

Comparison�based matching provides in addition the possibility of comparing �possibly derived�
attributes of two objects� either with arithmetic and logic comparisons or user�de�ned func�
tions that take the attributes as arguments and return a boolean value� such as the function
close names�� in the rule R� of the Student�Employee example�

Historical�based matching can be used to supplement other matching methods� For instance� an
application can specify that two already matching objects stay matched� even if they cease to
satisfy the other matching conditions�

The approaches based on keys and lookup�tables are well suited for specifying straightforward object
correspondences� The comparison�based approach is much more powerful� because �i� attributes
other than keys can be also considered in the matching criteria� and �ii� arbitrary boolean functions
can be used to specify complex criteria between object attributes� The next subsection will show that
when using the more powerful matching criteria� materialization of the correspondence information
has advantages over the traditional virtual approaches to data integration� Neither comparison�based
or historical�based match are considered in �DH��� ACHK��� WHW��� KAAK����

In the Student�Employee example� the Student class and the Employee class refer to the same kinds
of objects in the world� namely� people� In the terminology of �Cha��� CH�
�� two entity classes from
di�erent databases that refer to the same or overlapping domains of underlying objects are called
congruent classes� In some cases objects from non�congruent classes may be closely related� For
example� one database might hold an entity class for individual �ights of an airline� while another
database might hold an entity class for �routes� or �edges� �connecting one city to another� for
which service is available� In the current chapter� we focus exclusively on matching objects from
congruent entity classes�
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�
� Materialization

This spectrum concerns the approach taken by an integration mediator for physically implementing
the data held in its integrated view� The choices include

fully materialized approach� as in �WHW��� and in the Student�Employee example of Section ��
which materializes all relevant information in the local store of the mediator�

hybrid approach that materializes only part of the relevant information� and

fully virtual approach� as in �DH��� ACHK���� that uses query pre�processing and query shipping
to retrieve and compute the correspondence information whenever queries are made against the
integrated view�

The fully virtual approach saves storage space and o�ers acceptable response time for queries if the
object matching is straightforward� for example� key�based matching� and network delay is minimal�
e�g� the source databases and the mediator are located on a local area network� In many other
cases� the fully materialized approach is much more e�ective� for primarily two reasons� First� if
more sophisticated matching criteria� e�g�� comparison�based matching using a function� are used�
then the fully virtual approach may be very ine�cient� This is because under the fully virtual
approach the function might have to be evaluated for every possible pair of objects of two classes�
for every query against the integrated view� In the other approaches� the full set of comparisons
will haven to be performed at most once� when the integrated view is materialized� after that
incremental maintenance of the view will require a smaller set of comparisons based on inserted or
modi�ed objects� Second� if the mediator and the source databases are geographically distributed�
local materialization avoids the repeated� typically expensive remote data accesses required by the
virtual approach�

A compromise between the fully virtual and fully materialized approaches is the hybrid approach�
which materializes only the data that is most critical to the response time and leaves other data
virtual to conserve storage space of the mediator� Several variations are possible� A typical case that
arises when it is costly to determine corresponding pairs of objects is to materialize the match class
and the two auxiliary classes needed to maintain it� but to leave all other export information virtual�
When queries involving the non�materialized attributes arise� the attribute values can be retrieved
from the source databases� A rather extreme case arises if the mediator is severely space�restricted�
as might arise if it resides on a lap�top� A possible solution is to materialize only the match class�
but not the auxiliary classes� Incremental maintenance of the match class may be di�cult if not
impossible� and so a refresh maintenance strategy might be be used to maintain the match class �see
Subsection �����

An integration mediator can support more than one of the above approaches for di�erent pairs of
corresponding classes�

In this discussion� we do not address the issue of how methods against objects in the mediator will
be handled� One approach is to use remote procedure calls� as in �FHMS����
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It is well�known that data from multiple information sources cannot be accessed at precisely the same
time� As a result� the answer to a query against an integrated view may not correspond to the state
of the world at any given time� and inconsistent data may be retrieved� This problem is exacerbated
if some of the data is replicated� as is the case in our approach� Very good approximations to
simultaneous access can be obtained by using a scheme based on global transactions� e�g�� using
time�stamping� However� this can be very costly in terms of throughput� and is not feasible in cases
where there is not a continuous connection between some data source and the mediator� At the other
extreme� data obtained from di�erent sources and the mediator might be combined without regard
for the exact time at which the data was retrieved� in spite of possible errors and�or inconsistencies
that might arise� Two basic issues are� �a� what kinds of errors can arise when global transactions
are not used� and �b� what are the major points along the spectrum ranging from using global
transactions to completely ignoring issues of access time� We plan to address these issues in our
future research�

�
� Activeness of Source Databases

This spectrum concerns the active capabilities of source databases� and is relevant only if some
materialization occurs� This spectrum allows for both new and legacy databases� The three most
important points along this spectrum are�

su�cient activeness� able to periodically send deltas corresponding to the net e�ect of all updates
since the previous transmission� with triggering based either on physical events or state changes�
This approach has two major advantages� First� it could signi�cantly reduce the network tra�c
by transferring deltas rather than full snapshots of the membership of a class� Second� most
algorithms �BLT�	� QW��� GMS��� for maintaining materialized views compute the incremental
updates on derived data based on the net e�ects of the updates of the source data�

restricted activeness� the source database has triggering based on some physical events �e�g��
method executions or transaction commits�� and the ability to send �possibly very simple�
messages to the integration mediator� Perhaps the most useful possibility here is that the on a
physical event the source database can execute a query and send the results to the integration
mediator� Even if the source database can send only more limited messages� such as method
calls that were executed� then the mediator may be still able to interpret this information
�assuming that encapsulation can be violated�� At an extreme is the case where the source
database provides trigger monitoring but no other support� even in this case it may be possible
to incorporate software into the source database to send appropriate messages to the mediator�

no activeness� the source database has no triggering capabilities� In this case the mediator can
periodically poll the source databases and completely refresh the replicated information�

�
� Maintenance Strategies

Maintenance strategies are meaningful only if some materialization occurs in the mediator� We
consider two alternative maintenance strategies�
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incremental update of the out�of�date objects� and

refresh of the out�of�date classes in the mediator by re�generating all their objects�

In general� refreshing is more straightforward in terms of implementation and can be applied under
all circumstances� In contrast� incremental updating is generally more e�cient� especially when the
updates in the source databases a�ect only a small portion of the objects� as is true in most cases�

�
� Maintenance Timing

Maintenance timing concerns when the maintenance process is initiated� this is relevant only if some
materialization occurs� The most important points in this spectrum are�

event triggered� the maintenance is triggered by certain prede�ned events� and

periodic� the maintenance is performed periodically�

There are many kinds of events for the event triggered approaches� We mention here some typical
kinds of events� �i� transaction commits in a source database� �ii� net change to a source databases
exceeds a certain threshold� for instance� 
* of the source data� �iii� the mediator explicitly requests
update propagation� and �iv� the computer holding the mediator is reconnected via a network to
the source databases�

With the periodic approach� the user can balance the tradeo� between out�of�date data and main�
tenance costs� by setting the appropriate length of maintenance cycles� In general� longer time
periods between maintenance cycles is more e�cient in terms of the update propagation� because it
accumulates updates of the source databases propagate the updates together� However� with longer
time periods more data is likely to be out�of�date�

� Towards a General Tool for Building Integration
Mediators

Section � presented a broad taxonomy of the solution space for supporting data integration� We are
currently developing a general tool for building integration mediators that can accommodate many
of the points in that solution space� This section describes some of the key components of this tool�

The current focus of our work is to provide substantial support for the full range of object matching
criteria� i�e�� Spectrum � of the taxonomy of Section �� With regards to the other spectra� we are
focused on the left�most positions in Table �� i�e�� on full materialization� su�ciently active source
databases� incremental update� and maintenance timing based on event triggering from the source
databases� In this presentation we focus on the case where information from two databases is to be
integrated� the generalization to multiple databases is a subject of future research�
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The tool we are developing will be used to construct integration mediators for speci�c integration
applications� Users can invoke the tool by specifying an integration problem using a high level
Integration Speci�cation Language �ISL� �Subsection 
���� Based on this� our tool uses a simple
mechanism �Subsection 
��� to construct the schema for the local persistent store of the integration
mediator� and uses a set of rule templates �Subsection 
��� to construct the actual rules for data
maintenance� Di�erent execution models for rule application in the integration mediator are available
�Subsection 
����

A �nal component of our solution is to automatically generate rules to be incorporated into the
rulebases of the source databases� so that relevant updates will be propagated to the mediator� We
do not address the generation of those rules here�

�
� Integration Speci�cation Language �ISL�

The Integration Speci�cation Language �ISL� allows users to specify their data integration applica�
tions in a largely declarative fashion� The primary focus of ISL is on the speci�cation of matching
criteria and of integrated views� �Issues such as specifying transactions against multiple databases�
as handled by� e�g�� InterSQL �ME���� are not addressed here�� In the current version of ISL� users
can specify ��� �relevant portions of� source database schemas� ��� the criteria to be used when
matching objects from corresponding pairs of classes in the source databases� ��� derived classes to
be exported from the integration mediator� and ��� constraints to be monitored by the integration
mediator�

A BNF grammar for ISL is given in Figure 
� and the ISL speci�cation of the Student�Employee
example is shown in Figure 	� The ISL is based on the ODL and OQL of the ODMG �Cat���
standard�

We now consider the four parts of an ISL speci�cation in more detail�

��� Source DB subschemas� These describe relevant subschemas of the
source databases using the Object De�nition Language �ODL� of the ODMG standard �Cat����
A key may optionally be speci�ed for each class�

��� Correspondence speci�cations� These describe correspondences
between objects of corresponding pairs of classes� A correspondence speci�cation for a given
pair of classes has two parts�

Match criteria� We use the query part �this is �query� as de�ned in p� � of �Cat���� of OQL
to specify conditions that must be satis�ed by two matching objects� The conditions can
be based on� among other things� boolean relations or user�de�ned functions �that may in
turn refer to �look�up tables� or intricate heuristics�� Although not shown here� we are
developing extensions so that heuristics that are expressed as rules can be incorporated
directly into ISL speci�cations� We are also developing mechanisms to support historical
conditions�
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�� �ISL� ��# �Source�Subschema� �More�Corresp�
�Export� �Constraint�

�� �Source�Subschema� ��# �Subschema� �Source�Subschema� j �
�� �Subschema� ��# Source� �string� �ODMG�ODL�

��Key�Spec� ��
�� �Key�Spec� ��# �string� �� �Key�Spec��

� �More�Corresp� ��# �Corresp� �More�Corresp� j �
	� �Corresp� ��# Corresp +�number� �Match�
� �Match� ��# Match criteria�

�ODMG�OQL�Query�Part�
�Match�Object�File�

�� �Export� ��# Export classes� �ODMG�OQL�
�� �Match�Object�File� ��# Match object files� �string�
��� �Constraint� ��# Constraints�

�ODMG�OQL�Query�Part�
�Action� �Action�Object�File�

��� �Action� ��# Actions� �string�
��� �Action�Object�File� ��# Action object files� �string�

Figure � Grammar for Integration Speci�cation Language �ISL�

Match object �les �optional�� speci�es the path of the object �le�s� containing the imple�
mentation of user�de�ned comparison function�s��

��� Export classes� This part of the ISL de�nes the export classes� i�e�� the classes of the integrated
view for export� that are derived from the source databases and the match classes� The export
classes are speci�ed using �extended� OQL queries� and may refer to both the source databases
and the match classes of the correspondence speci�cations� If an attribute name is unique
within the two classes� it can be used without the class name attached to it� otherwise it takes
the form of class name�attr name�

When we extend the ISL to support hybrid materialized�virtual integrated views� we will in�
corporate the capability for specifying whether an export class or speci�c attributes of it are to
be supported in a virtual or materialized fashion�

��� Constraints� Finally� rules are included for monitoring constraints and taking corrective action
when they are violated� The constraints are speci�ed as boolean queries using OQL� where a
value True indicates that the constraint is satis�ed�

�
� Building class de�nitions for integration mediators

This subsection describes how the class de�nitions for the local store of an integration mediator are
automatically constructed�
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Source�DB� StudentDB

interface Student �

extent students�

string studName�

��� ���

�

key� studName�

interface Course �

extent courses�

string courseName�

��� ���

�

Source�DB� EmployeeDB

interface Employee �

extent employees�

string empName�

��� ���

�

key� empName�

interface Division �

extent divisions�

string divName�

��� ���

�

Correspondence ���

Match criteria�

close
names�studName� empName�

AND �address � local
address

OR address � permanent
address�

Match object files�

�home�demo�close
names�o

Export classes�

DEFINE VIEW Expertise

SELECT d�divName� c�courseName

FROM c IN StudentDB�Course�

s IN StudentDB�Student�

e IN EmployeeDB�Employee�

d IN EmployeeDB�Division�

m IN Stud
match
Emp

WHERE s�studID � m�studID and

c IN s�courses
taken and

e�SSN � m�SSN and

d IN e�division�

Constraints�

count�Stud
match
Emp� �� ���

Action�

send
warning��count exceeded��

Action object files�

�home�demo�send
warning�o

Figure � An example of ISL speci�cation

As noted before� in the current version of the prototype we are assuming full materialization of both
the match classes and of export classes� When constructing the classes to support the matching
information we incorporate three kinds of attributes �these sets may overlap��

identication attributes� These are used to identify objects from the source databases� These might
be printable attributes known to be keys �e�g�� StudID and SSN in the running example�� or
might be immutable OIDs from the source databases �see Subsection ����� Although OIDs are
not technically attributes� we view them as such here�

match attributes� These are the �possibly derived� attributes referred to in the match criteria�
In the Student�Employee example� the match attributes of the class Student are studName�
local address� and permanent address� and the match attributes of Employee are empName
and address�
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export attributes� These are �possibly derived� attributes used in the construction of the export
classes� In the example �assuming full materialization�� the export attribute of Student is the
derived attribute courseName� and the export attribute of Employee is the derived attribute
divName�

As mentioned in the Student�Employee example� we use three classes in our approach to maintaining
match information� Supposing that R and S are corresponding classes from the two databases� the
three classes are de�ned as�

Auxiliary class I� R minus S with attribute set equal to the union of the identifying� matching
and export attributes of class R� Class R minus S holds one object for each object in R which
does not correspond to any object of S�

Auxiliary class II� S minus R with attribute set equal to the union of the identifying� matching
and export attributes of class S� Analogous to R minus S� S minus R holds one object for each
object in S which does not correspond to an object of R�

Match class� R match S with attribute set the union of those of the two auxiliary classes� Class
R match S contains an object ,m� for each pair �,r�� ,s�� of objects from R and S� respectively�
that correspond according to the matching conditions�

In this example� we are assuming that the derived attributes courseNames and divName are ma�
terialized in the integration mediator� This is possible� given the assumption that the activeness
capabilities of the source databases are su�ciently rich to inform the mediator when changes to
these derived attributes have occurred� When we generalize our tool to permit source databases
with restricted activeness� it may be necessary to replicate more of the source database information
in the mediator� �In the example� this might entail replicating portions of the Course and Division
classes��

�
� Building rule bases for integration mediators

As suggested in the Student�Employee example of Section �� a rule base is used to maintain the
materialized information held by an integration mediator� We consider now mechanisms for auto�
matically generating rule bases that incrementally maintain such information�

The basic approach is to translate ISL speci�cations into rules� We follow the general spirit of
�CW��� Cha���� that describe how view de�nitions can be translated into rules for performing
incremental maintenance� and of �CW���� that describes how constraints can be mapped into rules�

We focus here on the novel aspect of our tool� which is the maintenance of the classes for matching�
The primary mechanism used is a family of rule templates� These are used to generate the speci�c
rules of an integration mediator�
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In the context of su�cient activeness of the source databases and of event�based maintenance timing�
a relatively straightforward set of rule templates can be used� This includes templates handling
creates� deletes and modi�es arising from either source database� and propagating these through
the auxiliary and match classes� Due to space limitations� we describe here only rule templates
concerning creation of objects for a class R that forms one half of a corresponding pair of classes�
The two rule templates presented here were used to generate the two representative rules presented
for the running example in Section ��

rule template ��� R
Create
�
on message
from
R

if �create R�x� r
�� ���� r
n��

then �create R
minus
S�new�r
a
������r
a
v��

pop R
database
queue	�

Description� on event message from R� if a new object x of class R is create� then create a
corresponding object of class R minus S and pop the message out of the message queue for
database R�

rule template ��� R
Create
�
on create R
minus
S�x� r
a
������r
a
v�

if �exists S
minus
R�y�s
a
������s
a
w� �� x match y�

then �delete R
minus
S�x�� delete S
minus
R�y��

create R
match
S�new� m
������m
u�	�

Description� on the event that a new R minus S object x is created� if an object y of class
S minus R matches x� then delete x and y and create a R match S object�

Translation of these templates into actual rules uses information about the source database classes�
the auxiliary and match classes of the integration mediator� and possibly user�de�ned functions�

Although the rules generated from the above templates refer to individual objects� the execution
model might apply the rules in a set�at�a�time fashion�

If the match criteria or export classes use derived attributes from the source databases� then we
must also generate rules to be used by the source databases� so that the integration mediator re�
ceives appropriate messages about source database updates� If the source databases are su�ciently
active� then these rules can be generated in using the spirit of �CW��� Cha���� When we extend
our framework to support source databases with restricted activeness� then the issue of automati�
cally generating rules and�or code to be incorporated into the source databases may become more
challenging�

�
� A note on execution models
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The Heraclitus and H�O languages support the speci�cation of a wide variety of execution models�
It is not yet clear what execution models are most appropriate for integration mediators� and we are
experimenting with several at present� We give a sampling of three possible execution models here�

The simplest execution model that we are considering is the one that nondeterministically selects
an applicable rule and �res it as a separate transaction� The primary advantage of this execution
model is its conceptual simplicity� If rule �rings can be concurrent� then this execution model would
have considerable e�ciency if there were many small messages coming from the source databases�

A richer execution model is the one that attempts to �re as many rules as possible within one
transaction� The impact of each �red rule is accumulated in a delta� and rule conditions are tested
in the hypothetical state that corresponds to this delta being applied to the original state� This may
reduce accesses to the local store of the integration mediator� and thus yield an e�ciency gain�

Finally� we are considering an execution model that enforces a modularization of the rules� with
individual modules focused on propagating information out of the queues and into the auxiliary
classes� on propagating information into the match classes� on propagating information into the
export classes� and for checking constraints� We are experimenting with di�erent maintenance
timing for the di�erent modules� to understand trade�o�s between e�ciency and keeping the export
information reasonably up�to�date�

� Current Status and Future Research

This chapter presents a broad framework for attacking the problem of supporting rich matching
criteria when integrating heterogeneous data� As discussed in Section 
� we are now experimenting
with prototype implementations of integration mediators� Our current focus is on the full range of
object matching criteria� full materialization� and su�cient activeness in the source databases� The
prototypes are implemented using the Heraclitus DBPL� but as the H�O DBPL becomes available we
shall port our prototypes to H�O� For communication between source databases and the integration
mediators we are using KQML� although experiments have also been performed �Dal�
� BDD��
�
using the Amalgame toolkit �FK��b� FK��a��

As indicated by our taxonomy� a wide variety of issues remain to be explored� In the near future�
we plan to extend this research primarily in the directions of source databases that support only
restricted activeness� and the hybrid materialized�virtual approach� As a testbed for restricted
activeness� we plan to use databases developed on the Texas Instruments Open OODB �WTB����
which provides support for triggers based on physical events and the ability to attach procedures to
those triggers� For the hybrid approach� we plan to use the SIMS �ACHK��� query processing engine
to execute queries where matching information is materialized but all other export data is virtual�
We shall also explore broader applications of the integration mediator in the context of Cooperative
Information Systems� for instance� using the mediator to integrate data imported from one database
into another database�
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Another issue to be explored is the problem of potential inconsistencies between the source databases
and the mediator resulting from di�erent access times� as discussed in Subsection ���� Finally� we
plan to expand our framework to support object matching between any number of databases� instead
of just two databases�

Acknowledgements

We are grateful to Omar Boucelma� Ti�Pin Chang� Jim Dalrymple� and Mike Doherty for many
interesting discussions on topics related to this research�





�
OPTIMIZING QUERIES WITH

MATERIALIZED VIEWS

Surajit Chaudhuri�
Ravi Krishnamurthy�
Spyros Potamianos�

Kyuseok Shim

ABSTRACT

While much work has addressed the problem of maintaining materialized views� the important problem of

optimizing queries in the presence of materialized views has not been resolved� In this chapter� we analyze

the optimization problem and provide a comprehensive and e�cient solution� Our solution has the desirable

property that it is a simple generalization of the traditional query optimization algorithm used by commercial

database management systems�

� Introduction

The idea of using materialized views for the bene�t of improved query processing has been proposed
in the literature more than a decade ago� In this context� problems such as de�nition of views�
composition of views� maintenance of views �BC�� KP��� SI��� BLT�	� CW��� Rou��� GMS���
have been researched but one topic has been conspicuous by its absence� This concerns the problem
of the judicious use of materialized views in answering a query�

It may seem that materialized views should be used to evaluate a query whenever they are applicable�
In fact� blind applications of materialized views may result in signi�cantly worse plans compared to
alternative plans that do not use any materialized views� Whether the use of materialized views will
result in a better or a worse plan depends on the query and the statistical properties of the database�
Since queries are often generated using tools and since the statistical property of databases are time�
varying� it should be the responsibility of the optimizer to consider the alternative execution plans
and to make a cost�based decision whether or not to use materialized views to answer a given query
on a given database� Such enumeration of the possible alternatives by the optimizer must be syntax
independent and e�cient � By syntax independent� we mean that the set of alternatives enumerated
by the optimizer �and hence the choice of the optimal execution plan� should not depend on whether
or not the query explicitly references materialized views� Thus� the optimizer must be capable of
considering the alternatives implied by materialized views� In particular� a materialized view may
need to be considered even if the view is not directly applicable �i�e�� there is no subexpression in

��
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the query that syntactically matches the view�� Also� more than one materialized views may be
relevant for the given query� In such cases� the optimizer must avoid incorrect alternatives where
mutually exclusive views are used together while considering use of mutually compatible views�

The following examples illustrate the issues in optimizing queries with materialized views� The �rst
example emphasizes the importance of syntax independence and also shows that sometimes use of
materialized views may result in worse plans� The second example illustrates the subtleties in syntax
independent enumeration discussed above� The examples use a database containing an employee
relation Emp�name� dno� sal� age� and a department relation Dept�dno� size� loc��

Example ���� Let Executive�name� dno� sal� be a materialized view that contains all employees
whose salary is greater than ���k� Consider the query that asks for employees �and their department
number� whose salary is greater than ���k and who are in the department with dno � ���� If the
relation Emp has no index on dno� then it is better to access the materialized view Executive even
though the user presents a query which does not refer to the materialized view Executive� This
example illustrates that the use of a materialized view can be bene�cial even if a query does not
refer to the materialized view explicitly� On the other hand� it may be possible to obtain a cheaper
plan by not using a materialized view even if the query does reference the view explicitly� Consider
the query that asks for all executives in dno � ���� This query explicitly refers to the materialized
view Executive� However� if there is an index on the dno attribute of the relation Emp� then it may
be better to expand the view de�nition in order to use the index on dno attribute of the relation
Emp� Thus� the choice between a materialized view and a view expansion must be cost�based and
syntax�independent�

Example ���� The purpose of this example is to illustrate the nature of enumeration of alternatives
that arise when materialized views are present� Consider the query which asks for employees who earn
more than ���k� Although the materialized view for Executive does not syntactically match any
subexpression of the query� it could still be used to answer the above query by retaining the selection
condition on salary� Next� we illustrate a case of mutually compatible use of materialized views�
Consider the query that asks for employees who earn more than ���k and who have been working
in departments of size � �� employees� If there is a materialized view Large Dept�dno�loc�

containing all departments �with their location� where number of employees exceed ��� then the latter
may be used along with Executive to answer the query� Finally� there are cases where uses of two
materialized views are incompatible� Assume that a materialized view Loc Emp�name�size�loc� is
maintained that records for each employee the location of her work� If the query asks for all employees
who work in large departments located in San Francisco� then each of Loc Emp and Large Dept

materialized views help generate alternative executions� But� uses of these two materialized views
are mutually exclusive� i�e�� they cannot be used together to answer a query�

The presence of materialized views and the requirement of syntax�independent optimization has the
e�ect of increasing the space of alternative executions available to the optimizer since the latter must
consider use and non�use of the materialized views� Since the query optimization algorithms take
time exponential in the size of the queries� we must also ensure that the above enumeration of alter�
natives is done e�ciently so as to minimize the increase in optimization time� Furthermore� we must
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also recognize the reality that for our proposal to be practical and immediately useful� it is imperative
that our proposal be a generalization of the widely accepted optimization algorithm �SALP���

In this chapter� we show how syntax�independent enumeration of alternative executions can be done
e�ciently� Our proposal constitutes a simple extension to the cost�based dynamic programming
algorithm of �SALP�� and ensures the optimality of the chosen plan over the extended execution
space� The simplicity of our extension makes our solution practically acceptable� Yet� our approach
proves to be signi�cantly better than any simple�minded solution to the problem that may be adopted
�See Section ���

The rest of the chapter is organized as follows� We begin with an overview of our approach� In
Section �� we show how the equivalent queries may be formulated from the given query and the
materialized views� In Section �� we present the algorithm for join enumeration� We also contrast
the e�ciency of our algorithm with the existing approaches and present an experimental study� In
Section 
� we discuss further generalizations of our approach� Section 	 mentions related work�

� Overview of Our Approach

In traditional query processing systems� references to views in a query are expanded by their de��
nitions� resulting in a query that has only base tables� Relational systems that support views can
do such unfolding � However� the presence of materialized views provide the opportunity to fold
one or more of the subexpressions in the query into references to materialized views� thus generat�
ing additional alternatives to the unfolded query� Therefore� we must convey to the optimizer the
information that enables it to fold the subexpressions corresponding to the materialized views�

For every materialized view V � we will de�ne a one�level rule as follows� The left�hand side of the
one�level rule is a conjunctive query �body of the view de�nition� L and the right�hand side of the
rule is a single literal �name of the view�� We represent the rule as�

L�x�y�� V �x�

where the variables x correspond to projection variables for the view� The variables y are variables
in the body of the view de�nition that do not occur among projection variables� We call these rules
one�level rules since a literal that occurs in the right side of any of the rules �view�name� does not
occur in any left�hand side since the left�hand side may have references to only base tables� Thus�
given a set of views that are conjunctive queries� we can generate the corresponding set of one level
rules from the SQL view de�nitions�

Our approach to optimization in the presence of materialized views has three main steps� First�
the query is translated in the canonical unfolded form� as is done in today�s relational systems that
support views� Second� for the given query� using the one�level rules� we identify possible ways
in which one or more materialized views may be used to generate alternative formulations of the
query� These two steps together ensure syntax independence� Finally� an e�cient join enumeration
algorithm� that retro�ts the System R style join enumeration algorithm �SALP��� is used to ensure



�
 Chapter �

that the costs of alternative formulations are determined and the execution plan with the least cost
is selected�

Since the �rst step is routinely done in many commercial relational systems� in the rest of the
chapter� we will focus only on the second and the third steps� In the next two sections� we discuss
each of these steps�

Encode in a data�structure �MapTable� the information about queries equivalent to the given
one �Section ���

Generalize the traditional join enumeration algorithm so that it takes into account the additional
execution space implied by the equivalent queries �Section ��� This is the heart of the chapter�

For the rest of the chapter� we assume that the query as well as the materialized views are conjunctive
queries� i�e�� the Select�Project�Join expressions such that the Where clause consists of a conjunction
of simple predicates �e�g�� #� �� �� only� Thus� the query has no aggregates or group�by clause� We
will use the domain�calculus notation �Ull��� to express conjunctive queries� Generalization of our
results for queries that are not necessarily conjunctive are also discussed in this chapter�

� Equivalent Queries	 Generation of MapTable

In this section� we discuss how we can use one�level rewrite rules to derive queries that are equivalent
to the given query in the presence of materialized views�

Our notion of equivalence of queries is as in SQL standard �ISO���� i�e�� two queries are equivalent if
they result in the same bag of tuples over every database� However� we need to de�ne the notion of
equivalence of queries with respect to a set of rewrite rules� In the following de�nition� we say that
a database is a valid database with respect to a set of rules if the left�hand side and the right�hand
sides of each rule returns the same bag of tuples over that database�

De�nition ���� Two queries Q and Q� are equivalent with respect to a set of rewrite rule R if they
result in the same bag of tuples over any valid database for R�

We will denote such an equivalence by Q �R Q�� In case Q and Q� are unconditionally equivalent
�i�e� equivalent independent of any rewrite rules�� we denote that by Q � Q�� This problem of
generating equivalent queries in the presence of views has been studied before �See Section 	�� In
addition to a simpli�ed exposition of the problem for conjunctive queries� the novelty here is in
generating an implicit representation of equivalent queries in such a way that the join enumeration
phase can exploit it�

Intuitively� we expect to generate an equivalent query by identifying a subexpression in the query
that corresponds to the left�hand side of one�level rewrite rule� The subexpression is then replaced
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by the literal in the right�hand side of the rule �i�e�� the view name�� However� it turns out� that a
straight�forward substitution could be incorrect �

Example ��� � Consider Example ���� The materialized view Loc Emp is represented by the
following rule�

Emp�name� dno� sal� age�� Dept�dno� size� loc�

� Loc Emp�name� size� loc�

Consider the following query that obtains all employees of age less than ��who work in San Francisco
�SF��

Q�name� � � Emp�name� dno� sal� age�� age � ��

Dept�dno� size� SF�

Observe that it is possible to obtain the query Q� through a naive substitution using the rewrite
rule for Loc Emp�

Q��name� � �Loc Emp�name� size� SF�� age � ��

However� clearly� Q and Q� are not equivalent queries� In particular� Q� is unsafe�

Example ��� makes the point that a syntactic substitution of the body of a materialized view
need not result in an equivalent query� The crux of the problem in Example ��� is that the naive
approach of replacing a matching subexpression resulted in a query with a �dangling� selection
condition that refers to a variable in the subexpression that has been replaced� Besides the fact that
a straightforward substitution may be incorrect� additional substitutions may be applicable as seen
in the following example�

Example ���� The presence of the materialized view Executive is represented by the following
one�level rule�

Emp�name� dno� sal� age�� sal � ���k

� Executive�name� dno� sal�

Consider the following query which asks for employees who work in a department of size at least ��
and who earn more than ���k�

Q�name� � �Emp�name� dno� sal� age�� sal � ���k

Dept�dno� size� loc�� size � ��

Observe that there is no syntactic substitution for the rule for Executive� since there is no renaming
such that the literal sal � ���k in the one�level rule for the materialized view Executive maps to a
literal in Q� However� the following query Q� is clearly equivalent to Q�

Q��name� � �Executive�name� dno� sal�� sal � ���k�

Dept�dno� size� loc�� size � ��
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Example ��� illustrates a case where although there is no subexpression that syntactically matches
the body of the view de�nition� the materialized view can be applied� This example is specially
signi�cant since it illustrates that to be able to use materialized views� we may have to reason with
implication �subsumption� between sets of inequality �and may be arithmetic� constraints�

In Section ���� we de�ne safe substitution that identi�es equivalent queries that result due to appli�
cations of one�level rules� In Section ���� we explain how safe substitutions are used to construct
MapTable� that implicitly stores the queries that are equivalent to the given query� This MapTable
is subsequently used in the join enumeration step�

�
� Safe Substitution

Every safe substitution identi�es a subexpression in the given query that may be substituted by
a materialized view to generate an equivalent query� Example ��� illustrates that presence of in�
equality constraints needs to be considered in identifying equivalent queries� Accordingly� we adopt
the following somewhat more detailed representation of one�level rules that recognizes existence of
inequality constraints�

L�x�y�� I�x�� V �x�

where I�x� represents a conjunction of inequality �and may be arithmetic� constraints that involve
only the projection variables x of the rule� However� L�x�y� may contain variables y that are not
projection variables�

Example ���� Consider the one�level rewrite rule for Executive in Example ���� We note that
I�name� dno� sal� � sal � ���k and L�name� dno� sal� age� � Emp�name� dno� sal� age�� Since I
depends only on sal� we will abbreviate reference to it as I�sal��

The task of �nding a suitable subexpression for substitution begins with renaming of variables in
a rule to identify occurrences of the left�hand side of the rule in the query� Let r be a rule with
variables Vr and Q be a query with variables VQ and constants CQ�

De�nition ��	� A valid renaming � of r with respect to a query Q is a symbol mapping from
Vr to VQ subject to the following two constraints� �a� If v � Vr is a projection variable� then
��v� � VQ �CQ� �b� If v � Vr is not a projection variable� then ��v� � VQ and ��v� 	# ��v�� where
v� is any other variable in Vr �

Valid renaming is related to and is derived from containment mapping �CM� �cf� �Ull����� Specif�
ically� only projection variables may map to constants� Also� no two variables in the rule may map
to the same variable in the query unless these two variables are both projection variables� Such
renaming results in a query expression that corresponds to a selection over the materialized view�
Consider the one�level rule A�x� y�� B�y� z� � V �x� z�� If we map both x and z to r� and y to s�
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then we obtain the renamed rule A�r� s�� B�s� r� � V �r� r�� Observe that V �r� r� corresponds to a
selection over V that equates two columns of the view V �

We will show that if valid renaming of body of a one�level rule matches a set of literals in the query�
then those literals may be replaced by the materialized view to obtain an equivalent query� Towards
that end� we now de�ne the notions of safe occurrence and safe substitution� In the following
de�nitions� the symbol 
 stands for logical implication�

De�nition ��
� Given a set of one�level rules R� a query Q has a safe occurrence of R� if for a
rewrite rule r � R there is a valid renaming of the rule r with respect to Q such that the renamed
rule has the form L�x�y�� I�x�� V �x�� Furthermore� the following two conditions must hold�
��� The query Q has the form�

Q�u� � L�x�y�� I��x�� G�v�

where each of x�y� u and v is a set of variables� These sets may share variables except that y must
be disjoint from x� u and v�

��� I��x�
 I�x��

The safe substitution corresponding to the above safe occurrence is�

Q��u� � V �x�� I��x�� G�v�

Condition ��� ensures that there can be no dangling selection condition �unlike Example ���� when
the view replaces its matching subexpression in the query� Valid renaming plays an important role in
the above de�nition� making it possible to identify not only subexpressions in the query that match
the materialized view� but also subexpressions that match selections over the materialized view�
Such selections can be equality to a constant �x # c� or equality of column values� For example�
assume A�x� y�� B�y� z� � V �x� z� and the given query is A�i� j�� B�j� i� then V �i� i� will be a safe
substitution� which corresponds to a selection of the latter kind over the materialized view V �

Testing condition ��� entails checking implication between two sets of inequality constraints� Many
e�cient algorithms have been proposed that can test such implication �See �Ull��� for an algorithm��
In reality� we retain only a subset of inequality constraints in I�� i�e�� those constraints that are not
subsumed by I� It is possible to have safe substitutions even if there is no syntactic match between
left�hand side of a rule and the query �as in Example ����

Example ���� Let us revisit Example ��� which illustrated the need for reasoning with inequality
constraints� In this example� there is a safe occurrence of the one�level rule forExecutive� This is true
since I��sal� � sal � ���k and L�name� dno� sal� age� � Emp�name� dno� sal� age�� Furthermore�
the following is true�

G�dno� size� loc� � Dept�dno� size� loc�� size � ��
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From Example ���� we note that I��sal� 
 I�sal�� Hence� the condition for safe occurrence is
satis�ed and we obtain the following equivalent query

Q��name� � �Executive�name� dno� sal�� sal � ���k�

Dept�dno� size� loc�� size � ��

The following lemma states that queries obtained by safe substitution are equivalent to the original
query over any database that stores the materialized view� consistent with its view de�nition� The
lemma is true not only for queries with bag semantics� but also for queries with set semantics �Select
Distinct��

Lemma ���� If Q� is obtained from Q by a sequence of safe substitutions with respect to a set of
rewrite rules R� then Q and Q� are equivalent with respect to R�

Proof� We sketch the proof that every safe substitution results in an equivalent query� We will use
the notation of De�nition ��	� Observe that �x�L�x�y� � I��x� � V �x� � I ��x�� The equivalence is
true for bag equivalence as well since I��x� acts as a �lter and condition ��� holds �CV���� Since v
and u in Q�u� are connected to L�x�y� � I��x� only through x� it follows that Q�u� � Q��u��

For queries with set semantics �i�e�� Select Distinct�� it is not necessary that all equivalent queries are
obtained by one or more safe substitutions� For example� if A�x�� B�x�� V��x� and B�x�� C�x��
V��x� are two rewrite rules� then the query Q�x� � �A�x�� B�x�� C�x� is equivalent to Q��x� �
�V��x�� V��x�� but the latter cannot be obtained from Q�x� by a sequence of safe substitutions�
For equi�join queries with bag semantics� the converse of Lemma ��� is true as well� The proof
exploits unique properties of bag equivalence�

Lemma ��� Let Q and Q� be conjunctive queries without inequalities� If Q �R Q� up to isomor�
phism� then Q� must have been obtained from Q by one or more safe substitutions�

Proof� If there are no occurrences of view symbols in Q�� then it follows from �CV��� that Q� and
Q are isomorphic� Let us now assume that there is one view literal V in Q� and the rewrite rule
corresponding to V be l � r� We assume � to be a renaming of the rewrite rule above such that
��r� # V and that all existential variables of l are mapped to variables that do not occur in Q��
Let us consider the query Q�� that results from replacing the literal V in Q� with the set of literals
in ��l�� Observe that Q�� is a query independent of V and Q�� � Q� Therefore� Q and Q�� must
be isomorphic and let g be the mapping so that g�Q� # Q��� It can be seen that g  � is a valid
renaming of l � r that results in the safe substitution Q�� The proof extends to the case where
there are multiple occurrences of materialized view in Q���
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Generalizations

When the given query and the materialized views are arbitrary relational expressions and not re�
stricted to be conjunctive queries� it may not be possible to enumerate all safe substitutions by any
�nite computation� The above is a consequence of the undecidability of �rst�order logic� However�
we can extend De�nition ��	 such that generalized safe substitutions for arbitrary SQL queries result
in equivalent queries� In the following de�nition� L�x�y� and Q�u� are arbitrary SQL expressions�

De�nition ����� Given a set of one�level rules R� a query Q has a safe occurrence of R� if for a
rewrite rule r � R there is a valid renaming of the rule r with respect to Q such that the renamed
rule has the form L�x�y� � V �x�� Furthermore� the expression tree for Q has a subexpression
L�x�y� such that it shares only the variables in x with u and the rest of the expression for Q� i�e��
variables among y do not occur in among u or the rest of Q� Then� a generalized safe substitution
corresponding to the above safe occurrence is obtained by replacing the subexpression L�x�y� with
V �x��

It can be shown that generalized safe substitutions result in equivalent queries� However� for the
rest of the chapter� we will continue to focus on conjunctive queries�

We have modeled views using one�level rules where the view is expressed in terms of base tables�
Nonrecursive nested views can be �attened and are expressed as one�level rules as well� However� we
also note that the nested representation of views may be used to identify safe substitutions e�ciently�
For example� let V � be a nested view de�ned in terms of another view V � A�x�� B�x� � V �x� and
V �x�� C�x�� V ��x�� Observe that if there is no safe substitution for view V in a query Q� the there
can be no safe substitution for V � in Q as well� However� since building MapTable is not a bottleneck
�see discussion below�� such optimization plays a limited role in performance improvement�

�
� Representation and Enumeration of Safe Substitutions

Intuitively� each safe substitution results in a new query� equivalent to the given one� We encode
the equivalent queries by storing the information about safe substitutions in the MapTable� data
structure�

From the de�nition of safe substitution� it follows that every safe substitution of a query Q with
respect to a rule L�x�y�� V �x� corresponds to a renaming � for the rule� Therefore� we can encode
the information about a safe substitution by the doublet ���L�� ��V ��� The �rst component in the
doublet is called the deletelist and the second component in the doublet is called the addliteral � The
deletelist denotes the subexpression in the query that is replaced due to the safe substitution � and
the addliteral denotes the literal that replaces deletelist � Since L may have more than one literals�
the deletelist is a set of literals� However� addliteral is a single literal� The algorithm to construct
the MapTable for a given query is shown in Figure �� The last for loop iterates over all literals in
the query� Its purpose is best explained in the context of the join enumeration algorithm� described
in the next section�
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Procedure MakeMapTable�Q�R�
begin
Initialize MapTable
for each rewrite rule r � L� V in R do

for each safe substitution � from r to Q
do
MapTable �# MapTable � ���L�� ��V ��

endfor
endfor
for each literal q � Q do
MapTable �# MapTable � �fqg� q�

endfor
end

Figure � Algorithm for Creating the MapTable

Example ����� In addition to the rules for Executive and Loc Emp� consider the following one�
level rewrite rule for Large Dept

Dept�dno� size� loc�� size � ��� Large Dept�dno� loc�

We illustrate the enumeration of safe substitutions using the above three materialized views�

�i� Consider the following query which asks for employees who work at a department in SF�

Query�name� � �Emp�name� dno� sal� age�� size � ��

Dept�dno� size� SF�

It can be seen that the MapTable will have the following two doublets�

�fDept�dno� size� SF�� size � ��g�

Large Dept�dno� SF�

�fEmp�name� dno� sal� age�� Dept�dno� size� SF�g�

Loc Emp�name� size� SF��

Observe that the doublets correspond to materialized views that are mutually exclusive�

�ii� Consider the query to �nd employees who earn more than ���k and work in departments with
more than �� employees�

Q��name� � �Emp�name� dno� sal� age�� sal � ���k�

Dept�dno� size� loc�� size � ��
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It can be seen that the MapTable will have the following two doublets which correspond to applica�
tions of mutually compatible materialized views�

�fEmp�name� dno� sal� age�� sal � ���kg�

Executive�name� dno� sal��

�fDept�dno� size� loc�� size � ��g�

Large Dept�dno� loc��

Notice that these two doublets implicit represent three alternatives to the given query�

In our implementation of the optimizer� literals of the query are stored in a literal�table and are
referenced by unique literal�ids� There is one entry in the literal table for each table variable in
SQL� For example� a query with four literals may be represented as f�� �� �� �g� A MapTable entry
would be of the form �f�� �g� � which indicates that the occurrence of the literal that replaces the
subexpression corresponding to f�� �g is stored in position  of the literal table� For e�ciency of
access� MapTable is indexed by literal�ids that occur in the deletelist �

The running time of the algorithm MakeMapTable is linear in the number of safe substitutions� The
number of safe substitutions depend on the structure of the query� If the query has at most one
literal for every table name� there can be at most one safe substitution for every rule� For such
queries� a safe substitution can be found in time linear in the size of the query� For example� in
Example ���� the literal Emp in the body of the rule can only map to the literal for Emp in the
body of the query� As in the case of containment mapping� determining safe substitutions can have
exponential running time in the size of the query in the worst case� However� our experience with
the Papyrus project �CS��� at HP Labs indicates that such is rarely the case since queries tend to
have few or no repeated predicates �i�e�� few or no �self�joins�� and are often connected �i�e�� no
cartisian products�� Furthermore� for a given query� only few rules are applicable� Thus� �nding safe
substitution is a relatively inexpensive step in optimization�

� Join Enumeration

In the previous section� we have seen how the information about equivalent queries is implicitly
stored in MapTable� The equivalent queries provide the optimizer with an extended execution space
since the optimizer can pick a plan from the union of execution spaces of these equivalent queries�
Therefore� the challenge is to extend the traditional join enumeration algorithm such that optimality
over the extended execution space is ensured�

An obvious solution is to invoke the traditional optimizer repeatedly for each equivalent query� In�
deed� this technique was adopted in �CGM���� Unfortunately� the above approach leads to rederiva�
tion of many shared subplans among the equivalent queries� thus leading to signi�cant ine�ciency in
optimization �See Section ����� In contrast� our approach guarantees that no subplan is rederived�
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Procedure OptPlan�Q� �
begin

if existOptimal�Q� then
return�plantable�Q���

bestPlan �# a dummy plan with in�nite cost
for each qi � Q do
Let Si # Q� fqig�
Temp �# OptPlan�Si��
p �# Plan for Q from Temp and qi
if cost�p� � cost�bestPlan� then
bestPlan �# p

endfor
plantable�Q� �# bestPlan
return�bestPlan�

end

Procedure ExOptPlan�Q� �
begin

if existOptimal�Q� then
return�plantable�Q���

bestPlan �# a dummy plan with in�nite cost
for each ��Di� ai� in MapTable such that Di � Q� do

Let Pi �# Q�Di

Temp �# ExOptPlan�Pi��
p �# Plan for Q from Temp and ai
if cost�p� � cost�bestplan� then
bestPlan �# p

endfor
plantable�Q� �# bestPlan
return�bestPlan�

end

Figure � Traditional and Extended Join Enumeration Algorithm

We show that while the worst case complexity of other enumeration algorithms could be an expo�
nential function of the number of safe substitutions� our algorithm takes time only linear in the
number of safe substitutions� Thus� not only is the enumeration algorithm a simple extension of the
traditional approach� it also is an e�cient algorithm�

In the �rst part of this section� we will review the traditional join enumeration algorithm which
is widely used in relational systems� Next� we propose our extension to the existing algorithm to
enumerate the expanded execution space� We present a result that shows that the algorithm achieves
complete enumeration and discuss its time complexity� We contrast our enumeration algorithm with
known approaches�
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�
� Traditional Algorithm

The execution of a query is traditionally represented syntactically as annotated join trees where the
internal node is a join operation and each leaf node is a base table� The annotations provide details
such as selection conditions� choice of access paths and join algorithms� The set of all annotated join
trees for a query that are considered by the optimizer� is traditionally called the execution space of
the query� Like many relational optimizers� we will restrict the execution space for each alternative
to be its left�deep trees only� Note that in such a case� every execution is a total ordering of joins�

The optimality of a plan is with respect to a cost model� So far as the cost model is concerned�
we assume that the cost model assigns a real number to any given plan in the execution space and
satis�es the principle of optimality �CLR����

In this part� we brie�y explain the join enumeration algorithm OptPlan �See Figure ��� which is a
simpli�cation and abstraction of the algorithm in �SALP�� �cf� �GHK����� Let us assume that the
query is a join among n literals where n � �� The optimal plan for join of n relations can be obtained
by enumerating n choices for the last relation to join and for each choice joining the chosen relation
with the optimal plan for the remaining �n � �� relations� The optimal plan is the least expensive
plan of these n plans� so constructed� We omitted the details of the actual join methods and other
annotations of the actual execution since they are not germane to our discussion here� Note that
every subset S of the above set of all n relations in a query corresponds to a unique subquery
�say� QS�� Thus� the optimal plan for every subexpression QS of Q �referred to as a subplan� is
constructed exactly once and it is stored in the data structure plantable� All subsequent calls to
OptPlan for the same QS looks up the cost of the optimal plan from the table� Since looking up the
plantable helps avoid repeated recomputation of the optimal plan� the complexity of the algorithm
is O�n�n��� �instead of O�n!���

�
� Extended Algorithm

In this section� we discuss the optimization algorithm in the presence of equivalent queries �implicitly�
represented in the MapTable� The execution space over which the optimal plan for the query Q �with
respect to a set R of one�level rewrite rules� is being sought is the set of all left�deep trees over the
queries that are obtained from Q by safe substitution with respect to R� The optimization problem
is to pick an optimal plan from the above execution space with respect to a cost model that respects
the principle of optimality�

We have presented the enumeration algorithm ExOptPlan in Figure �� The test Di � Q tests
whether all the literals that occur in Di �a deletelist� also occurs in Q� As explained in Section ����
in the traditional algorithm� complete enumeration of the search space is achieved by repeating the
following step for each literal qi in the query Q� We construct a plan for the rest of the literals in
the query� i�e�� the optimal plan for Q� qi� Putting together the optimal plan for �Q� qi� with qi
results in the optimal plan for Q subject to the restriction that qi is the last literal being joined� The
algorithm ExOptplan follows the above technique for enumeration closely� Recall that MapTable
contains the doublets �fqig� qi� for each literal qi that is in the query Q� It can be seen immediately
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that if these are the only doublets stored in MapTable� the algorithms OptPlan and ExOptPlan in
Figure � behave identically since Pi in ExOptPlan will be no di�erent from Si in OptPlan� Let us
now consider any other doublet that corresponds to a safe substitution� A key observation is that we
can ensure exhaustive enumeration if for each such safe substitution �Di� ai�� we consider all plans
where ai is the last literal to be joined� However� in the unfolded query� there is no occurrence of the
materialized view ai� Therefore� instead of constructing the plan �Q � ai� � ai� we must construct
the optimal plan for �Q�Di� � ai� since Di is the set of literals �i�e�� subexpression� in the unfolded
query which when replaced by ai results in an equivalent query� As can be seen� our algorithm does
precisely the above� Therefore� the following theorem follows�

Theorem ���� Algorithm ExOptPlan produces the optimal plan with respect to a given MapTable�

Complexity

Observe that a step which we need to perform e�ciently in ExOptP lan�Q� is to check if deletelist �
Q� In order to do so� we use bit maskings to represent the literals in deletelist and the subquery Q�
Then� the subset relationship can be checked with bit�wise logical operators in O��� in most cases�

In the absence of any equivalent queries� the time complexity of ExOptPlan is no di�erent from
OptPlan� the traditional join enumeration algorithm used by commercial optimizers� Therefore�
the interesting complexity question is the dependence of the time complexity of ExOptPlan on the
number of safe substitutions in MapTable �say� l� for the query Q� It can be shown that the time
complexity of ExOptPlan is bounded by O�l�n� �when computed in a generous matter�� In contrast�
the time complexity for OptPlan is O�n�n���� Thus� the worst case complexity degrades by at most
�l�n� As argued in Section ���� the number of safe substitutions �l� is likely to be small and so the
relative increase in optimization time is very modest�

The following theorem establishes the �goodness� of algorithm ExOptPlan� i�e�� shows that ExOpt�
Plan avoids generation of redundant plans�

Theorem ���� For every set of equivalent subqueries of the given query with respect to a given
MapTable� ExOptPlan stores a unique optimal subplan�

Proof� Assume that Q # fR�� ��� Rng is the given query over base tables� Observe that every view
is equivalent to a join among a subset of relations in Q� Therefore� every subquery is equivalent to
some subset of relations in Q� Hence� it su�ces to prove that for every subset of relations on Q�
a unique plan is stored� As Figure � shows� ExOptPlan represents every plan Pi in terms of base
relations in Q� Thus� a new plan is compared against its stored bestplan and the cheaper is retained�
Therefore� the theorem follows�
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Comparison to Other Approaches

The simplest alternative to ExOptPlan is to invoke the optimizer for each equivalent query� This
approach turns out to be very ine�cient� Let us assume that a query is of size n and the MapTable
has l entries� Then� the worst case time complexity of the simple approach is O�lnn�n���� which
is signi�cantly worse than the upper bound for ExOptPlan� which is O�l�n�� Intuitively� the short�
coming of the naive approach is that no subplans are reused and all shared plans are rederived� The
need for sharing plans for the subqueries was observed in �CS��� CR���� In that approach� optimal
plans of the shared subqueries are maintained and reused� However� while this approach maintains
a unique optimal subplan for each shared subquery� it does not maintain a unique optimal plan for
each set of equivalent subqueries� The following example illustrates this point�

Example ���� Let us assume that the query Q is represented by the set of literals f�� �� �� �g
where each integer number represents a literal in the query expression� Let us also assume that
the subexpression f�� �g can be replaced by the literal f
g by application of a one�level rule� Then�
we have two equivalent queries� f�� �� �� �g and f�� �� 
g� During the optimization� we �rst build
optimal plans for the subqueries in the plan table for f�� �� �� �g �e�g�� f�� �g� f�� �g� f�� �� �g�� Next�
we optimize the query f�� �� 
g� During this step� we don�t rederive a plan for the entry f�� �g since
it was generated while optimizing the �rst query f�� �� �� �g� However� we do construct the plan for
f�� 
g � � as well as f�� �� �g� � in �CS��� CR���� The principle of optimality tells us that we would
have done as well if we constructed only the plan for cheaper�f�� 
g� f�� ���g� � �� In other words�
equivalence of subqueries is not fully exploited� ExOptPlan avoids generating such redundant plans
by ensuring the above�

�
� An Experimental Study

Our complexity analysis shows that the increase in optimization cost is modest compared to tradi�
tional optimization� To strengthen our con�dence� we used our implementation of the optimizer for
experimenting� which seems to point to the computational e�ciency of our algorithm as well�

Our optimization algorithm was executed on ten queries consisting of seven relations and six equality
joins� Among all relations participating in the query� 
�* of relations were chosen and an attribute
of each selected relation was assigned to have selection predicate with equality predicate� These
attributes for selection condition were chosen among those who did not participate in join predicates�
For each query� six views were generated as the same as joins in the query and projection attributes
of views were selected so that the materialized views can be used to generate equivalent queries� We
tested each query varying the number of materialized views available ranging from � to 	� Note that
due to the presence of indexes� the decision of using �and selecting� materialized views had to be
based on cost estimates�

We have used an experimental framework similar to that in �IK��� INSS��� Kan��� Shi���� The
machine used for the experiments was a DECstation ����� The queries were tested with a randomly
generated relation catalog where relation cardinalities ranged from ���� to ������ tuples� and the
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Figure � Relative Cost of Optimization

numbers of unique values in join columns varied from ��* to ���* of the corresponding relation
cardinality�� Each page of a relation was assumed to contain �� tuples� Each relation had four
attributes� and was clustered on one of them� If a relation was not physically sorted on the clustered
attribute� there was a B��tree or hashing primary index on that attribute� These three alternatives
were equally likely� For each of the other attributes� the probability that it had a secondary index
was ���� and the choice between a B��tree and hashing secondary index were again uniformly
random� As for join methods� we used block nested�loops� merge�scan� and simple and hybrid hash�
join �Sha�	�� In our experiment� only the cost for number of I�O �page� accesses �IK��� Kan��� CS���
was accounted�

The experimental result is shown in Figure �� The cost of optimization is normalized with respect to
the cost of optimizing a single query� as in the traditional optimizer� The e�ect of saving redundant
work by our enumeration algorithm has resulted in a rather slow growth in optimization cost� In
particular� for the case where there are �	 equivalent queries� the additional optimization cost on
the average was less than 
�*�

� Discussion

In the introduction� we stated that we would like the optimization to be syntax independent and
e�cient� Let us revisit those desiderata to see whether our optimization algorithm ensures that
these requirements are satis�ed�

Observe that syntax independent optimization is achieved because we unfold all the queries in terms
of base tables to provide a canonical representation of the query� Opportunities for using materialized
views are then discovered by enumerating safe substitutions using one�level rules� Furthermore� our

�This was the most varied catalog �catalog �relcat��� that was used in previous experiments �IK�
	 INSS��	 Kan��	
Shi��	 CS���



Optimizing Queries with Materialized Views 	��

enumeration algorithm is also capable of deciding amongst the use of multiple materialized views
when their uses are mutually exclusive �i�e�� use of one view excludes the use of another��

Example 	��� Let us assume that the query Q is f�� �� �� ��
� 	g� Let the entries in the MapTable
be the following three doublets�

�f�� �g� �� �f�� �g� ��� �f��
g���

Observe that because of the enumeration strategy in ExOptPlan� any candidate plan P that uses the
literal  �an occurrence of a materialized view�� ensures that in the �unfolded� query corresponding
to the rest of the plan� subexpression f�� �g is absent� since they occurred in the deletelist of  in the
MapTable� Therefore� the rest of the plan P can not have an occurrence of the other �overlapping�
materialized view � since the subexpression for � will be missing� On the other hand� the cost of
a plan which uses both the views  and � will be considered� For simplicity� consider a plan where
the literal  occurs as the last literal to be joined� The remainder of the plan �i�e�� excluding the
literal � represents the subexpression f�� �� 
� 	g� Therefore� while optimizing recursively� the plan
for f�� 	� �g will be considered�

Last but not the least� our objective was to ensure that the extensions to the optimizer are simple�
A comparison of OptPlan and ExOptPlan in Figure � con�rms that this goal has been met�

Generalizations

The enumeration algorithm ExOptPlan is robust in that it is completely independent of the algo�
rithm used to generate MapTable� This would make it possible to pick an algorithm for generating
equivalent queries using other algorithms �Fin��� YL�� CR��� �see discussion in the following sec�
tion��

The optimization algorithm presented in this chapter extends to the case where the query and
the materialized views are single block Select�Project�Join queries �i�e�� not necessarily conjunctive
queries�� Most commercial optimize multi�block SQL queries by optimizing each block locally�
Therefore� we can use ExOptPlan also for multi�block queries�

Finally� note that our algorithm can be used to exploit cached results� Caching results of a query to
speed up query processing has been suggested in advanced database management systems such as
Postgres� We observe that the cached results of queries di�er from materialized views in that there
may not be any degree of permanence to the cache� For optimizing an interactive query� it may be
pro�table to exploit the results that are currently cached� However� as in the case of materialized
views� such choices need to be cost�based� Therefore� we maintain a system table which records the
queries �in unfolded form� that are cached and their corresponding one�level rules� This table is
updated by the cache manager to re�ect the contents of the current cache�
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� Related Work

To the best of our knowledge� no work has previously been done on extending the dynamic�
programming based join enumeration algorithm to optimize queries in a cost�based fashion when
the database contains one or more materialized views� For example� although Postgres �SJGP���
provides the ability to implement a view either through materialization or by view expansion� the
choice between the approaches has to be predetermined� Thus� the optimizer can not explore both
the options depending on the query and cost estimations�

The task of generating equivalent queries based on existing query fragments or semantic knowledge
has been studied in several di�erent contexts �Fin��� LY�
� YL�� Sel��� CGM��� CS��� CR����
However� all these techniques generate equivalent queries explicitly � In contrast� much of our e��
ciency in optimization stems from the implicit encoding of the set of equivalent queries in MapTable
and a join enumeration algorithm that exploits the encoding�

� Summary

We have presented a comprehensive approach to solving the problem of optimization in the presence
of materialized views� Our solution is not only e�cient but is also syntax independent and cost�
based� Every materialized view corresponds to a one�level rule� The set of equivalent queries due to
applications of the above rules are encoded compactly in the MapTable data structure� This data
structure is used by the enumeration algorithm to e�ciently enumerate the the space of additional
execution alternatives generated due to one�level rules �i�e�� due to presence of materialized views��
Our proposal requires few extensions to the traditional optimization algorithm that is used by
commercial systems� Our approach also extends to architectures where results of queries are cached�
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� Introduction

We consider the problem of using materialized views to answer queries� Aside from its potential
of improving performance of query evaluation �LY�
� YL�� KB��� CKPS�
�� the ability to use
views is important in other applications� For example� in applications such as Global Information
Systems �LSK�
�� Mobile Computing �DB��� HSW���� view adaptation �GMR�
a�� maintaining
physical data independence �TSI���� the relations mentioned in the query may either not actually
be physically stored �e�g�� they may be only conceptual relations�� or be impossible to consult �e�g�
they are stored in a remote server that is temporarily unavailable to a mobile computing device�� or
be very costly to access�

We consider the complexity of this problem and its variants and describe algorithms for solving
them for conjunctive queries involving built�in comparison predicates and for unions of conjunctive
queries� Speci�cally� we consider the problem of �nding a rewriting of a query that uses a set of
views� the problem of �nding a minimal such rewriting� and the problem of completely solving a
query using views� that is� �nding rewritings that use nothing but the views and built�in predicates�

The observation underlying our solution of the problem is a general characterization of the usability
of views in terms of the problem of query containment� As a consequence� we show that all possible
rewritings of a query can be obtained by considering containment mappings �CM� from the bodies
of the views to the body of the query� Given this characterization� we show that the problem
of �nding rewritings that mention as few of the database relations as possible is NP�complete for
conjunctive queries with no built�in predicates� In fact� we show that these problems have two
independent sources of complexity� The �rst comes from the number of possible mappings from the
views to the query� and the second source of complexity is determining which literals of the query can
be removed when the view literals are added to the query� We describe a polynomial time algorithm
for �nding literals of the query that can be removed� This algorithm is guaranteed to remove only
literals that are necessarily redundant in the rewriting� and we show that under certain conditions
�which are likely to cover many practical cases�� it is guaranteed to remove the unique maximal
set of redundant literals� This algorithm� together with an algorithm for enumerating containment

��
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mappings from the views to the query� provides a practical method for �nding rewritings of a query�
Finally� we show how the presence of built�in predicates in the queries and in the views a�ect the
algorithms and the complexity of the problems�

� Preliminaries

In our discussion we refer to the relations used in the query as the database relations� We consider
mostly conjunctive queries� which may in addition contain built�in comparison predicates �#�	#� �
and ��� We brie�y describe how our results can be extended to queries that involve unions of
conjunctive queries �i�e�� Datalog without recursion�� We use V� V�� � � � � Vm to denote views that
are de�ned on the database relations� Views are also de�ned by conjunctive queries�

�
� Rewritings

Given a query Q� our goal is to �nd an equivalent rewriting Q� of the query that uses one or more
of the views�

De�nition ���� Conjunctive query Q� is a rewriting of Q that uses the views V # V�� � � � � Vm if

Q and Q� are equivalent �i�e�� produce the same answer for any given database�� and

Q� contains one or more occurrences of literals of V�

Note that we consider the case in which the rewriting is also a conjunctive query� When queries
involve built�in predicates we will see that it may be worthwhile to consider rewritings involving
unions�

We say that a rewriting Q� is locally minimal if we cannot remove any literals from Q� and still
retain equivalence to Q� A rewriting is globally minimal if there is no other rewriting with fewer
literals��

Example ���� Consider the following query Q and view V �

Q � q�X�U � �� p�X�Y �� p��Y� Z�� p��X�W �� p��W�U ��

V � v�A�B� �� p�A�C�� p��C�B�� p��A�D��

The query can be rewritten using V as follows�

Q� � q�X�U � �� v�X�Z�� p��X�W �� p��W�U ��

�Note that in counting the number of literals in the query	 we ignore the literals of the built�in predicates�
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Substituting the view enabled us to remove the �rst two literals of the query� Note� however� that
although the third literal in the query is guaranteed to be satis�ed by the view� we could not remove
it from the query� This is because the variable D is projected out in the head of V � and therefore�
if the literal of p� were removed from the query� the join condition between p� and p� would not be
enforced� �

Clearly� we would like to �nd rewritings that are cheaper to evaluate than the original query� The
cost of evaluation depends on many factors that di�er from one application to another� In this
chapter we consider rewritings that reduce the number of literals in the query� and in particular�
reduce the number of database relation literals in the rewritten query� In fact� we show that any
rewriting of Q that contains a minimal number of literals is isomorphic to a query that contains a
subset of the literals of Q and a set of view literals� Although we focus on reducing the number of
literals� it should be noted that rewritings can yield optimizations even if we do not remove literals
from the query� as illustrated by the following example�

Example ���� Using the same query as in Example ���� suppose we have the following view�

v��A� �� p�A�C�� p��A�D��

We can add the view literal to the query to obtain the following rewritten query�

q�X�U � �� v��X�� p�X�Y �� p��Y� Z�� p��X�W ��

p��W�U ��

The view literal acts as a �lter on the values of X that are considered in the query� It restricts the
set of values of X to those that appear in the join of p and p�� �

In some applications we may not have access to any of the database relations� For example� in
Global Information Systems �LSK�
�� the relations used in a query are only virtual� and the actual
data is all stored in views de�ned over these relations� Therefore� it is important to consider the
problem of whether the query can be rewritten using only the views� We call such rewritings complete
rewritings�

De�nition ���� A rewriting Q� of Q� using V # V�� � � � � Vm is a complete rewriting if Q� contains
only literals of V and built�in predicates�

Example ��	� Suppose that in addition to the query and the view of Example ��� we also have
the following view�

V� � v��A�B� �� p��A�C�� p��C�B�� p��D�E��

The following is a complete rewriting of Q that uses V and V��

Q�� � q�X�U � �� v�X�Z�� v��X�U ��
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It is important to note that this rewriting cannot be achieved in a stepwise fashion by �rst rewriting
Q using V and then trying to incorporate V� �or the other way around�� This is because the relation
p�� which appears in V� does not even appear in Q

� which is the intermediate result of using V in
Q� Finding the complete rewriting requires that we consider the usages of both views in parallel� �

�
� Containment Mappings

In the next section we show that the problem of �nding a rewriting is closely related to the query
containment problem� Containment mappings �CM� have been used to show containment among
conjunctive queries� In this chapter we show that they also provide the core of the solution to the
problem of �nding the possible usages of a view� Formally� a containment mapping from a query
Q� to a query Q� is a mapping from the variables of Q� into the variables of Q�� such that every
literal in the body of Q� is mapped to a literal in Q�� �Note that to show that Q� contains Q�� the
containment mapping must also map the head of Q� to the head of Q�� however� in this chapter
we use the term containment mapping to refer only to mappings on the bodies of the queries�� In
Example ���� the correctness of the rewriting can be established by considering the containment
mapping fA� X�B � Z�C � Y�D �Wg�

When neither Q� nor Q� contain built�in predicates� �nding a containment mapping is a necessary
and su�cient condition for deciding that Q� contains Q�� and is an NP�complete problem �CM��
This remains true also when Q� contains built�in predicates� However� when Q� contains built�in
predicates� �nding a containment mapping provides only a su�cient condition� and the containment
problem in this case is 'p��complete �vdM���� In order to generalize our results to queries containing
built�in predicates it is useful to note how containment mappings are also used to show containment
of such queries� In particular� it follows from �LS��� that if Q� contains Q�� then there exist queries
Q�
�� � � � � Q

n
� such that�

Q�
�� � � � � Q

n
� di�er only in their built�in literals� and

Q� is equivalent to the union of Q
�
�� � � � � Q

n
� � and

For every i� � � i � n� there is a containment mapping 	i from Q� to Qi
�� such that bi�Q

i
��

entails 	i�bi�Q���� where bi�Q� is the conjunction of built�in atoms in the query Q�

For example� consider the following queries� where Q� contains Q��

Q� � q�Y � �� e�Y �� r�U�� V��� U� � V��

Q� � q�X� �� e�X�� r�U� V �� r�V� U ��

The query Q� can be represented by the union�

Q�
� � q�X� �� e�X�� r�U� V �� r�V� U �� U � V�

Q�
� � q�X� �� e�X�� r�U� V �� r�V� U �� U � V�
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The containment mappings would be

	� � fY � X�U� � U� V� � V g�

	� � fY � X�U� � V� V� � Ug�

In the next section we consider the complexity of �nding rewritings� minimal rewritings and complete
rewritings�

� Complexity of Finding Rewritings

Previous solutions to the problem of using views to answer queries were based on either �nding
syntactic or ��� mappings from the view to the query� The �rst observation underlying our solution
is that the problem of using views is closely related to the problem of query containment� In fact�
the proposition below gives a necessary and su�cient condition for the existence of a rewriting of Q
that includes a view V �

Proposition ���� Let Q and V be conjunctive queries with built�in predicates� There is a rewriting
of Q using V if and only if 
	�Q� � 
	�V �� i�e�� the projection of Q onto the empty set of columns

is contained in the projection of V onto the empty set of columns�

Note that the containment 
	�Q� � 
	�V � is equivalent to the following statement� If V is empty

for a given database� then so is Q�

The importance of this proposition is in the fact that it provides a complete characterization of the
problem of using views� thereby enabling us to explore the di�erent aspects of the problem�

Proposition ��� and earlier results on the complexity of containment �CM� vdM��� entail the
following complexity results on the problem of �nding a rewriting of Q that uses a set of views V�

Proposition ���� Let Q be a query and V be a set of views�

�� If Q is a conjunctive query with built�in predicates and V are conjunctive views without built�in
predicates� then the problem of determining whether there exists a rewriting of Q that uses V is
NP�complete�

�� If both Q and V are conjunctive and have built�in predicates� then the problem of deciding
whether there exists a rewriting of Q that uses V is 'p��complete�

Remark� Proposition ��� holds for a broader class of queries and rewritings� In particular� suppose
q� (X� is any relational calculus query� �or� equivalently� in nonrecursive datalog with negation� as is
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the view v� (W �� and suppose we are considering conjunctive rewritings� which are formulas of the
form

q� (X� � �� (Z�v� (Y �

such that the following equivalence holds�

q� (X� � q� (X� � �� (Z�v� (Y �

Note that (X � (Y and (Z are tuples of variables� such that (Z includes exactly those variables of (Y that
do not appear in (X � Then such a rewriting exists if and only if 
	�Q� � 
	�V �� �

The proof of Proposition ��� constructs a rewriting of Q using V in which the literal of V contains
new variables that did not occur originally in Q� The following lemma shows that we can always �nd
a rewriting that does not introduce new variables� The lemma also shows that we do not need to
consider rewritings that include database�relation literals that do not appear in the original query�
i�e�� that it is enough to consider rewritings that include view literals and a subset of the original
literals in the query� These results enable us to signi�cantly prune the search for a minimal rewriting
of Q�

Lemma ���� Let Q be a conjunctive query without built�in predicates

q� (X� �� p�� (U��� � � � � pn� (Un��

and V be a set of views without built�in predicates�

�� If Q� is a locally minimal rewriting of Q using V� then the set of database�relation literals in Q�

is isomorphic to a subset of the literals of Q�

�� If

q� (X� �� p�� (U��� � � � � pn� (Un�� v�� (Y��� � � � � vk� (Yk��

is a rewriting of the query using the views� then there exists a rewriting of the form

q� (X� �� p�� (U��� � � � � pn� (Un�� v�� (Y
�
��� � � � � vk�

(Y �k��

where f (Y �� � � � ��
(Y �kg � f (U� � � � �� (Ung� i�e�� a rewriting that does not introduce new variables�

�� If Q and V include built�in predicates� then a rewriting as specied in Part � exists� with the
only di	erence that the rewriting may be a union of conjunctive queries�

Note that even though in part � of the lemma the rewriting includes all the literals of the query� the
set of variables will not increase as a result of removing redundant literals� Therefore� the lemma
implies that we can �nd a minimal rewriting that does not introduce new variables�

Proof� To prove the �rst part of the lemma� let Q� be a locally minimal rewriting of Q using
a set of views V� Let Q�� be the expansion of Q� obtained by replacing every occurrence of a view
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V � V by the body of V � with suitable variable renamings� For any conjunctive query R� let L�R�
denote the set of literals database�relation literals in the body of R� Since Q�� and Q are equivalent�
there are containment mappings 	 from Q to Q�� and � from Q�� to Q� Let C be a core of Q� that
is� a minimal subset of L�Q� such that there exists a containment mapping from L�Q� to C� Let
S # 	�C�� the image of C in the body of Q�� under 	� Note that C� # ��S� is also a core of Q� since
the composition of 	 and � is a containment mapping from L�Q� to C�� It follows from uniqueness
of the core up to isomorphism ��CM�� that C and C� are isomorphic� We claim that 	 is an
isomorphism from C to S� By de�nition of S� every literal in S is in the image of 	� hence every
variable in S is in the image of 	� Now suppose 	 mapped two variables of C to the same variable
in S� Since containment mappings cannot increase the number of variables� C� would have fewer
variables than C� a contradiction� So 	 is a bijection on the variables of C and S� By minimality
of C and the existence of �� S cannot have fewer literals than C� and by de�nition of S� S has no
more literals than C� Hence S and C are isomorphic� To �nish the proof we need to show that every
database�relation literal in the body of Q� is in S� Suppose there is some database�relation literal
in the body of Q� that is not in S� this literal can be removed from Q� while retaining equivalence
to Q� contradicting the minimality of the rewriting� So S contains every database�relation literal in
the body of Q�� and since S is isomorphic to C� the database�relation literals in S are isomorphic to
a subset of C�

To prove the second part� suppose that

Q� � q� (X� �� p�� (U��� � � � � pn� (Un�� v�� (Y��� � � � � vk� (Yk��

is a rewriting of Q� By Proposition ���� 
	�q� � 
	�vi� �i # �� � � � � k�� Therefore� there is a

containment mapping hi from the body of the rule de�ning vi into the body of the original rule for
q� Let hi� (Yi� # (Y �i �i # �� � � � � k�� Consider the query

Q�� � q� (X� �� p�� (U��� � � � � pn� (Un�� v�� (Y
�
��� � � � � vk� (Y

�
k��

It is easy to see that Q� contains Q�� �by using the mappings hi�� and clearly Q�� contains Q�
Therefore� Q�� is equivalent to Q� and so it is a rewriting of Q using V� Furthermore� Q�� does not
introduce any new variables than those that appeared originally in Q�

The third part is proved in a similar fashion to the second except for one di�erence� Proposition ���
guarantees that for every vi� there is a union of conjunctive queries Q�

i � � � � � Q
mi

i that is equivalent to

Q� and there is a containment mapping hji from vi to every Q
j
i � The rewriting will be a disjunction

of conjunctive queries� In every conjunct we choose one of the hji �s for every vi� and construct the
conjunct as in the previous case� �

The following example shows that the second part of the above lemma does not hold when the view
contains built�in predicates�

Example ���� Consider the query�

Q � q�X�Y� U�W � �� p�X�Y �� r�U�W �� r�W�U ��

and the view



		� Chapter 	

V � v�A�B�C�D� �� p�A�B�� r�C�D�� C � D�

There exists no conjunctive query rewriting of Q that uses V and does not introduce new variables�
However� the following is a rewriting of Q�

Q� � q�X�Y� U�W � �� v�X�Y�C�D�� r�U�W �� r�W�U ��

Furthermore� the disjunctive rewriting that does not introduce new variables is�

Q� � q�X�Y� U�W � �� v�X�Y� U�W �� r�W�U ��

Q� � q�X�Y� U�W � �� v�X�Y�W�U �� r�U�W ��

�

�
� Finding Minimal Rewritings

In general� we are interested in using views to answer queries in order to reduce the cost of evaluating
the query� In this section we consider the complexity of the problems of reducing the total number
of literals in the rewriting� reducing the number of database�relations in the rewriting� and �nding
rewritings that use only the views� Finally� we show that the problem of �nding minimal rewritings
has two independent sources of complexity�

The following lemma is the basis for several results� It shows that a minimal rewriting of a query
Q� using a set of views V� does not increase the number of literals in the query�

Lemma ��	� Let Q be a conjunctive query and V be a set of views� both Q and V without built�in
predicates� If the body of Q has p literals and Q� is a locally minimal and complete rewriting of Q
using V� then Q� has at most p literals�

Note that we can always assume that there are views in V that are identical to the database�relations�
and therefore this lemma entails that any locally minimal rewriting of Q will have at most p literals�

Proof� As before� let Q�� be the expansion of a rewriting Q� of Q� in which the view literals in Q�

are replaced by their de�nitions� Consider the containment mapping 	 from Q to Q��� Each literal
l�� � � � � lp in the body of Q is mapped to the expansion of at most one view literal in the body of
Q��� If there are more than p view literals in Q�� the expansion of some view literal in the body of
Q�� must be disjoint with the image of 	� but then this view literal can be removed from Q� while
preserving equivalence with Q� Hence there is a rewriting with at most p view literals� �

It can be shown that the size of the rewriting is bounded even if the database relations may have
functional dependencies� or if the query and views have built�in predicates� The following example
shows that the bound of Proposition ��
 does not hold when the database relations have functional
dependencies�



Answering Queries Using Views 		�

Example ��
� Consider the query

q�X�Y� Z� �� e�X�Y� Z��

and the views

v��X�Y � �� e�X�Y� Z��

v��X�Z� �� e�X�Y� Z��

and suppose that in the relation e� the �rst argument functionally determines the other two� The
following is the only complete rewriting of Q using v� and v��

q�X�Y� Z� �� v��X�Y �� v��X�Z�� �

Using Lemma ��
� we obtain the following complexity results on �nding minimal rewritings�

Theorem ���� Let Q be a conjunctive query without built�in predicates and V be conjunctive views
without built�in predicates�

�� The problem of whether there exists a rewriting Q� of Q using V such that Q� contains no more
than k literals� where k is less than or equal to the number of literals in the body of Q� is
NP�complete�

�� The problem of whether there exists a rewriting Q� of Q using V such that Q� contains no more
than k literals of database relations� where k is less than or equal to the number of literals in
the body of Q� is NP�complete�

�� The problem of whether there exists a complete rewriting of Q using V is NP�complete�

�� If the query Q and views V have built�in predicates� then Problem � is in -p��

Proof� The proof of the �rst part is as follows� The problem is in NP because� by the Lemmas ��

and ���� we need only consider rewritings that have no more literals than the query� have a subset
of the literals of the query� and do not introduce new variables � We can guess such a rewritten
query� verify that it contains less than k literals� and guess containment mappings from the original
query to the rewritten one and vice�versa� For the NP�hardness� reduce the problem of existence of
a usage to it as follows� Given a query Q and a view V � let V � be the rule whose head is the same as
the head of V and whose body is the conjunction of the bodies of Q and V � Now there is a usage of
V � in Q with � literal in it if and only if there is a usage of V in Q� The other parts of the theorem
are proved in a similar fashion� �

Corollary ���� The problem of nding a globally minimal rewriting of a conjunctive query without
built�in predicates� using conjunctive views with no built�in predicates is in -P� �



		� Chapter 	

Using the results of �SY��� for unions of conjunctive queries we can generalize the above theorem as
follows�

Theorem ��� Let Q and V be disjunctions of conjunctive queries� When neither Q nor V have
built�in predicates� the problem of whether there exists a complete rewriting of Q using V is NP�
complete�

The results described up to now suggest a two step algorithm for �nding rewritings of a query Q�
In the �rst step� we �nd some containment mapping from the views to the query and add to the
query the appropriate view atoms� resulting in a query Q�� In the second step� we minimize Q�

by removing literals from Q that are redundant� These two steps also emphasize the two sources
of complexity involved in the problem� The �rst source is the exponential number of possible
containment mappings from the views to the query� The second source is determining which literals
of Q� are redundant given the mappings from the views to the query� The following theorem shows
that these are two independent sources of complexity� i�e�� that the problem is NP�complete even if
there is a single mapping from each view to the query� In the next section we describe a polynomial
time algorithm for determining which literals can be removed from the query� and we show that
under certain conditions� it is guaranteed to �nd the unique maximal set of such literals�

Theorem ����� The complete rewriting problem is NP�complete for conjunctive queries and views
without built�in predicates even when both the query and the views are dened by rules that do not
contain repeated predicates in their body�

Note that when the query and the views are de�ned by such rules� then each rule is already non�
redundant and� moreover� there is at most one mapping from each view into the query and �nding
those mappings is easy�

Proof� We use a reduction from the problem of exact cover by ��sets� Given an instance of this
problem� we create a predicate pi for each element i and use a special variable Sj for each set j� For
each pi� we create an atom as follows� If element i is in set j� then the jth argument position of pi
has the variable Sj � if element i is not in set j� then the jth argument position of pi has a distinct
nondistinguished variable� The query is a conjunction of these atoms �i�e�� one atom for each pi��
We may assume that the head of the query has no variables� i�e�� it is of the form

q�� �� p�� (U��� � � � � pn� (Un��

We also create views as follows� For each set j� we create a view vj � The three subgoals of vj are
the atoms created for the elements that appear in set j� The variables in the head of vj are all the
Sk variables that appear in the body of vj � except for Sj �

There is exactly one containment mapping from the body of each view into the body of the query�
Hence� a minimal rewriting that uses the views will have a subset of the literals in the following
query�

q�� �� p�� (U��� � � � � pn� (Un�� v�� (Y��� � � � � vm� (Ym��
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We have to show that there is a containment mapping that eliminates all the pi� (Ui� if and only if
there is an exact cover� So� suppose that there is an exact cover� We will map each pi� (Ui� to the set
that covers it� We have to show that the variables S�� � � � � Sn are mapped consistently� So� suppose
that two atoms pi� (Ui� and pj� (Uj� share the variable Sk� There are two cases to be considered� First�
suppose that in the exact cover� the elements i and j are covered by the same set l� In this case�
both of these atoms are mapped to the same view vl� and clearly� the two occurrences of Sk in these
atoms are mapped to the same variable in vl� The second case is that elements i and j are covered
by di�erent sets� say h and l� respectively� Therefore� set k cannot be in the exact cover and� so�
k 	# h and k 	# l� It thus follows that Sk is a distinguished variable of both vh and vl� and hence�
the two occurrences of Sk in pi� (Ui� and pj� (Uj� are mapped to Sk�

Now consider the other direction� that is� suppose that there is a containment mapping that elimi�
nates all the pi� (Ui�� Hence each pi� (Ui� is mapped to a view vj � such that set j contains i� Since the
variable Sj is not distinguished in vj� it follows that if one pi� (Ui� is mapped to vj� then so are the
other two atoms for the elements of set j� Therefore� this mapping provides an exact cover� �

� Finding Redundant Literals in the Rewritten Query

In the previous section we have shown that �nding rewritings for a query using views can be done
in two steps� In the �rst� we consider containment mappings from the bodies of the views to the
body of the query� and add the appropriate view literals to the query� In the second step� we remove
literals of the original query that are redundant� We have also shown that in general� both steps
provide independent sources of exponential complexity�

In this section we describe a polynomial time algorithm for the second step� In particular� given
a set of mappings from the views to the query� the algorithm determines which set of literals from
the query can be removed� We show that under certain conditions there is a unique maximal set
of such literals and that the algorithm is guaranteed to �nd them� In other cases� the algorithm
may �nd only a subset of the redundant literals� but all the literals it removes are guaranteed to be
redundant� and therefore the algorithm is always applicable� Note that in such cases� the rest of the
query can still be minimized using known� more computationally expensive techniques� Together
with an algorithm for enumerating mappings from the views to the query� our algorithm provides
a practical method for �nding rewritings� For simplicity� we describe the algorithm for the case of
rewritings using a single occurrence of a view� and we begin with the case that does not include
built�in predicates�

Formally� suppose our query is of the form

Q � q� (X� �� p�� (U��� � � � � pn� (Un�� �����

and we have the following view�

V � v� (Z� �� r�� (W��� � � � � rm� (Wm�� �����
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Let h be a containment mapping from the body of v into the body of q� and let the following be the
result of adding the view literal to the query�

q� (X� �� p�� (U��� � � � � pn� (Un�� v� (Y �� �����

where (Y # h� (Z�� Note that we can restrict ourselves to mappings where the variables of (Y already
appear in the pi� (Ui� �by Lemma ����� To obtain a minimal rewriting� our goal is to remove as many
of the redundant pi literals as possible�

To determine the set of redundant literals� consider the rule resulting from substituting the de�nition
of Rule ����� instead of the view literal in Rule ������ That is� we rename the variables of Rule �����
as follows� Each variable T that appears in (Z is renamed to h�T �� and each variable of Rule �����
that does not appear in (Z is renamed to a new variable �that is not already among the pi� (Ui��� Let
the following be the result of this substitution�

q� (X� �� p�� (U��� � � � � pn� (Un�� r�� (V��� � � � � rm� (Vm�� �����

Note that the variables of (Y are the only ones that may appear in both the pi� (Ui� and the rj� (Vj��

Given the mapping h� there is a natural containment mapping from Rule ����� into the original rule
for q �i�e�� Rule ������ that is de�ned as follows� Each literal pi� (Ui� is mapped to itself and each
literal rj� (Vj� is mapped to the same literal of Rule ����� as in the containment mapping h �from
Rule ����� to Rule ������� We denote this containment mapping as 	� Note that the containment
mapping 	 maps each variable of (Y to itself�

Each literal pi� (Ui� of Rule ����� is the image �under 	� of itself� and maybe a few of the rj� (Vj�
literals� We say that the literals rj� (Vj� that map to pi� (Ui� under 	 are the associates of pi� (Ui�� For
the rest of the discussion� we choose arbitrarily one of the associates of pi� (Ui� and refer to it as the
associate of pi� (Ui�� Note that if h does not map two literals rj� (Vj� to the same literal in Rule ������
then each pi� (Ui� will have at most one associate�

Before we show how to �nd the set of redundant literals� we need the following de�nition�

De�nition ���� A literal rj� (Vj� covers a literal pi� (Ui� that has the same predicate if the following
two conditions hold�

If pi� (Ui� has a distinguished variable �i�e�� a variable in (X� or a constant in some argument
position a� then rj� (Vj� also has that variable �or the constant� in argument position a�

If argument positions a� and a� of pi� (Ui� are equal� then so are the argument positions a� and
a� of rj� (Vj��

Intuitively� if rj� (Vj� is the associate of pi� (Ui� and does not cover pi� (Ui�� then we cannot remove
pi� (Ui�� because pi� (Ui� enforces quality constraints that are not enforced by rj� (Vj��

The set of needed literals N of the query Q is de�ned below� The set of redundant literals is the
complement of the set of needed literals�
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De�nition ���� The set N is the minimal subset of literals in Q satisfying the following four
conditions�

�� Literals that have no associate�

�� Literals that are not covered by their associates�

�� If all the following conditions hold� then pi� (Ui� is in N �

Literal pi� (Ui� has the variable T in argument position a��

The associate of pi� (Ui� has the variable� H in argument position a��

The variable H is not in (Y �hence� H appears only among the rj� (Vj���

The variable T also appears in argument position a� of pl� (Ul��

The associate of pl� (Ul� does not have H in argument position a��

�� Suppose that pi� (Ui� is in N and that variable T appears in pi� (Ui�� If pl� (Ul� has variable T in
argument position a and its associate does not have T in argument position a� then pl� (Ul� is
also in N �

The third condition in the de�nition adds to N those literals in Q whose associates do not enforce
the same join constraints� The fourth condition iteratively adds to N literals that are connected to
a literal in N via a common variable� It is important to note that the set of needed variables can
be found in polynomial time in the size of the query�

Example ���� Consider the query and the view of Example ���� The result of substituting the
view in the query would be the following�

q�X�U � �� p�X�Y �� p��Y� Z�� p��X�W �� p��W�U ��

p�X�C�� p��C�Z�� p��X�D��

The literal p��W�U � is needed because it does not have an associate� The literal p��X�W � is needed
by the fourth condition of the de�nition� because its associate p��X�D� does not contain the variable
W �which appears in p��W�U ��� Consequently� these two literals need to be retained to obtain the
minimal rewriting� �

Theorem ����

�� The query

q� (X� �� N � v� (Y �� ���
�

is a rewriting of Q using V �

�Note that the associate of pi� �Ui� cannot have a constant in argument position a� if pi� �Ui� has a variable in that
argument position�



	
� Chapter 	

�� Suppose that h does not map two literals rj� (Vj� to the same literal in Rule ������ and Rule �����
is minimal� Then the maximal set of redundant pi� (Ui� in Rule ����� is unique and is exactly
the complement of the set N �

Proof� Wewill use � to denote a containment mapping from the original rule for q �i�e�� Rule ������
into the rewritten rule �i�e�� Rule �������

Recall that the composition 	� is a containment mapping from Rule ����� to itself� Since Rule �����
is minimal� there is a k� such that �	��k is the identity mapping on Rule ������ Let  # ��	��k���
Note that  is a containment mapping from Rule ����� into Rule ������ and 	 is the identity mapping
on Rule ������

The containment mapping 	 �restricted to the image of  � is the inverse of  � since 	 is the identity
mapping on Rule ������ Therefore�  maps a literal pi� (Ui� of Rule ����� either to the literal pi� (Ui�
or to the associate of pi� (Ui� in Rule ������

We will now show that every pi� (Ui� in N must be mapped to itself by  and� hence� all the pi� (Ui� of
N are in the image of �� Recall that we already know that  maps each pi� (Ui� either to itself or to
its associate� If pi� (Ui� satis�es either Condition � or � �in the de�nition of N �� then clearly pi� (Ui�
must be mapped to itself�

Suppose that pi� (Ui� and pl� (Ul� satisfy Condition �� If pi� (Ui� is mapped to its associate� then pl� (Ul�
must also be mapped to its associate� because variable H appears only among the rj� (Vj�� But
pi� (Ui� and pl� (Ul� cannot both be mapped to their associates� because pi� (Ui� and pl� (Ul� have the
same variable T in argument positions a� and a�� respectively� while their associates have di�erent
variables in these argument positions� Therefore� pi� (Ui� must be mapped to itself�

Now suppose that pi� (Ui� and pl� (Ul� satisfy Condition �� Since pi� (Ui� is in N � we may assume
inductively that it must be mapped to itself� Therefore� variable T is mapped to itself and� hence�
pl� (Ul� must also be mapped to itself� Thus� we have shown that all the literals of N must be mapped
to themselves by  �

We now de�ne the mapping �� from Rule ����� into Rule ����� as follows� If pi� (Ui� is in N � then it
is mapped to itself� otherwise� it is mapped to its associate� We will show that �� is a containment
mapping�

Clearly� every pi� (Ui� is mapped to a literal that covers it� So� it remains to show that if pi� (Ui� and
pl� (Ul� have the same variable T in argument positions a� and a�� respectively� then their images
under �� also have the same symbol in these argument positions � There are three cases to be
considered in order to prove this claim� In the �rst case� both pi� (Ui� and pl� (Ul� are mapped to
themselves and the claim is clearly true�

In the second case� pi� (Ui� is mapped to itself �because it is in N � while pl� (Ul� is mapped to its
associate� By Condition � in the de�nition of N � the associate of pl� (Ul� must also have variable T
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in argument position a� �or else pl� (Ul� would be in N and� hence� would be mapped to itself�� So�
the claim is proved also in this case�

In the third case� both pi� (Ui� and pl� (Ul� are mapped to their associates� Suppose that the associates
have distinct variables� C and D� in argument positions a� and a�� respectively� It is impossible that
both C and D are in (Y � because 	 is one�to�one on the variables of (Y �because 	 is the identity on
(Y �� So� one of them� say C� is not in (Y � But in this case� pi� (Ui� and pl� (Ul� satisfy Condition � in
the de�nition of N and� hence� pi� (Ui� is in N and is mapped by �� to itself a contradiction� Thus�
we have shown that �� is a containment mapping�

In conclusion� we have shown that N is in the image of every containment mapping � from the
original rule for q �i�e�� Rule ������ into the rewritten rule �i�e�� Rule ������� We have also shown that
there is a mapping ��� such that the pi� (Ui� in the image of �� are exactly those of N � Therefore�
the set of pi� (Ui� not in N is the unique maximal set of redundant pi� (Ui� in Rule ������ �

It is well known that a containment mapping can be found in polynomial time if each literal has
at most two potential destinations� the exact algorithm is based on a reduction to the ��SAT prob�
lem �SY���� In some sense� this is the case in the minimization algorithm presented in Theorem ����
since each pi� (Ui� can be mapped either to itself or to its associate� However� the contribution of
Theorem ��� is twofold� First� it shows that each pi� (Ui� has at most two destinations� This fact is
not obvious �indeed� when ordinarily using the reduction to ��SAT� each literal that covers pi� (Ui� is
considered a potential destination of pi� (Ui��� The second contribution of Theorem ��� is in providing
a more direct �and� hence� likely to be more e�cient� way of computing the redundant pi� (Ui�� as
compared to the algorithm that uses the reduction to ��SAT�

Adding Built�in Predicates

When the views may have built�in predicates� we need to repeat a similar process of �nding needed
literals for several containment mappings� and we can remove only literals that are not deemed
needed for any of the mappings� Formally� suppose the result of adding the view literal to the query
is

Q� � q� (X� �� p�� (U��� � � � � pn� (Un�� v� (Y �� ���	�

As before� we can expand the de�nition of v in Q�� obtaining the conjunction Q�� �as in Rule �����
By Proposition ���� there are a set of queries Q�� � � � � Qm� that di�er only on the built�in predicates�
such that�

Q is equivalent to the union of Q�� � � � � Qm� and

For every i� � � i � m� there is a containment mapping 	i from the body of Q�� into the body
of Qi� such that bi�Qi� entails 	i�bi�Q�����

For each one of the 	i mappings we compute the set of needed literals Ni� and we de�ne

N # N� � � � ��Nm�
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Only the literals in N from Q remain in the rewritten query�

Example ��	� Consider the query from Example ����

Q � q�X�Y� U�W � �� p�X�Y �� r�U�W �� r�W�U ��

and the view

V � v�A�B�C�D� �� p�A�B�� r�C�D�� C � D�

The result of substituting the view in the query would be�

Q� � q�X�Y� U�W � �� p�X�Y �� r�U�W �� r�W�U ��

v�X�Y�C�D�� ����

The query Q can be written as the union

Q� � q�X�Y� U�W � �� p�X�Y �� r�U�W �� r�W�U ��

U �W�

Q� � q�X�Y� U�W � �� p�X�Y �� r�U�W �� r�W�U ��

U �W�

and the mappings from the expansion of ���	� to Q� and Q� are the identity on X�Y� U and W � and

	� � fC � U�D �Wg�

	� � fC �W�D� Ug�

For the mapping 	�� we will deem only the literal r�W�U � as needed� because it does not have an
associate� and for 	�� r�U�W � will be deemed needed� Therefore� since the only literal that is not
needed for either of the mappings is p�X�Y �� it can be removed� resulting in the following rewriting�

q�X�Y� U�W � �� r�U�W �� r�W�U �� v�X�Y�C�D��

�

� Related Work

Several authors have considered the problem of implementing a query processor that uses the results
of materialized views �e�g�� �YL�� Sel��� SJGP��� CR��� TSI��� CKPS�
��� but the formal aspects
of �nding the equivalent �and minimal� rewritings have received little attention�

Yang and Larson �YL�� considered the problem of �nding rewritings for select�project�join queries
and views� In their analysis they considered what amounts to one�to�one mappings from the views
to query� and do not search the entire space of rewritings �and therefore may not always �nd all the
possible rewritings of the query��
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Chaudhuri et al� �CKPS�
� considered the problem of �nding rewritings for select�project�join queries
and views� such that the rewritten query preserves the bag semantics� They show that in this case
all the usages of views are obtained by ��� mappings from the views to the query� and therefore
their algorithm would not �nd all the usages in the case where the relations are sets� Chaudhuri et
al� �CKPS�
� also considered the question of how to extend a query processor to chose between the
di�erent rewritings� a question that was not addressed in this paper� Srivastave et al� �SDJL�	�
extended the work in �CKPS�
� to consider queries that involve aggregation� Finally� Rajaraman
et al� �RSU�
� built on our results and considered the problem of �nding rewritings when the views
may only be queried using speci�c binding patterns�





	
ADAPTING MATERIALIZED VIEWS AFTER

REDEFINITIONS

Ashish Gupta� Inderpal Singh Mumick�
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ABSTRACT

We consider a variant of the view maintenance problem How does one keep a materialized view up�to�
date when the view de�nition itself changes� Can one do better than recomputing the view from the base
relations� Traditional view maintenance tries to maintain the materialized view in response to modi�cations
to the base relations� we try to 
adapt� the view in response to changes in the view de�nition�

Such techniques are needed for applications where the user can change queries dynamically and see the
changes in the results fast� Data archaeology� data visualization� and dynamic queries are examples of such
applications�

We consider all possible rede�nitions of SQL SELECT�FROM�WHERE�GROUPBY� UNION� and EXCEPT views� and

show how these views can be adapted using the old materialization for the cases where it is possible to

do so� We identify extra information that can be kept with a materialization to facilitate rede�nition�

Multiple simultaneous changes to a view can be handled without necessarily materializing intermediate

results� We identify guidelines for users and database administrators that can be used to facilitate e�cient

view adaptation�

� Introduction

Visualization applications try to visualize views over the data stored in a database� The view is
materialized� and a graphical display program may present the data in the view visually� If the user
changes the view de�nition� the system must be able to recompute the view fast in order to keep the
application interactive� An interface for such queries in a real estate system is reported in �WS����
where they are called dynamic queries �AWS����

Data archaeology �BST���� BST���� is another application where an archaeologist tries to discover
rules about data by formulating queries� looking at the results of the query� and then changing the
query iteratively as the archaeologist�s understanding improves�

��
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We consider the problem of recomputing a materialized view in response to changes made to the
view de�nition� that is� in response to rede�nition of the view� We call this problem the �view
adaptation problem��

�
� Motivating Example

EXAMPLE ��� Consider the following relations E �employees�� W �works�� and P �projects��

E�Emp��Name�Address�Age�Salary��

W �Emp��Proj��Hours��

P �Proj��Projname�Leader��Location�Budget��

The key of each relation is underlined� Consider a graphical interface used to pose queries on
the above relations using SELECT� FROM� WHERE� GROUPBY� and other SQL constructs� For instance�
consider the following view de�ned by query Q��

CREATE VIEW V AS

SELECT Emp
� Proj
� Salary
FROM E " W
WHERE Salary � ����� AND Hours � ��

The natural join between relations E and W on attribute Emp
 is speci�ed as a part of the FROM
clause using the �"� sign� Query Q� might be speci�ed graphically using a slider for the Salary
attribute and another slider for the Hours attribute� As the position of these sliders is changed� the
display is updated to re�ect the new answer�

Say the user shifts the slider for the Salary attribute making the �rst condition Salary � �
����
The answer to this new query can be computed easily from the answer already displayed on the
screen� All those tuples that have Salary more than ����� but not more than �
���� are removed
from the display� This incremental computation is much more e�cient than recomputing the view
from scratch�

Not all changes to the view de�nition are so easily computable� For instance� if the slider for Salary
is moved to lower the threshold of interest to Salary � �
���� then the above computation is not
possible� However� we can still infer that �a� the old tuples still need to be displayed and �b� some
more tuples need to be added� namely� those tuples that have salary more than �
��� but not more
than ������ Thus� even though the new query is not entirely computable using the answer to the
old query� it is possible to substantially reduce the amount of recomputation�

Now� say the user decides to change Q� by joining it with relation P and then computing an
aggregate� That is view V now is de�ned by a new query Q��

CREATE VIEW V AS
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SELECT Proj
� Location� SUM�Salary�
FROM E " W " P
WHERE Salary � ����� AND Hours � ��
GROUPBY Proj
� Location

Thus Q� requires that Q� be joined with relation P on attribute Proj
 and the resulting view be
grouped by Proj
 and Location� Note that the key for relation P is Proj
 and Proj
 is already in
the answer to query Q�� Thus� to compute Q� we need only look up the Location attribute from the
relation P using the value of Proj
 for each tuple in the current answer set� �To avoid having to
materialize Q� separately from Q�� we could reserve in advance free space in each record of Q� so
that answering Q� consists of a simple in place append of an extra attribute to each existing tuple��
The resulting set of tuples is aggregated over the required attributes to compute the answer to query
Q��

Finally� say the user changes view V to compute the sum of salaries for each Location that appears
in Q�� The answer to this query �call it Q�� is computable using only the result of Q�� Because
the grouping attributes of Q� are a superset of the grouping attributes of Q�� each group of Q� is
a subgroup of a group in Q�� Thus� multiple tuples in the result of Q� are combined together to
compute the answer to Q��

We focus on changing a single materialized view� and on recomputing the new materialization using
the old materialization and the base relations� In this chapter we do not consider how multiple
materialized views may be used to further assist the adaptation process�

�
� Results

We de�ne the process of rede�ning a view as a sequence of local changes in the view de�nition� The
adaptation is expressed as an additional query or update upon the old view and the base relations
that needs to be executed to adapt the view in response to the rede�nition� We identify a basic
set of local changes so that a sequence of local changes can be maintained by concatenating the
maintenance process for each local change� In almost all cases� this concatenation can be performed
without materializing the intermediate results� yielding a single adaptation method for arbitrary
changes to a view de�nition�

We present a comprehensive study of di�erent types of local changes that can be made to a view� and
present algorithms to maintain the views in response to these changes� These algorithms integrate
smoothly with a cost�based query optimizer� The optimizer considers the additional plans provided
by the algorithms and uses one of them if its cost is lower than the cost of rematerializing the view�

We show that the maintenance in response to a rede�nition is facilitated by keeping a small amount of
extra information �beyond the view de�nition�s attributes themselves�� We only consider information
that can be maintained e�ciently� and show how the adaptation process can be made far more
e�cient with this information�
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Our work shows that �a� it is often signi�cantly better to use previously materialized views� and
�b� if you know in advance that you might change the views in certain ways� then you can include
appropriate kinds of additional information in the views�

�
� Related Work

The problem of rede�ning materialized views is related to the problem of optimizing an arbitrary
query given that the database has materialized a view V � The query can be considered to be a
rede�nition of the view V and one may compute the query by changing the materialization of V �
However� there is an important di�erence� Consider a query that returns all the tuples in the
view except one� When framed as a query optimization problem� the complexity of using the view is
O�jV j�� where jV j is the cardinality of the materialization of V � When framed as a view maintenance
problem� the complexity of the maintenance process is O�log�jV j��� This will impact the choice of
the strategies for query answering and view maintenance di�erently� Further� the view adaptation
approach loses the old materialized view� while the querying approach keeps the old view in storage�

View adaptation di�ers from the problem of using materialized views to answer queries also in that
adaptation assumes the new view de�nition is �close� to the old view de�nition� in the sense that the
view changes via a small set of local changes� There is no such assumption in the query�answering
problem� which means that a query compiler�optimizer would have to spend a considerable time
determining how to use the existing views to correctly answer a given query� Thus� adaptation
considers a smaller search space and yields a smaller but more e�cient set of standard techniques
that are easily incorporated in relational systems�

Classic �BBMR��� is a system developed at AT"T Bell Laboratories that allows users to de�ne
new concepts and optimizes the evaluation of their extents by classifying the concepts in a concept
hierarchy� and then computing them starting with the parent concepts� This corresponds to evalu�
ating a new Classic query �the new concept�� using information in several materialized views �the
old concepts�� Classic has been used for data archaeology�

�LY�
� YL�� look at the question of answering queries using cached results or materialized views�
�LY�
� YL�� show how to transform an SPJ �select�project�join� query so that it is expressed
completely using a given set of views� without any reference to the base relations� They also have
the idea of augmented views where each view is extended with keys of the underlying base relations�

�CKPS�
� tackle the broader problem of trying to answer any query given any set of view de�nitions�
Because they look at this more general problem� they have a much larger search space �exponential
size� in their optimization algorithm� We have a simple small set of extra plans to check� For the
less general problem we can do more� and do it more e�ciently�

�RSU�
� LMSS�
a� also tackle the problem of answering a query given any set of view de�nitions�
They do not consider aggregate queries�
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�TSI��� focuses on the broader issue of enhancing physical data independence using �gmaps�� They
use a logical schema and then specify the underlying physical storage structures as results of �gmap�
queries on the logical schema� User queries on the logical schema are rewritten using one or more
gmap queries that each correspond an to access to a physical structures� The gmap and user queries
are SPJ expressions� Query translation is similar to using only existing views �gmaps� to compute
new views �user queries��

� The System Model

�
� Notation

We consider simple SQL SELECT�FROM�WHERE views� in addition to views de�nable using UNION�
di�erence �EXCEPT� and aggregation �GROUPBY�� We use a syntactic shorthand to avoid having to
write down all the equality conditions in a natural join�

SELECT A�� � � � � An

FROM R� " � � � " Rm

WHERE C� AND � � � AND Ck�

When the relations in the FROM clause are separated by ampersands rather than commas� we mean
that the relations R�� � � � � Rn are combined by a natural join over all attributes that are mentioned
in more than one relation� If we want an equijoin that is not a natural join� we shall specify the
equijoin condition in the FROM clause rather than in the WHERE clause� inside square brackets� Join
conditions that are not equijoins or natural joins will be speci�ed in the WHERE clause� The conditions
C�� � � � � Ck are basic� i�e�� non�conjunctive conditions�

When we perform schema changes� we use a shorthand of the form

UPDATE v IN V SET Ai # � � �
UPDATE v IN V DROP Ai

The second of these can be expressed alternatively as an SQL� �ALTER TABLE� statement� The �rst of
these can be expressed as a combination of an SQL� ALTER TABLE statement and UPDATE statement�

Relations will be of two types � base relations and view relations� Base relations are physically stored
by the system� and are updated directly� The view relations are de�ned as views �i�e� queries� over
base relations and other view relations� A materialized view relation has its extension physically
stored by the system� Materialized views are not updated directly� updates on the base relations and
other view relations are translated by a view maintenance algorithm into updates to the materialized
view�

Adaptation and Recomputation When view V is rede�ned� let the new de�nition be called
V �� When the extent of V � is obtained utilizing the previously materialized extent of view V � the
process will be called adapting view V � When the extent of V � is obtained by evaluating the view
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de�nition� without utilizing the previously materialized extent of view V � the process will be called
recomputing view V � We can look upon a recomputation as a special case of adaptation where the
previously materialized extent of view V is not used pro�tably�

�
� View Adaptation Issues

We make the minimalistic assumption that the rede�nition is expressed as a sequence of primitive
local changes� Each local change is a small change to the view de�nition� For example� dropping
or changing a selection predicate� adding an attribute to the result� changing the grouping list� and
adding a join relation are all examples of local changes� We shall consider sequences of local changes
�without necessarily materializing intermediate results� in Section 	�

Given a rede�nable view� the system and�or the database administrator has to �rst determine �a�
whether the view should be augmented with some extra information to help with later adaptation�
�b� how the materialized view should be stored �maybe keep some free space for each tuple to grow��
and �c� whether the materialized view should be indexed�

A view can be augmented only by adding more attributes and�or more tuples� Thus� the original
view has to be a selection and�or projection of the augmented view� The additional attributes may
be useful to adapt the view in response to changing selections� projections� grouping� and unions�

Next� as the user rede�nes a view� the rede�nition is translated into the sequence of primitive
changes� and the system must analyze the augmented view and the rede�nition changes to deter�
mine ��� whether the augmented view can be adapted� and ��� the various algorithms for adapting
the augmented view� The adaptation algorithms can also be expressed in SQL� For example� the
rede�ned view can be materialized as an SQL query over the old view and the base relations� Alter�
natively� the rede�ned view can be de�ned by one or more SQL inserts� deletes and updates into the
old materialization of the view� or even by simply recomputing the view from base relations�� The
system can use an optimizer to choose the most cost�e�ective alternative for adapting the view�

�
� Primitive changes

We support the following changes as primitive local changes to a view de�nition�

Addition or deletion of an attribute in the SELECT clause�

Addition� deletion� or modi�cation of a predicate in the WHERE clause�

Addition or deletion of a join operand �in the FROM clause�� with associated equijoin predicates
and attributes in the SELECT clause�

Addition or deletion of an attribute from the groupby list�

Addition or deletion of an aggregation function to a groupby view�

Addition or deletion of an operand to the UNION and EXCEPT operators�

Addition or deletion of the DISTINCT operator�
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We will discuss each of these primitive changes� and outline an algorithm to adapt the view upon
rede�nition with the primitive change� As we consider each primitive change� we will build a table
of alternative techniques to do the adaptation�

�
� In�place Adaptation

When view V is rede�ned to yield V �� the new view must be materialized� the old materialization
for V must be deleted� and the new materialization must be labeled V � The maintenance process
can try to use the old materialization of V as much as possible to avoid copying tuples� Thus� the
adaptation method should try to change the materialization of V in place� In place adaptation is
done using SQL INSERT� DELETE� and UPDATE commands� We use the following extended syntax for
updates�

UPDATE v IN V
SET A # �SELECT B

FROM R� " � � � " Rm

WHERE C� AND � � � AND Ck��

The conditions in the WHERE clause of the subquery can refer to the tuple variable v being updated�
The subquery is required to return only one value� It is possible that attribute A does not appear
in the old de�nition of view V � and may be added to V by the rede�nition� In that case� an in
place update may not be possible due to physical space restrictions� On the other hand� systems
may choose to keep some free space in each tuple to accommodate frequent adaptation� or use space
created by deleted attributes�

� SELECT�FROM�WHERE Views

In this section we consider views de�ned by a basic SELECT�FROM�WHERE query and rede�nitions that
may change the SELECT� the FROM� and�or the WHERE clauses� For each type of possible rede�nition�
we show� �a� How to maintain the rede�nition� and �b� What extra information may be kept to
facilitate maintenance�

A generic materialized view V may be de�ned as

CREATE VIEW V AS

SELECT A�� � � � � An

FROM R� " � � � " Rm

WHERE C� AND � � � AND Ck

As discussed in Section ���� an equijoin is written in the FROM clause of a query� Thus� changes to
the equijoin predicates are considered in the subsection on the FROM clause� while changes to other
predicates are considered in the subsection on the WHERE clause�
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�
� Changing the SELECT Clause

Reducing the set of attributes that de�ne a view V is straightforward� In one pass of the old view
we can project out the unneeded attributes to get the new view� Alternatively� one could simply
keep the old view V � and make sure that accesses to the new view V � are obtained by pipelining a
projection at the end of an access to V �

Adding attributes to a view is more di�cult� One solution� is to keep more attributes than those
needed for V in an augmented relation W � and to perform the projection only when references to
V occur� In that case� we can add attributes to the view easily if they are attributes of W �

The solution mentioned above may be appropriate for a small number of attributes� However� when
there are several base relations and many attributes� keeping a copy of all of the attributes may not
be feasible� In such cases� we shall prefer where possible to keep foreign keys into the base relations�

EXAMPLE ��� Suppose our database consists of three relations E� W � and P as in Example ����
De�ne a view V as

CREATE VIEW V AS

SELECT Name�Projname
FROM E " W " P
WHERE Location#New�York

Keeping all of the attributes in an augmented relation would require maintaining eleven additional
attributes� Alternatively� we could just keep Emp
 and Proj
 in addition to Name and Projname
in an augmented relation� say G�

Suppose we wished to add the Address attribute to the view� We could do this addition incrementally
by scanning once through relation G� and doing an indexed lookup on the E relation based on Emp
�
This can be expressed as�

UPDATE g IN G
SET Address # �SELECT Address

FROM E
WHERE E�Emp
 # g�Emp
��

The update could be done in place� or it could be done by copying the result into a new version of
G� A query optimizer could also rewrite the update statement into a join between E and G and
modify the tuples of G as they participate in the join� In either case� the cost of updating G is
easily estimated using standard cost�based optimization techniques� and is likely to be far less than
recomputing the entire three�way join�

Often the original view itself keeps the key columns for one of the base relations� Thus� if view V
includes the key for a base relation R� or the key of R is equated to a constant in the view de�nition�
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and a rede�nition requires additional columns of R� then the view can be adapted by using the
keys present in the old materialization of the view to pick the appropriate tuples from relation
R� Sometimes� adaptation can be done even in the absence of a key for R in the view� A sound
and complete test for adaptation can be constructed using conjunctive query containment �Ull���
GSUW���� and is discussed in the full version of this chapter�

Changing the DISTINCT Quali�er� Suppose that a user adds a DISTINCT quali�er to the de�ni�
tion of a view that did not previously have one� Thus we have to delete duplicate entries from the
old view to obtain the new view� This adaptation is fairly simply expressed as a SELECT DISTINCT

over the old view to obtain the new view� Deleting a DISTINCT quali�er is more di�cult� since it
is not clear how many duplicates of each tuple should be in the new view� Techniques to do so are
discussed in the full version of this chapter �GMR�
b��

An alternative is to augment the view so as to always keep a count of the number of derivations for
each tuple in the view� In this case� changes to the DISTINCT Quali�er can be handled easily by
either presenting the count to the user� or by hiding the count�

�
� Changes in the WHERE Clause

In this section we discuss changes to a condition in the WHERE clause� We do not distinguish between
conditions on a single relation and conditions on multiple relations �i�e�� �join conditions�� in the
WHERE clause�

Let C�� be a new condition� �Without loss of generality� we assume we are changing C� to C
�
� in our

generic view�� We want to e�ciently materialize V �� which could be de�ned as

CREATE VIEW V � AS
SELECT A�� � � � � An

FROM R� " � � � " Rm

WHERE C�� AND � � � AND Ck

by taking advantage of the fact that V has already been materialized�

Algebraically� V � # V � V � � V � where

SELECT A�� � � � � An

V � # FROM R� " � � � " Rm

WHERE C�� AND NOT C� AND � � � AND Ck

SELECT A�� � � � � An

V � # FROM R� " � � � " Rm

WHERE NOT C�� AND C� AND � � � AND Ck

If the attributes mentioned by C�� are a subset of fA�� � � � � Ang� then



	�� Chapter 


V � # SELECT A�� � � � � An FROM V WHERE NOT C��

or
V � V � # SELECT A�� � � � � An FROM V WHERE C��

V can thus be adapted as follows�

DELETE FROM V WHERE NOT C��

INSERT INTO V
�SELECT A�� � � � � An

FROM R� " � � � " Rm

WHERE C�� AND NOT C� AND � � � AND Ck�

Alternatively� if the attributes of C�� are not available in the view� the view adaptation algorithm
for the SELECT clause could have materialized some extra attributes in an augmented relation W�
or obtained these attributes using joins with the relation containing the attribute� as discussed in
Section ���� In this case� even if C�� mentioned an attribute not in fA�� � � � � Ang� we could write V �

as above as long as all the attributes mentioned by C�� were obtainable using the techniques of the
previous section�

Thus we can see that the cost of adapting V in either of the cases above is �at most� one selection on
V �or on the augmentation G� to adapt V into V �V �� plus the cost of computing V � for insertion
into V � As we shall see� in many examples the cost of computing V � will be small compared with
the cost of recomputing V �

EXAMPLE ��� Let E and W be as de�ned in Example ���� Consider a view V de�ned by

CREATE VIEW V AS

SELECT $ FROM E " W WHERE Salary � 
����

Suppose that we wish to adapt V to

SELECT $ FROM E " W WHERE Salary � 	����

Let us refer to the new expression as V �� Using the terminology above� we see that C� is �Salary �

����� and C�� is �Salary � 	������ Hence V � and V � can be de�ned as

V � # SELECT $ FROM V WHERESalary � 	���� AND Salary � 
����

V � # SELECT $ FROM E " W WHERESalary � 	���� AND Salary � 
����

V � is empty� since its conditions in the WHERE clause are inconsistent with each other� Hence� the
cost of recomputing the view is �at most� one pass over V � Now suppose that V � is de�ned by
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SELECT $ FROM E " W WHERE Salary � ������

Then V � is empty� and V � is given by

SELECT $ FROM E " W WHERE Salary � ����� AND Salary � 
�����

If there is an index on salary in E� then �with a reasonable distribution of salary values� V � V �

might be computed much more e�ciently than recomputing V � from scratch� The query optimizer
would have enough information to decide which is the better strategy�

Most queries that involve multiple relations use either equijoins or use single table selection condi�
tions� For example� in one of our application environments� making e�cient visual tools for browsing
data� users are known to re�ne queries by changing the selection conditions on a relation interac�
tively� Thus� it is likely that both the old condition C� and the new condition C�� are single table
selection conditions on the same attributes� Thus� the condition NOT C� AND C

�
� can be pushed down

to a single base relation� making the computation of V � more e�cient�

Adding or Deleting a Condition

We can express the addition of a condition C� in the WHERE clause as a change of condition by adding
some tautologically true selection to the old view de�nition V � then changing it to C�� The analysis
above then means that V � is empty� and the new view can be computed as V � V �� i�e�� as a �lter
on the extension of V �

Similarly� the deletion of a condition is equivalent to replacing that condition by a tautologically
true condition� In this case� V � is empty� and the optimizer needs to compare the cost of computing
V � with the cost of computing the view from scratch�

�
� Changing the FROM Clause

If we change an equijoin condition� then it is not clear that V � is e�ciently evaluable� This cor�
responds to our intuition� which states that if an equijoin condition changes then there will be a
dramatic change in the result of the join� and so the old view de�nition will not be much help in
computing the new join result� We note that it is unlikely that the users will change the equijoin
predicates �G� Lohman� personal communication��

Nevertheless� there are situations where we can make use of the old view to e�ciently compute a
new view in which we have either added or deleted relations from the FROM clause�

Adding a join relation Suppose that we add a new relation Rm�� to the FROM clause� with
an equijoin condition equating some attribute A of Rm�� to another attribute B in Ri for some
� � i � m� Suppose also that we want to add some attributes D�� � � � � Dj from Rm�� to the view�

If B is part of the view� then the new view can be computed as
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SELECT A�� � � � � An� D�� � � � � Dj FROM V�Rm�� WHERE A # B�

If the joining attribute A is a key for relation Rm��� or we can otherwise guarantee that A values are
all distinct� then we can express the adaptation as an update �we generalize SQL syntax to assign
values to a list of attributes from the result of a subquery that returns exactly one tuple��

UPDATE v IN V
SET D�� � � � � Dj # �SELECT D�� � � � � Dj

FROM Rm��

WHERE Rm���A # v�B��

If B is not part of the view� then it still may be possible to obtain B by joining V with Ri �assuming
that V contains a key K for Ri� and hence compute the new view either as

UPDATE v IN V
SET D�� � � � � Dj # �SELECT D�� � � � � Dj

FROM Rm��� Ri

WHERE Rm���A # Ri�B AND v�K # Ri�K��

if A is a key in Rm��� or as

SELECT A�� � � � � An� D�� � � � � Dj FROM V�Ri� Rm�� WHERE A # B AND V�K # Ri�K�

if A is not guaranteed to be distinct in Rm���

EXAMPLE ��� For example� suppose we have a materialized view of customers with their cus�
tomer data� including their zip�codes� If we want to also know their cities� we can take the old
materialized view and join it with our zip�code�city relation to get the city information as an extra
attribute�

Deleting a join relation When deleting a join operand� one has to make sure that the number
of duplicates is maintained correctly� and also allow for dangling tuples� For R � S � T � when the
join with T is dropped� the system ��� needs to go back and �nd R � S tuples that did not join with
T � and ��� �gure out the exact multiplicity of tuples in the new view� The former can be avoided if
the join with T is lossless� a condition that might be observed by the database system if the join is
on a key of T and if the system enforces referential integrity� The latter can be avoided if the view
does not care about duplicates �SELECT DISTINCT�� or if T is being joined on its key attributes� and
the key of T is in the old view�

�
� Summary	 SELECT�FROM�WHERE Views

Tables � and � summarizes our adaptation techniques for SELECT�FROM�WHERE queries� We assume
that the initial view de�nition is as stated at the beginning of Section �� For each possible redef�
inition� we give the possible adaptations along with the assumptions needed for the adaptation to
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�� Attribute A is from relation S and the key K for S is in view V �

�� An augmented view that keeps a count of number of derivations of each tuple is used�

�� Attribute of condition is either an attribute of the view	 or of a wider augmented stored view�

�� D�� � � � � Dj and A are attributes of Rm��	 and the join condition is A � B�

�� B is an attribute of V �

�� A is a key for relation Rm���

�� B is an attribute of Ri	 K is a key of Ri	 and K is an attribute of V �

�� Join with Rm is known to be lossless�

�� Either V contains a SELECT DISTINCT	 or the join of Rm is on a key attribute that is also present in V �

Table � Assumptions for the Adaptation Techniques in Table �

work� The assumptions are listed separately in Table �� In the full version of this chapter �GMR�
b�
we also discuss adaptation of SELECT�FROM�WHERE queries that originally use the DISTINCT quali�er�

Tables � and � can be used in three ways� Firstly� the query optimizer would use this table to �nd the
adaptation technique �and compute its cost estimate� given the properties of the current schema vis�
a�vis the assumptions stated in the table� Secondly� a database administrator or user would use this
table to see what assumptions need to hold in order to make incremental view adaptation possible
at the most e�cient level� Given this information� the views can be de�ned with enough extra
information so that view changes can be computed most e�ciently� Note that di�erent collections of
assumptions make di�erent types of incremental computation possible� so that di�erent �menus� of
extra information stored should be considered� Thirdly� the database administrator could interact
with the query optimizer to see which access methods and indexes should be built� on the base
relations and on the materialized views� in order to facilitate e�cient adaptation�

Recommendations for Augmentation� Keep the keys of referenced relations from which at�
tributes may be added� Store the view with padding in each tuple for future in�place expansion�
Keep attributes referenced by the selection conditions in the view de�nition� or at least keep the keys
of referenced relations from which these attributes may be added� Keep the count of the number of
derivations for each tuple�

� Aggregation Views

In this section� we show how to adapt views when grouping columns and the aggregate functions
used in a materialized SQL aggregation view change�

EXAMPLE ��� Consider again the relations of Example ���� We could express the total salaries
charged to a project with the following materialized view� We assume that an employee is nominally
employed for �� hours per week� and that if an employee works more or less� a proportional salary
is paid� Thus the charge to a project for an employee is obtained by multiplying the salary by the
fraction of the �� hour week the employee works on the project�



	�� Chapter 


Rede�ned View Adaptation Technique Assump

�tions

SELECT A�A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck

UPDATE v IN V

SET A � �SELECT A
FROM S

WHERE S�K � v�K�

���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck

UPDATE v IN V

DROP A�

SELECT DISTINCT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND � � � AND Ck

INSERT INTONew V
SELECT DISTINCT�
FROM V

SELECT DISTINCTA�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND� � � AND Ck

Mark view as being distinct� ���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C�� AND� � � AND Ck

DELETE

FROM V

WHERE NOT C��

C�� � C�
���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C�� AND� � � AND Ck

DELETE

FROM V

WHERE NOT C��

INSERT INTO V

SELECT A� � � � � � An
FROM R� � � � � � Rm
WHERE C�� AND NOT C� AND� � � AND Ck

C�� �� C�
���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND C� AND� � � AND Ck

DELETE

FROM V

WHERE NOT C�

���

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE C� AND� � � AND Ck

INSERT INTO V

SELECT A�� � � � � An
FROM R� � � � � � Rm
WHERE NOT C� AND C� AND� � � AND Ck

���

SELECT A�� � � � � An�D� � � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND� � � AND Ck

UPDATE v IN V

SET D�� � � � � Dj �
�SELECT D�� � � � �Dj

FROM Rm��

WHERE Rm���A � v�B��

��	�	��

SELECT A�� � � � � An�D� � � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND� � � AND Ck

INSERT INTO New V
SELECT A�� � � � � An�D� � � � � � Dj

FROM V�Rm��

WHERE A � B

��	��

Table � Adaptation Techniques for SELECT�FROM�WHERE Views �contd� in Table ��

CREATE VIEW V �Proj
� Location� Proj Sal� AS
SELECT Proj
� Location� SUM��Sal �Hours�����
FROM E " W " P
GROUPBY Proj
� Location

Suppose we want to modify V so that it gives a location�by�location sum of charged salaries� This
modi�cation corresponds to removing the Proj
 attribute from the list of grouping variables and
output variables� to give the following view de�nition�
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Rede�ned View Adaptation Technique Assump

�tions

SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND� � � AND Ck

UPDATE v IN V

SET D�� � � � � Dj �
�SELECT D�� � � � �Dj

FROM Rm��	 Ri
WHERE Rm���A � Ri�B AND

v�K � Ri�K��

��	�	��

SELECT A�� � � � � An�D�� � � � � Dj

FROM R� � � � � � Rm � Rm��

WHERE C� AND� � � AND Ck

INSERT INTO New V
SELECT A�� � � � � An�D�� � � � � Dj

FROM V�Ri� Rm��

WHERE A � B AND V�K � Ri�K

��	��

SELECT A�� � � � � An
FROM R� � � � � � Rm��
WHERE C� AND� � � AND Ck

No adaptation needed� ��	��

SELECT A�� � � � � Aj
FROM R� � � � � � Rm��
WHERE C� AND� � � AND Ck

UPDATE v IN V

DROP Aj��� � � � � An

j � n	
��	��

Table � Adaptation Techniques for SELECT�FROM�WHERE Views �contd� from Table ��

CREATE VIEW V ��Location� Proj Sal� AS
SELECT Location� SUM��Salary � Hours�����
FROM E " W " P
GROUPBY Location

Using the commutativity properties of SUM� the query optimizer can observe that V � can be mate�
rialized as

SELECT Location� SUM�Proj�Sal�
FROM V
GROUPBY Location

In this way we can use the original view to rede�ne the materialized view more e�ciently�

Next� suppose we want to modify V to compute the sum of charged salaries for each Proj
� We
can adapt V simply by dropping the Location attribute because Proj
 is the key for relation P and
functionally determines Location� The rede�ned groups are the same as before�

�
� Dropping GROUPBY Columns

Given an aggregation view� the set of tuples in the grouped relation that have the same values for
all the grouping attributes is called a group� Thus� for the original view in Example ���� there is one
group of tuples for each pair of �Proj
�Location� values� For the rede�ned view� there is one group
of tuples for each �Location� value�
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When a grouping attribute is dropped� each rede�ned group can be obtained by combining one
or more original groups� so we can try to get the aggregation function over the rede�ned groups
by combining the aggregation values from the combined groups� For instance� in Example ����
after dropping the Proj
 attribute� the sum for the group for a particular �Location� value was
obtained from the sum Proj�Sal of all the groups with this Location� When we dropped the Location
attribute� we inferred that each rede�ned group was obtained from a single original group� So no
new aggregation was needed

A materialized view can be adapted when grouping columns are dropped if�

The dropped column is functionally determined by the remaining grouping columns� or

The aggregate functions in the rede�ned view are expressible as a computation over one or more
of the original aggregation functions and grouping attributes� Table � lists a few aggregation
functions that can be computed in such a manner�

Rede�ned Adaptation using Original View
Aggregation

MIN�X� MIN�M� where M 	 MIN�X� was an original aggregation
column�

MAX�X� MAX�M� where M 	 MAX�X� was an original aggregation
column�

MIN�X� MIN�X�� where X was an original grouping column�
MAX�X� MAX�X�� where X was an original grouping column�
SUM�X� SUM�S� where S 	 SUM�X� was an original aggregation

column�
SUM�X� SUM�X� C�� where C 	 COUNT��� was an original aggrega�

tion column� and X was an original grouping column�
COUNT��� SUM�C� where C 	 COUNT��� was an original aggregation

column�
AVG�X� SUM�A�C��SUM�C� where C 	 COUNT��� and A 	 AVG�X�

were original aggregation columns�
AVG�X� SUM�X � C��SUM�C� where C 	 COUNT��� was an original

aggregation columns� and X was an original grouping column�

Table � Aggregate functions for a group de�ned as functions of subgroup aggregates�

Table � is meant to be illustrative� and not exhaustive� Several other aggregation functions may be
decomposed in this manner�

�
� Adding GROUPBY Columns

In general� when adding a groupby column� we would need to go back to the base relations since we
are looking to aggregate data at a �ner level of granularity� However� in case the added attribute
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is functionally determined by the original grouping attributes� we can add it just like we add a new
projection column �Section �����

Another situation where we can add GROUPBY columns is when there was no grouping or aggregation
before� In that case� the new view is formed simply by applying the grouping and aggregation over
the old view� assuming that the attributes needed for the grouping and aggregation are present in
the old view� Even if the needed attributes are not present� they can be added in many cases� as
discussed previously�

�
� Dropping�Adding Aggregation Functions

Adapting a view to drop an aggregation function is straightforward� similar to the case where a
column is projected out �Section ����� However� it is not possible to adapt to most additions of
aggregation functions� unless the new function can be expressed in terms of existing functions� or
unless the aggregation view is signi�cantly augmented� One type of augmentation requires storing
the key values of all tuples in a group in the view� This augmentation is� discussed in the full version
of this chapter�

�
� Summary	 GROUPBY Views

In this section we have seen several techniques for adapting views with aggregation� A more complete
list is available in the full version of this chapter �GMR�
b��

Recommendations for Augmentation� Table � illustrates that rede�nition can be helped
tremendously if the views are augmented with a COUNT��� aggregation function�

� Union and Di�erence Views

�
� UNION

A view V may be de�ned as the union of subqueries� say V� and V�� If the de�nition of V changes
by a local change in either V� or V� but not both� then it would be advantageous to apply the
techniques developed in the previous sections to incrementally update either the materialization of
V� or V� while leaving the other unchanged�

In order to do this� we need to know which tuples in V came from V� and which from V�� With
this knowledge� we can simply keep the tuples from the unchanged part of the view� and update
the changed part of the view� Thus it would be bene�cial to store with each tuple an indication of
whether it came from V� or V�� Alternatively� one could store V� and V� separately� and form the
union only when the whole view V is accessed�
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EXAMPLE 	�� Consider the schema from Example ���� Suppose we want the names of employees
who either work on a project located in New York� or who manage a project located in New York�
We can write this view V as V� UNION V� where V� and V� are as follows�

V� # SELECT Name�SubQ#�V��
FROM E " W " P
WHERE Location#New�York

V� # SELECT Name�SubQ#�V��
FROM E� P �E�Emp
 # P�Leader
�
WHERE Location#New�York

�We would probably choose not to display the SubQ �eld to the user� but to keep it as an attribute of
a larger augmented relation�� If we wanted to change V� so that we get only employees working more
than �� hours per week� then we could do so using techniques developed in the previous sections for
tuples in V with SubQ#�V��� and leave the other tuples unchanged�

It is easy to delete a UNION operand if we keep track of which tuples came from which subqueries�
We simply remove from V all tuples with the SubQ attribute matching that of the subquery being
deleted�

Adding a union operand is also straightforward� The old union is unchanged� and the new operand
is evaluated to generate the new tuples�

�
� EXCEPT

EXAMPLE 	�� Consider again the schema from Example ���� Suppose we want the names of
employees who work on a project located in New York� but who are not managers� We can write
this view as V� EXCEPT V� where V� and V� are de�ned as follows�

CREATE VIEW V� AS

SELECT Name
FROM E " W " P
WHERE Location#New�York

CREATE VIEW V� AS

SELECT Name
FROM E� P �E�Emp
 # P�Leader
�
WHERE Location#New�York

Unlike the case for unions� the extension of V could conceivably be much smaller than the extensions
of either V� or V�� Thus� we cannot argue that in general we should keep all of the V� and V� tuples
with an identi�cation of whether they came from V� or V��

However� in two cases we can still use information in the old view to compute the new view more
e�ciently�
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�� If V� is replaced by a view V �� that is strictly weaker �i�e�� contains more tuples� than V�� then
we can observe that V �� is empty� and V

� # V EXCEPT V �
� �

�� If V� is replaced by a view V �� that is strictly stronger �i�e�� contains fewer tuples� than V�� then
we can observe that V �

� is empty� and V
� # V EXCEPT V �� �

If we want to subtract a new subquery V� from an existing materialized view V � then we can do so
e�ciently using the �rst observation above� In that case� the new view V � is V EXCEPT V� and we
can make use of the old extension of V �

In the general case� there is another possibility that the optimizer can consider for computing V ��
Suppose that V� changes with both V

�
� and V

�
� nonempty� The new answer is V EXCEPT V �

� UNION

U where U is V� � V �� � While we probably have not materialized V�� we can still evaluate U by
considering each tuple in V �� and checking that it satis�es the conditions de�ning V�� If V

�
� and

V �� are small� then this strategy will still be better than recomputing V
� from scratch� A symmetric

case holds if V� changes rather than V�� In order for this strategy to be e�ective� the query optimizer
needs to estimate the sizes of V �

� and V
�
� � For simple views V� this may be achieved using selectivity

information and information about the domains of the attributes� For complicated queries� it may
be hard to estimate these sizes�

�
� Summary	 Views with Union and Di�erence

In this section we have seen several techniques for adapting views with union and di�erence� A more
complete list is available in the full version of this chapter �GMR�
b��

Recommendations for Augmentation� Keep an attribute identifying which subquery in a
union each tuple came from�

� Multiple Changes to a View De�nition

So far we have considered single local changes to a view de�nition� However� a user might make
several simultaneous local changes to a view de�nition� The new view may easily be obtained by
concatenating the adaptations from each local change� but this approach would materialize all of
the intermediate results� which may not be necessary�

For example� if more than one condition in the WHERE clause is simultaneously changed� then the
analysis of Section ��� still applies by thinking of C� and C

�
� as conjunctions of conditions� Similarly�

multiple attributes may be added or deleted from a view simultaneously using the techniques of
Section ��� without materializing intermediate results� Several relations may be added to the FROM
clause using the techniques of Section ��� without materializing the intermediate results�

If the new view is obtained by making changes of di�erent types� then we can avoid materializing
intermediate results by pipelining the results of applying one change into the computation of the
next change� Pipelining is possible if each of the basic adaptation techniques can be applied in a
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single pass over the materialized view� It turns out that� with one exception� all techniques described
in this chapter can be done in a single pass� The exception is the use of a previously materialized
view V within an aggregation that is grouped on an attribute that is not the �physical� ordering
attribute of V � Thus� for changes other than this one exception� it is possible in principle to cascade
multiple local changes without materializing intermediate results� Note� if updates are done in�place�
then there is little choice but to perform the individual adaptations sequentially�

Thus the optimizer can choose the best of the following three choices for adaptation� �a� applying
successive in�place updates� �b� cascading the adaptations as above� or �c� recomputing the view
from base relations�

� Conclusions

When the de�nition of a materialized view changes we need to bring the materialization up�to�date�
In this chapter we focus on adapting a materialized view� i�e�� using the old materialization to help
in the materialization of the new view� The alternative to adaptation is to recompute the view from
scratch� making no use of the old materialization� Often� it is more e�cient to adapt a view rather
than recompute it� sometimes by an order of magnitude� a number of examples have been described
in this chapter�

A number of applications� like data�archaeology and visualization� require interactive� and thus
quick� response to changes in the de�nition of a materialized view�

We have provided a comprehensive list of view adaptation techniques that can be applied for basic
view de�nition changes� Each of these adaptation techniques is itself expressed as an SQL query
or update that makes use of the old materialization� Because the adaptation is itself expressed in
SQL� it is possible for the query optimizer to estimate the cost of these techniques using standard
cost�based optimization� In some cases there may be several adaptation alternatives� and each of
the alternatives would be considered in turn�

Our basic adaptation techniques correspond to local changes in the view de�nition� We also describe
how multiple local changes can be combined to give an adaptation technique for changes to several
parts of a view de�nition� All� but one� techniques for adapting a view in response to a local change
can be pipelined thereby eliminating the need to store intermediate adapted views when multiple
local changes are combined�

Often it is easier to adapt a view if certain additional information is kept in the view� Such additional
information includes keys of base relations� attributes involved in selection conditions� counts of the
number of derivations of each tuple� additional aggregate functions beyond those requested� and
identi�ers indicating which subquery in a union each tuple came from� Depending on the type
of anticipated change� the view can be de�ned to contain the appropriate additional information�
Additionally� it can be bene�cial to reserve some physical space in each record to allow in�place
adaptation involving addition of attributes�
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We have derived tables of adaptation techniques �see �GMR�
b� for a complete list� that can be
used in three important ways� Firstly� the query optimizer can use the tables to �nd the adaptation
technique �and compute its cost estimate� given the properties of the current schema vis�a�vis the
assumptions stated in the table� Secondly� a database administrator or user can use the tables to see
what assumptions would need to be satis�ed in order to make view adaptation possible at the most
e�cient level� and de�ne the view accordingly� Thirdly� the database administrator can interact
with the query optimizer to build appropriate access methods and indexes on the base relations and
on the materialized views� in order to facilitate e�cient adaptation�

The main contributions of this chapter are �a� the derivation of a comprehensive set of view adap�
tation techniques� �b� the smooth integration of such techniques into the framework of current
relational database systems using existing optimization technology� and �c� the identi�cation of
guidelines that can be provided to users and database administrators in order to facilitate view
adaptation�
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Maintenance of Materialized Views

This part of the book contains twelve chapters on maintaining materialized views�

The problem of e�ciently maintaining materialized views is the most extensively studied problem in
this �eld� The problem is appealing because the heuristic of intertia � i�e� it is cheaper to compute the
changes to a view in response to changes to the underlying database than to recompute the view from
scratch � makes �incremental� computation of the materialized view attractive� Chapters �� and ��
de�ne the metrics for measuring the generality and e�ciency of incremental maintenance algorithms
thereby outlining the framework for studying di�erent view maintenance algorithms proposed in
the literature� Nearly all the other chapters in this section consider incremental view maintenance
algorithm� Chapters ��� ��� �
� and � study di�erent incremental maintenance algorithms for
relational views� Chapters �� and �� consider view maintenance in semi�relational scanarios� The
last two chapters� �� and �� study how to identify �irrelevant� updates� i�e� updates that do not
a�ect the view and therefore do not require any recomputation of the view�

Chapter �� presents a taxonomy of the view maintenance problems based upon the language used
to express a view� the resources used to maintain the view� the type of modi�cation to the base
data� and whether the algorithm applies to all instances of the view and modi�cations� The chapter
overviews many view maintenance algorithms in terms of the above framework� Chapter �� extends
this framework by specifying additional parameters of the view maintenance problem� ��� The
language in which the view maintenance algorithms are expressed� Usually it is advantageous if the
maintenance algorithms are expressible in a sub�language of the view de�nition language� ��� The
cost of the maintenance process compared to the cost of reevaluating the view � expressed in terms
of inherent complexity of the algorithms � given that e�ciency is the main reason for incremental
maintenance in the �rst place� ��� The auxilliary information needed for incremental maintenance
and the space it occupies� The chapter surveys view maintenance algorithms for recursive views in
this extended framework�

Chapter �� contains one of the earliest studies of view maintenance that led to a lot of further work�
The chapter gives necessary and su�cient conditions to detect irrelevant insertions and deletions
and for those updates that do a�ect the view� it gives a di�erential algorithm to re�evaluate SPJ
views using �full information� i�e� the view� base tables� and modi�cations�

Chapter �� considers views that may use Union� negation� Aggregation �e�g� Sum� Min�� linear
recursion and general recursion� The chapter presents two algorithms � the counting algorithm that
is like the algorithm of chapter �� extended to handle a larger class of queries� and an algorithm to
handle recursive views� Both algorithms handle insertions and deletions using full information�

Chapter �
 indroduces an algebraic approach to view maintenance instead of the algorithmic ap�
proaches used in most other solutions� The algebraic approach has a number of advantages� it is
robust and easily extendible to new language constructs� it produces output that can be used by
query optimizers� and it simpli�es correctness proofs� The authors extend relational algebra oper�
ations to bags �multisets� and present an algorithm for e�cient maintenance of materialized views
that may contain duplicates� thereby handling aggregate views� The chapter also validates the
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heuristic of intertia by proveing that under normal circumstances the change propagation process is
signi�cantly faster and more space e�cient than completely recomputing the view�

Chapter �� considers the issue of incremental maintenance of materialized views in a warehousing
environment where the view is decoupled from the base data resulting in anomalies if traditional
maintenance algorithms are applied� The anomalies result mainly because traditional incremental
view maintenance algorithms assume some form of transactional behaviour between the view and
the data sources � that is not present in a warehousing scenario where the warehouse and sources are
completely independent� The chapter describes how to avoid the anomalies by using compensating
queries� The algorithms in e�ect implement �concurrency control� mechanisms that guarantee
correct maintenance of views in multidatabase systems� The results are useful in any materialized
view scenario that involves distributed data sources and destinations � like network management
applications� chronicle systems� advanced message systems� and replication systems�

Chapter �	 considers a similar problem wherein view maintenance is deferred to a transaction dif�
ferent from the change transaction� The chapter addresses ��� how to maintain views after the base
tables have already been modi�ed� and ��� how to minimize the time for which the view is inacces�
sible during maintenance� The chapter also studies the performance and cost e�ect of maintaining
auxiallary information recorded between view refreshes that is needed for deferred maintenance
algorithm�

Chapter � also considers the maintenance of recursive queries � in particular it gives an algorithm
for incrementally maintaining arbitrary datalog queries� However� the chapters primary focus is to
derive non�recursive incremental maintenance expressions for a class of recursive views that can be
expressed as regular chain queries �for example� transitive closure of a graph�� The algorithm is
motivated by the need to have maintenance algorithms in a sub�language of the language used to
express a view�

Chapter �� intoduces a new data model� the chronicle model� Chronicles are implementable on a
RDBMS but make more e�cient the computation and maintenance of views� especially aggregations�
in transactional data recording systems � database systems used to record streams of transactional
information� Examples of such transactional information are credit card transactions� telephone
calls� stock trades� sensor outputs in a control system� etc� These systems maintain aggregated
data like account balances� total charges to a credit card� The chronicle model allows aggregate
computation and maintenance to be moved from the application code to the DBMS thereby making
the process simpler and more e�cient�

Chapter �� considers the problem of data integration from multiple heterogeneous sources � like
databases� knowledge bases or data in software packages accessible only through speci�c function
calls� The authors have built a data integration framework using a rule based language that allows
function calls� The model extends relational views not only in the language used to de�ne the view
but also by supporting non�ground constrained atoms �like �X � 
��� The chapter gives maintenance
algorithms for such integrated and �mediated� views� Further� it also considers the �view update�
problem wherein the view is updated and the changes are propagated to the underlying data sources�
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Chapter �� and �� consider how to detect irrelevant updates that do not a�ect the view� Chapter ��
gives necessary and su�cient conditions for detecting when insertions� deletions� and modi�cations
are irrelevant with respect to a SPJ view� Chapter �� considers more expressive views � namely
views with strati�ed negation and order constraints� The chapter relates the problem of detecting
irrelevant updates to equivalence of datalog programs and using this abstraction generalizes the
results of chapter ��� Chapter �� also considers the self�maintainability problem of how to update
a view using only the view and the udpdate �akin to chapter 
��
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PROBLEMS� TECHNIQUES� AND

APPLICATIONS

Ashish Gupta� Inderpal Singh Mumick

� Introduction

What is a view� A view is a derived relation de�ned in terms of base �stored� relations� A view thus
de�nes a function from a set of base tables to a derived table� this function is typically recomputed
every time the view is referenced�

What is a materialized view� A view can be materialized by storing the tuples of the view in the
database� Index structures can be built on the materialized view� Consequently� database accesses
to the materialized view can be much faster than recomputing the view� A materialized view is thus
like a cache � a copy of the data that can be accessed quickly�

Why use materialized views� Like a cache� a materialized view provides fast access to data� the
speed di�erence may be critical in applications where the query rate is high and the views are
complex so that it is not possible to recompute the view for every query� Materialized views are
useful in new applications such as data warehousing� replication servers� chronicle or data recording
systems �JMS�
�� data visualization� and mobile systems� Integrity constraint checking and query
optimization can also bene�t from materialized views�

What is view maintenance� Just as a cache gets dirty when the data from which it is copied is
updated� a materialized view gets dirty whenever the underlying base relations are modi�ed� The
process of updating a materialized view in response to changes to the underlying data is called view
maintenance�

What is incremental view maintenance� In most cases it is wasteful to maintain a view by recom�
puting it from scratch� Often it is cheaper to use the heuristic of inertia �only a part of the view
changes in response to changes in the base relations� and thus compute only the changes in the
view to update its materialization� We stress that the above is only a heuristic� For example� if an
entire base relation is deleted� it may be cheaper to recompute a view that depends on the deleted
relation �if the new view will quickly evaluate to an empty relation� than to compute the changes to
the view� Algorithms that compute changes to a view in response to changes to the base relations
are called incremental view maintenance algorithms� and are the focus of this chapter�

Classi�cation of the View Maintenance Problem There are four dimensions along which the
view maintenance problem can be studied�

�
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Information Dimension� The amount of information available for view maintenance� Do you
have access to all�some the base relations while doing the maintenance� Do you have access
to the materialized view� Do you know about integrity constraints and keys� We note that
the amount of information used is orthogonal to the incrementality of view maintenance� Incre�
mentality refers to a computation that only computes that part of the view that has changed�
the information dimension looks at the data used to compute the change to the view�

Modi�cation Dimension� What modi�cations can the view maintenance algorithm handle�
Insertion and deletion of tuples to base relations� Are updates to tuples handled directly or are
they modeled as deletions followed by insertions� What about changes to the view de�nition�
Or sets of modi�cations�

Language Dimension� Is the view expressed as a select�project�join query �also known as a SPJ
views or as a conjunctive query�� or in some other subset of relational algebra� SQL or a subset
of SQL� Can it have duplicates� Can it use aggregation� Recursion� General recursions� or
only transitive closure�

Instance Dimension� Does the view maintenance algorithm work for all instances of the database�
or only for some instances of the database� Does it work for all instances of the modi�cation�
or only for some instances of the modi�cation� Instance information is thus of two types �
database instance� and modication instance�

We motivate a classi�cation of the view maintenance problem along the above dimensions through
examples� The �rst example illustrates the information and modi�cation dimensions�

EXAMPLE ��� �Information and Modi�cation Dimensions� Consider relation

part�part no� part cost� contract�

listing the cost negotiated under each contract for a part� Note that a part may have a di�erent
price under each contract� Consider also the view expensive parts de�ned as�

expensive parts�part no� # 'part no �part cost������part�

The view contains the distinct part numbers for parts that cost more than ����� under at least
one contract �the projection discards duplicates�� Consider maintaining the view when a tuple is
inserted into relation part� If the inserted tuple has part cost����� then the view is unchanged�

However� say part�p�� 
���� c�
� is inserted that does have cost������ Di�erent view maintenance
algorithms can be designed depending upon the information available for determining if p� should
be inserted into the view�

The materialized view alone is available� Use the old materialized view to determine if part no

already is present in the view� If so� there is no change to the materialization� else insert part
p� into the materialization�
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The base relation part alone is available� Use relation part to check if an existing tuple in the
relation has the same part no but greater or equal cost� If such a tuple exists then the inserted
tuple does not contribute to the view�

It is known that part no is the key� Infer that part no cannot already be in the view� so it
must be inserted�

Another view maintenance problem is to respond to deletions using only the materialized view� Let
tuple part�p�� ����� c��� be deleted� Clearly part p� must be in the materialization� but we cannot
delete p� from the view because some other tuple� like part�p�� ����� c���� may contribute p� to
the view� The existence of this tuple cannot be �dis�proved using only the view� Thus there is no
algorithm to solve the view maintenance problem for deletions using only the materialized view�
Note� if the relation part was also available� or if the key constraint was known� or if the counts of
number of view tuple derivations were available� then the view could be maintained� �

With respect to the information dimension� note that the view de�nition and the actual modi�cation
always have to be available for maintenance� With respect to the modi�cation dimension� updates
typically are not treated as an independent type of modi�cation� Instead� they are modeled as a
deletion followed by an insertion� This model loses information thereby requiring more work and
more information for maintaining a view than if updates were treated independently within a view
maintenance algorithm �BCL��� UO��� GJM�	��

The following example illustrates the other two dimensions used to characterize view maintenance�

EXAMPLE ��� �Language and Instance Dimensions� Example ��� considered a view de�ni�
tion language consisting of selection and projection operations� Now let us extend the view de�nition
language with the join operation� and de�ne the view supp parts as the equijoin between relations
supp�supp no� part no� price� and part ��part no represents an equijoin on attribute part no��

supp parts�part no� # 'part no�supp �part no part�

The view contains the distinct part numbers that are supplied by at least one supplier �the pro�
jection discards duplicates�� Consider using only the old contents of supp parts for maintenance
in response to insertion of part�p�� 
���� c�
�� If supp parts already contains part no p� then the
insertion does not a�ect the view� However� if supp parts does not contain p�� then the e�ect of
the insertion cannot be determined using only the view�

Recall that the view expensive parts was maintainable in response to insertions to part using only
the view� In contrast� the use of a join makes it impossible to maintain supp parts in response to
insertions to part when using only the view�

Note� view supp parts is maintainable if the view contains part no p� but not otherwise� Thus�
the maintainability of a view depends also on the particular instances of the database and the
modi�cation� �
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Figure � The problem space

Figure � shows the problem space de�ned by three of the four dimensions� namely the information�
modi�cation� and language dimensions� The instance dimension is not shown here so as to keep the
�gure manageable� There is no relative ordering between the points on each dimension� they are listed
in arbitrary order� Along the language dimension� chronicle algebra �JMS�
� refers to languages that
operate over ordered sequences that may not be stored in the database �see Section ����� Along the
modi�cation dimension� group updates �GJM��� refers to insertion of several tuples using information
derived from a single deleted tuple�

We study maintenance techniques for di�erent points in the shown problem space� For each point
in this ��D space we may get algorithms that apply to all database and modi�cation instances or
that may work only for some instances of each �the fourth dimension��

Chapter Outline

We study the view maintenance problem with respect to the space of Figure � using the �amount
of information� as the �rst discriminator� For each point considered on the information dimension�
we consider the languages for which view maintenance algorithms have been developed� and present
selected algorithms in some detail� Where appropriate� we mention how di�erent types of modi�ca�
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tions are handled di�erently� The algorithms we describe in some detail address the following points
in the problem space�

�Section ��� Information dimension� Use Full Information �all the underlying base relations
and the materialized view�� Instance dimension� Apply to all instances of the database and
all instances of modi�cations� Modi�cation dimension� Apply to all types of modi�cations�
Language dimension� Consider the following languages  

� SQL views with duplicates� UNION� negation� and aggregation �e�g� SUM� MIN��

� Outer�join views�

� Recursive Datalog or SQL views with UNION� strati�ed aggregation and negation� but no
duplicates�

�Section ��� Information dimension� Use partial information �materialized view and key con�
straints � views that can be maintained without accessing the base relations are said to be
self�maintainable�� Instance dimension� Apply to all instances of the database and all instances
of modi�cations� Language dimension� Apply to SPJ views� Modi�cation dimension� Consider
the following types of modi�cations  

� Insertions and Deletions of tuples�

� Updates and group updates to tuples�

We also discuss maintaining SPJ views using the view and some underlying base relations�

� The Idea Behind View Maintenance

Incremental maintenance requires that the change to the base relations be used to compute the
change to the view� Thus� most view maintenance techniques treat the view de�nition as a mathe�
matical formula and apply a di�erentiation step to obtain an expression for the change in the view�
We illustrate through an example�

EXAMPLE ��� �Intuition� Consider the base relation link�S�D� such that link�a� b� is true if
there is a link from source node a to destination node b� De�ne view hop such that hop�c� d� is true
if c is connected to d using two links� via an intermediate node�

D � hop�X�Y � # 'X�Y �link�X�V � �V�W link�W�Y ��

Let a set of tuples &�link� be inserted into relation link� The corresponding insertions &�hop�
that need to be made into view hop can be computed by mathematically di�erentiating de�nition
D to obtain the following expression�

&�hop� # 'X�Y ��&�link��X�V � �V�W link�W�Y �� �
�link�X�V � �V�W &�link��W�Y �� �
�&�link��X�V � �V�W &�link��W�Y ���
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The second and third terms can be combined to yield the term
link��X�V � �V�W &�link��W�Y � where link� represents relation link with the insertions� i�e��
link�&�link�� �

In the above example� if tuples are deleted from link then too the same expression computes the
deletions from view hop� If tuples are inserted into and deleted from relation link� then &�hop�
is often computed by separately computing the set of deletions &��hop� and the set of insertions
&��hop� �QW��� HD���� Alternatively� by di�erently tagging insertions and deletions they can be
handled in one pass as in �GMS����

� Using Full Information

Most work on view maintenance has assumed that all the base relations and the materialized view
are available during the maintenance process� and the focus has been on e�cient techniques to main�
tain views expressed in di�erent languages � starting from select�project�join views and moving to
relational algebra� SQL� and Datalog� considering features like aggregations� duplicates� recursion�
and outer�joins� The techniques typically di�er in the expressiveness of the view de�nition language�
in their use of key and integrity constraints� and whether they handle insertions and deletions sepa�
rately or in one pass �Updates are modeled as a deletion followed by an insertion�� The techniques
all work on all database instances for both insertions and deletions� We will classify these techniques
broadly along the language dimension into those applicable to nonrecursive views� those applicable
to outer�join views� and those applicable to recursive views�

�
� Nonrecursive Views

We describe the counting algorithm for view maintenance� and then discuss several other view
maintenance techniques that have been proposed in the literature�

The counting Algorithm �GMS��� applies to SQL views that may or may not have duplicates�
and that may be de�ned using UNION� negation� and aggregation� The basic idea in the counting
algorithm is to keep a count of the number of derivations for each view tuple as extra information
in the view� We illustrate the counting algorithm using an example�

EXAMPLE ��� Consider view hop from Example ��� now written in SQL�

CREATE VIEW hop�S�D� as
�select distinct l��S� l��D from link l�� link l� where l��D # l��S�

Given link # f�a� b�� �b� c�� �b� e�� �a� d�� �d� c�g� the view hop evaluates to f�a� c�� �a� e�g� The tuple
hop�a� e� has a unique derivation� hop�a� c� on the other hand has two derivations� If the view had
duplicate semantics �did not have the distinct operator� then hop�a� e� would have a count of �
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and hop�a� c� would have a count of �� The counting algorithm pretends that the view has duplicate
semantics� and stores these counts�

Suppose the tuple link�a� b� is deleted� Then we can see that hop can be recomputed as f�a� c�g�
The counting algorithm infers that one derivation of each of the tuples hop�a� c� and hop�a� e� is
deleted� The algorithm uses the stored counts to infer that hop�a� c� has one remaining derivation
and therefore only deletes hop�a� e�� which has no remaining derivation� �

The counting algorithm thus works by storing the number of alternative derivations� count�t�� of
each tuple t in the materialized view� This number is derived from the multiplicity of tuple t under
duplicate semantics �Mum��� MS��b�� Given a program T de�ning a set of views V�� � � � � Vk� the
counting algorithm uses the di�erentiation technique of Section � to derive a program T�� The
program T� uses the changes made to base relations and the old values of the base and view
relations to produce as output the set of changes� &�V��� � � � �&�Vk�� that need to be made to the
view relations� In the set of changes� insertions are represented with positive counts� and deletions
by negative counts� The count value for each tuple is stored in the materialized view� and the new
materialized view is obtained by combining the changes &�V��� � � � �&�Vk� with the stored views
V�� � � � � Vk� Positive counts are added in� and negative counts are subtracted� A tuple with a count
of zero is deleted� The count algorithm is optimal in that it computes exactly those view tuples that
are inserted or deleted� For SQL views counts can be computed at little or no cost above the cost
of evaluating the view for both set and duplicate semantics� The counting algorithm works for both
set and duplicate semantics� and can be made to work for outer�join views �Section �����

Other Counting Algorithms� �SI��� maintain select� project� and equijoin views using counts
of the number of derivations of a tuple� They build data structures with pointers from a tuple 
to other tuples derived using the tuple  � �BLT�	� use counts just like the counting algorithm�
but only to maintain SPJ views� Also� they compute insertions and deletions separately� without
combining them into a single set with positive and negative counts� �Rou��� describes �ViewCaches��
materialized views de�ned using selections and one join� that store only the TIDs of the tuples that
join to produce view tuples�

Algebraic Di�erencing� introduced in �Pai��� and used subsequently in �QW��� for view main�
tenance di�erentiates algebraic expressions to derive the relational expression that computes the
change to an SPJ view without doing redundant computation� �GLT�� provide a correction to
the minimality result of �QW���� and �GL�
� extend the algebraic di�erencing approach to multiset
algebra with aggregations and multiset di�erence� They derive two expressions for each view� one
to compute the insertions into the view� and another to compute the deletions into the view�

The Ceri�Widom algorithm �CW��� derives production rules to maintain selected SQL views �
those without duplicates� aggregation� and negation� and those where the view attributes functionally
determine the key of the base relation that is updated� The algorithm determines the SQL query
needed to maintain the view� and invokes the query from within a production rule�

Recursive Algorithms� The algorithms described in Section ��� for recursive views also apply
to nonrecursive views�
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�
� Outer�Join Views

Outer joins are important in domains like data integration and extended relational systems �MPP�����
View maintenance on outer�join views using the materialized view and all base relations has been
discussed in �GJM����

In this section we outline the algorithm of �GJM��� to maintain incrementally full outer�join views�
We use the following SQL syntax to de�ne a view V as a full outer�join of relations R and S�

create view V as select X�� � � � � Xn from R full outer join S on g�Y�� � � � � Ym�

where X�� � � � � Xn and Y�� � � � � Ym are lists of attributes from relations R and S� g�Y�� � � � � Ym� is a
conjunction of predicates that represent the outer�join condition� The set of modi�cations to relation
R is denoted as &�R�� which consists of insertions &��R� and deletions &��R�� Similarly� the set of
modi�cations to relation S is denoted as &�S�� The view maintenance algorithm rewrites the view
de�nition to obtain the following two queries to compute &�V ��

��a�� select X�� � � � �Xn �b� select X�� � � � �Xn

from ��R� left outer join S from R� right outer join ��S�
on g�Y�� � � � � Ym� on g�Y�� � � � � Ym��

R� represents relation R after modi�cation� All other references in queries �a� and �b� refer either
to the pre�modi�ed extents or to the modi�cations themselves� Unlike with SPJ views queries �a�
and �b� do not compute the entire change to the view� as explained below�

Query �a� computes the e�ect on V of changes to relation R� Consider a tuple r� inserted into R
and its e�ect on the view� If r� does not join with any tuple in s� then r��NULL �r� padded with
nulls� has to be inserted into view V � If instead� r� does join with some tuple s in S� then r��s �r�

joined with tuple s� is inserted into the view� Both these consequences are captured in Query �a� by
using the left�outer�join� However� query �a� does not compute a possible side e�ect if r� does join
with some tuple s� The tuple NULL�s �s padded with nulls� may have to be deleted from the view V
if NULL�s is in the view� This will be the case if previously tuple s did not join with any tuple in R�

Similarly� a deletion r� fromR not only removes a tuple from the view� as captured by Query �a�� but
may also precipitate the insertion of a tuple NULL�s if before deletion r� is the only tuple that joined
with s� Query �b� handles the modi�cations to table S similar to the manner in which query �a�
handles the modi�cations to table R� with similar possible side�e�ects� The algorithm of �GJM���
handles these side e�ects�

�
� Recursive Views

Recursive queries or views often are expressed using rules in Datalog �Ull���� and all the work
on maintaining recursive views has been done in the context of Datalog� We describe the DRed
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�Deletion and Rederivation� algorithm for view maintenance� and then discuss several other
recursive view maintenance techniques that have been proposed in the literature�

The DRed Algorithm �GMS��� applies to Datalog or SQL views� including views de�ned using
recursion� UNION� and strati�ed negation and aggregation� However� SQL views with duplicate
semantics cannot be maintained by this algorithm� The DRed algorithm computes changes to
the view relations in three steps� First� the algorithm computes an overestimate of the deleted
derived tuples� a tuple t is in this overestimate if the changes made to the base relations invalidate
any derivation of t� Second� this overestimate is pruned by removing �from the overestimate� those
tuples that have alternative derivations in the new database� A version of the original view restricted
to compute only the tuples in the overestimated set is used to do the pruning� Finally� the new
tuples that need to be inserted are computed using the partially updated materialized view and
the insertions made to the base relations� The algorithm can also maintain materialized views
incrementally when rules de�ning derived relations are inserted or deleted� We illustrate the DRed
algorithm using an example�

EXAMPLE ��� Consider the view hop de�ned in Example ���� The DRed algorithm �rst deletes
tuples hop�a� c� and hop�a� e� since they both depend upon the deleted tuple� The DRed algorithm
then looks for alternative derivations for each of the deleted tuples� hop�a� c� is rederived and
reinserted into the materialized view in the second step� The third step of the DRed algorithm is
empty since no tuples are inserted into the link table� �

None of the other algorithms discussed in this section handle the same class of views as the DRed
algorithm� the most notable di�erentiating feature being aggregations� However� some algorithms
derive more e�cient solutions for special subclasses�

The PF �Propagation�Filtration� algorithm �HD��� is very similar to the DRed algorithm�
except that it propagates the changes made to the base relations on a relation by relation basis�
It computes changes in one derived relation due to changes in one base relation� looping over all
derived and base relations to complete the view maintenance� In each loop� an algorithm similar to
the delete�prune�insert steps in DRed is executed� However� rather than running the deletion step
to completion before starting the pruning step� the deletion and the pruning steps are alternated
after each iteration of the semi�naive evaluation� Thus� in each semi�naive iteration� an overestimate
for deletions is computed and then pruned� This allows the PF algorithm to avoid propagating
some tuples that occur in the over estimate after the �rst iteration but do not actually change�
However� the alternation of the steps after each semi�naive iteration also causes some tuples to
be rederived several times� In addition� the PF algorithm ends up fragmenting computation and
rederiving changed and deleted tuples again and again� �GM��� presents improvements to the PF
algorithm that reduce rederivation of facts by using memoing and by exploiting the strati�cation
in the program� Each of DRed and the PF algorithms can do better than the other by a factor of
n depending on the view de�nition �where n is the number of base tuples in the database�� For
nonrecursive views� the DRed algorithm always works better than the PF algorithm�

The Kuchenho� algorithm �Kuc��� derives rules to compute the di�erence between consec�
utive database states for a strati�ed recursive program� The rules generated are similar in spirit
to those of �GMS���� However� some of the generated rules �for the depends predicates� are not
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safe� and the delete�prune�insert three step technique of �GMS��� HD��� is not used� Further� when
dealing with positive rules� the Kuchenho� algorithm does not discard duplicate derivations that
are guaranteed not to generate any change in the view as early as the DRed algorithm discards the
duplicate derivations�

The Urpi�Olive algorithm �UO��� for strati�ed Datalog views derives transition rules showing
how each modi�cation to a relation translates into a modi�cation to each derived relation� using
existentially quanti�ed subexpressions in Datalog rules� The quanti�ed subexpressions may go
through negation� and can be eliminated under certain conditions� Updates are modeled directly�
however since keys need to be derived for such a modeling� the update model is useful mainly for
nonrecursive views�

Counting based algorithms can sometimes be used for recursive views� The counting algorithm
of �GKM��� can be used e�ectively only if every tuple is guaranteed to have a �nite number of
derivations�� and even then the computation of counts can signi�cantly increase the cost of compu�
tation� The BDGEN system �NY��� uses counts to re�ect not all derivations but only certain types
of derivations� Their algorithm gives �nite even counts to all tuples� even those in a recursive view�
and can be used even if tuples have in�nitely many derivations�

Transitive Closures �DT��� derive nonrecursive programs to update right�linear recursive views
in response to insertions into the base relation� �DS�
a� give nonrecursive programs to update the
transitive closure of speci�c kinds of graphs in response to insertions and deletions� The algorithm
does not apply to all graphs or to general recursive programs� In fact� there does not exist a
nonrecursive program to maintain the transitive closure of an arbitrary graph in response to deletions
from the graph �DLW�
��

Nontraditional Views �LMSS�
a� extends the DRed algorithm to views that can have nonground
tuples� �WDSY��� give a maintenance algorithm for a rule language with negation in the head and
body of rules� using auxiliary information about the number of certain derivations of each tuple�
They do not consider aggregation� and do not discuss how to handle recursively de�ned relations
that may have an in�nite number of derivations�

� Using Partial Information

As illustrated in the introduction� views may be maintainable using only a subset of the underlying
relations involved in the view� We refer to this information as partial information� Unlike view
maintenance using full information� a view is not always maintainable for a modi�cation using
only partial information� Whether the view can be maintained may also depend upon whether the
modi�cation is an insertion� deletion� or update� So the algorithms focus on checking whether the
view can be maintained� and then on how to maintain the view�

We will show that treating updates as a distinct type of modi�cation lets us derive view maintenance
algorithms for updates where no algorithms exist for deletions%insertions�

�An algorithm to check �niteness appears in �MS��b	 MS���
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�
� Using no Information	 Query Independent of Update

There is a lot of work on optimizing view maintenance by determining when a modi�cation leaves a
view unchanged �BLT�	� BCL��� Elk��� LS���� This is known as the �query independent of update��
or the �irrelevant update� problem� All these algorithms provide checks to determine whether a
particular modi�cation will be irrelevant� If the test succeeds� then the view stays una�ected by the
modi�cation� However� if the test fails� then some other algorithm has to be used for maintenance�

�BLT�	� BCL��� determine irrelevant updates for SPJ views while �Elk��� considers irrelevant up�
dates for Datalog� Further� �LS��� can determine irrelevant updates for Datalog with negated base
relations and arithmetic inequalities�

�
� Using the Materialized View	 Self�Maintenance

Views that can be maintained using only the materialized view and key constraints are called self�
maintainable views in �GJM�	�� Several results on self�maintainability of SPJ and outer�join views
in response to insertions� deletions� and updates are also presented in �GJM�	�� Following �GJM�	��
we de�ne�

De�nition ��� ��Self Maintainability With Respect to a Modi�cation Type��� A view V
is said to be self�maintainable with respect to a modi�cation type �insertion� deletion� or update�
to a base relation R if for all database states� the view can be self�maintained in response to all
instances of a modi�cation of the indicated type to the base relation R�

EXAMPLE ��� Consider view supp parts from Example ��� that contains all distinct part no

supplied by at least one supplier� Also� let part no be the key for relation part �so there can be at
most one contract and one part cost for a given part��

If a tuple is deleted from relation part then it is straightforward to update the view using only
the materialized view �simply delete the corresponding part no if it is present�� Thus� the view is
self�maintainable with respect to deletions from the part relation�

By contrast� let tuple supp�s�� p�� ���� be deleted when the view contains tuple p�� The tuple
p� cannot be deleted from the view because supp may also contain a tuple supp�s�� p�� ���� that
contributes p� to the view� Thus� the view is not self�maintainable with respect to deletions from
supp� In fact� the view is not self�maintainable for insertions into either supp or part� �

Some results from �GJM�	� are stated after the following de�nitions�

De�nition ��� ��Distinguished Attribute��� An attribute A of a relation R is said to be dis�
tinguished in a view V if attribute A appears in the select clause de�ning view V �
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De�nition ��� ��Exposed Attribute��� An attribute A of a relation R is said to be exposed
in a view V if A is used in a predicate� An attribute that is not exposed is referred to as being
non�exposed�

Self�Maintainability With Respect to Insertions and Deletions �GJM�	� shows that most
SPJ views are not self�maintainable with respect to insertions� but they are often self�maintainable
with respect to deletions and updates� For example�

An SPJ view that takes the join of two or more distinct relations is not self�maintainable with
respect to insertions�

An SPJ view is self�maintainable with respect to deletions to R� if the key attributes from each
occurrence of R� in the join are either included in the view� or are equated to a constant in the
view de�nition�

A left or full outer�join view V de�ned using two relations R and S� such that�

� All exposed attributes of R are distinguished�

is self�maintainable with respect to all types of modi�cations to relation S�

Self�Maintainability With Respect to Updates By modeling an update independently and
not as a deletion%insertion we retain information about the deleted tuple that allows the insertion
to be handled more easily�

EXAMPLE ��� Consider again relation part�part no� part cost� contract� where part no is
the key� Consider an extension of view supp parts�

supp parts�supp no� part no� part cost� # 'part no�supp �part no part�

The view contains the part no and part cost for the parts supplied by each supplier� If the
part cost of a part p� is updated then the view is updated by identifying the tuples in the view
that have part no # p� and updating their part cost attribute� �

The ability to self�maintain a view depends upon the attributes being updated� In particular� updates
to non�exposed attributes are self�maintainable when the key attributes are distinguished� The
complete algorithm for self�maintenance of a view in response to updates to non�exposed attributes
is described in �GJM�	� and relies on �a� identifying the tuples in the current view that are potentially
a�ected by the update� and �b� computing the e�ect of the update on these tuples�
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The idea of self�maintenance is not new  Autonomously computable views were de�ned by �BCL���
as the views that can be maintained using only the materialized view for all database instances� but
for a given modi�cation instance � They characterize a subset of SPJ views that are autonomously
computable for insertions� deletions� and updates� where the deletions and updates are speci�ed
using conditions� They do not consider views with self�joins or outer�joins� do not use key infor�
mation� and they do not consider self�maintenance with respect to all instances of modi�cations�
The characterization of autonomously computable views in �BCL��� for updates is inaccurate  For
instance� �BCL��� determines� incorrectly� that the view �select X from r�X�� is not autonomously
computable for the modi�cation �Update�R��� to R������

Instance Speci�c Self�Maintenance For insertions and deletions only� a database instance
speci�c self�maintenance algorithm for SPJ views was discussed �rst in �TB���� Subsequently this
algorithm has been corrected and extended in �GB�
��

�
� Using Materialized View and Some Base Relations	
Partial�reference

The partial�reference maintenance problem is to maintain a view given only a subset of the base
relations and the materialized view� Two interesting subproblems here are when the view and all
the relations except the modi�ed relation are available� and when the view and modi�ed relation
are available�

Modi�ed Relation is not Available �Chronicle Views� A chronicle is an ordered sequence
of tuples with insertion being the only permissible modi�cation �JMS�
�� A view over a chronicle�
treating the chronicle as a relation� is called a chronicle view� The chronicle may not be stored in
its entirety in a database because it can get very large� so the chronicle view maintenance problem
is to maintain the chronicle view in response to insertions into the chronicle� but without accessing
the chronicle� Techniques to specify and maintain such views e�ciently are presented in �JMS�
��

Only Modi�ed Relation is Available �Change�reference Maintainable� Sometimes a view
may be maintainable using only the modi�ed base relation and the view� but without accessing other
base relations� Di�erent modi�cations need to be treated di�erently�

EXAMPLE ��� Consider maintaining view supp parts using relation supp and the old view in
response to deletion of a tuple t from relation supp� If t�part no is the same as the part no of some
other tuple in supp then the view is unchanged� If no remaining tuple has the same part no as
tuple t then we can deduce that no supplier supplies t�part no and thus the part number has to be
deleted from the view� Thus� the view is change�reference�maintainable�

A similar claim holds for deletions from part but not for insertions into either relation� �

Instance Speci�c Partial�reference Maintenance �GB�
� Gup��� give algorithms that suc�
cessfully maintain a view for some instances of the database and modi�cation� but not for others�
Their algorithms derive conditions to be tested against the view and�or the given relations to check
if the information is adequate to maintain the view�
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� Open Problems

This section describes some open problems in view maintenance� in the context of Figure �� Many
points on each of the three dimensions remain unconsidered� or even unrepresented� It is useful
to extend each dimension to unconsidered points and to develop algorithms that cover entirely the
resulting space because each point in the space corresponds to a scenario of potential interest�

View maintenance techniques that use all the underlying relations� i�e� full�information� have been
studied in great detail for large classes of query languages� We emphasize the importance of devel�
oping comprehensive view maintenance techniques that use di�erent types of partial information�
For instance�

Use information on functional dependencies� multiple materialized views� general integrity con�
straints� horizontal�vertical fragments of base relations �i�e�� simple views��

Extend the view de�nition language to include aggregation� negation� outer�join for all instances
of the other dimensions� The extensions are especially important for using partial information�

Identify subclasses of SQL views that are maintainable in an instance independent fashion�

The converse of the view maintenance problem under partial information� as presented in Section �
is to identify the information required for e�cient view maintenance of a given view �or a set of
views�� We refer to this problem as the �information identi�cation �II�� problem� Solutions for view
maintenance with partial information indirectly apply to the II problem by checking if the given
view falls into one of the classes for which partial�information based techniques exist� However�
direct and more complete techniques for solving the II problem are needed�

An important problem is to implement and incorporate views in a database system� Many questions
arise in this context� When are materialized views maintained � before the transaction that updates
the base relation commits� or after the transaction commits� Is view maintenance a part of the
transaction or not� Should the view be maintained before the update is applied to the base relations�
or afterwards� Should the view be maintained after each update within the transaction� or after all
the updates� Should active rules �or some other mechanism� be used to initiate view maintenance
automatically or should a user start the process� Should alternative algorithms be tried� based on
a cost based model to choose between the options� Some existing work in this context is in �NY���
CW��� GHJ�	� RCK��
�� �CW��� considers using production rules for doing view maintenance
and �NY��� presents algorithms in the context of a deductive DB system� �GHJ�	� does not discuss
view maintenance but discusses e�cient implementation of deltas in a system that can be used
to implement materialized views� �RCK��
� describes the ADMS system that implements and
maintains simple materialized views� �ViewCaches�� in a multi�database environment� The ADMS
system uses materialized views in query optimization and addresses questions of caching� bu�ering�
access paths� etc��

The complexity of view maintenance also needs to be explored� The dynamic complexity classes
of �PI��� and the incremental maintenance complexity of �JMS�
� characterize the computational
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complexity of maintaining a materialized copy of the view� �PI��� show that several recursive views
have a �rst order dynamic complexity� while �JMS�
� de�ne languages with constant� logarithmic�
and polynomial incremental maintenance complexity�
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INCREMENTAL MAINTENANCE OF

RECURSIVE VIEWS� A SURVEY

Guozhu Dong

ABSTRACT

Database views can be divided into relational views and recursive views� The former are de�ned by relational
algebra or SQL� whereas the latter are de�ned by Datalog� strati�ed Datalog� � or polynomial time mappings
over databases� In this article we give a short survey on previous results on the maintenance of recursive
views�

We discuss the view maintenance algorithms mainly along three dimensions� which are designed to measure

how usable and how e�cient the view maintenance algorithms are� These dimensions are orthogonal to the

four dimensions of �GM����

� Dimensions of View Maintenance Methods

Before presenting the three dimensions for measuring how usable and how e�cient view maintenance
methods are� we �rst review the following four dimensions given in �GM�
� for classifying view
maintenance problems�

The available information dimension� Does the algorithm have access to all�some base relations
while doing the maintenance� To materialized views� Does it use knowledge about integrity
constraints or keys�

The allowable modi�cation dimension� What modi�cations can the view maintenance algorithm
handle� Insertions of tuples to base relations� Deletions of tuples� Or sets of tuples�

The view language dimension� What is the language of the views that can be maintained by
the view maintenance algorithm� Is the view expressed as a select�project�join �or conjunctive�
query� Relational algebra or SQL� Can it allow duplicates� Transitive closure� General
recursion� Datalog or strati�ed Datalog�� Or polynomial time mappings�

The database instance dimension� Does the view maintenance algorithm work for all instances
of the database or only some instances of the database�

��
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These above four dimensions basically measure how general a view maintenance algorithm is� We
enhance these four dimensions by adding three extra dimensions� which are designed to measure
how usable and how e�cient a view maintenance algorithm is� Roughly� the three extra dimensions
measure the complexity of the view maintenance language� the view maintenance algorithms� and
the auxiliary information� Although we concentrate in this survey on recursive views� the e�ciency
issue �measured by computational complexity or language complexity� is obviously important for
nonrecursive views as well�

The maintenance language dimension� What is the language in which the view maintenance
algorithms are expressed� Is it the same as the view language� Is it a sub�language of relational
algebra or SQL� Is it using a host programming language �such as C��

Usually it is advantageous when the language is a sub�language of the relational algebra� since
maintenance algorithms in this language can be used in any relational database system� and
since they are in AC� �computable by circuits of polynomial number of processors with constant
depth� or �computable in theoretical constant parallel time���

The complexity improvement dimension� Is the view maintenance algorithm demonstrably more
e�cient than the recomputing from scratch approach� by analysis or by experiment� For ex�
ample� is there a sequential�complexity speed up from n� to n�� or a parallel complexity speed
up from logn to constant� Can the view maintenance algorithm be written in a more e�cient
language so that speed up can be argued at a language level�

Observe that e�ciency is the reason why users choose view maintenance over recomputing from
scratch�

The auxiliary information dimension� How much space is required by the auxiliary information
to help maintain the view�

In addition to the obvious issue of space e�ciency� it is instructive to know what kind of
auxiliary information is needed� Ideally we would like to see that this auxiliary information can
be expressed as relations over the constants in the base relations� However� some algorithms
use integers or nested relations� which might require extra operators to handle�

There is usually a tradeo� between di�erent dimensions� If we consider a large class of views�updates�
then we may need to use less desirable view maintenance algorithms� On the other hand� if we con�
sider restricted views�updates� then we may be able to design better view maintenance algorithms�
There is also a space�time trade�o� between auxiliary information and computation time�

� Using Relational Queries as Maintenance Algorithms

There has been considerable work on the maintenance of recursive views using relational queries as
maintenance algorithms� In addition to the practical implications to view maintenance� study in
this direction is also addressing the interesting theoretical question of whether �rst�order can de�ne
recursion dynamically� It is now known that �rst�order can de�ne some recursion dynamically� it is
open if it can de�ne all recursion expressible by Datalog�
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In this framework� we usually consider updates bounded in size in order to have a relational�query
�or �rst�order� maintenance algorithm� �For most algorithms the ability to handle sets of tuples of
�xed sizes is identical to the ability to handle single tuples� For this reason we will only refer to their
ability to handle single tuples�� There are special cases where certain kind of sets of inserted�deleted
tuples can be handled�

Advantages of such maintenance algorithms include the fact that they are easily usable within all
relational database systems and they are in AC�� However� associated with these advantages are the
tradeo�s that there might not be such maintenance algorithms for all queries in interesting classes
such as Datalog�

To maintain recursive views using �rst�order queries� some auxiliary relations over constants in the
base relations are used �and maintained by �rst�order queries as well�� Auxiliary information allows
us to trade space for time�

The following list summarizes many of the views maintainable in �rst�order�

In �DT��� �also reprinted in this volume� �rst�order maintenance algorithms were given for all
views de�ned by right�linear chain Datalog programs� The updates allowed are single tuple
insertions� Auxiliary relations over constants in the base relations are necessary when the
program is more than a single transitive closure�

In �DS��� the above result is extended to right�linear chain Datalog programs whose base re�
lations are not necessarily binary� That paper also gave a further extension to the situation
where base relations p in right�linear chain Datalog programs P can have initializations� p can
be de�ned by other programs P � where P � does not depend on the relations occurring in P and
P � has the so�called Cartesian�product increment property� This Cartesian�product increment
property is decidable when P � is a conjunctive �select�project�join� query� This generalized re�
sult implies that we can maintain views de�ned by right�linear chain Datalog programs using
�rst�order queries after the insertions of sets of tuples which are cross�products�

Extended discussions of these results can be found in �DSR�
��

In �DS�
a� a �rst�order algorithm was given to maintain the transitive closure of acyclic directed
graphs� after insertions and deletions of edges�

In �DP�
� a di�erent �rst�order algorithm was given� and the new algorithm was generalized to
maintain transitive closure of general directed graphs� after the deletions of certain kind of sets
of edges and nodes�

The algorithms in �DS�
a� DP�
� do not use auxiliary relations�

In �PI��� a �rst�order query maintenance algorithm was given to maintain the transitive closure
of undirected graphs� using ternary auxiliary relations over constants in the base relations� �That
paper also discusses maintaining answers to general computational problems in �rst�order��

In �DS�
b� a �rst�order maintenance algorithm for transitive closure of undirected graphs was
given� which uses binary auxiliary relations� It was shown there that no such algorithms exist
if only unary relations are used� The paper also established that many other queries over
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undirected graphs� including bipartiteness and �minimum spanning forests� can be maintained
using binary auxiliary relations but not unary ones�

In �DK��� �rst�order maintenance algorithms were given for the constrained transitive closure
in the presence of inequality constraints�

Using auxiliary relations of di�erent arities gives us di�erent abilities to maintain di�erent recursive
views� In �DS�
b� a strict hierarchy was established for arities up to �� It is still open if the hierarchy
is strict for arities � �� �See also �DS�	���

As an extension to �rst�order maintenance algorithms� �DLW�
� considered the maintenance of
recursive views using SQL queries as maintenance algorithms� It was shown that� if no auxiliary
relation is used� SQL still cannot maintain transitive closure of directed graphs� although SQL is
more powerful than �rst�order queries as maintenance algorithms�

Many interesting open problems remain� including the following�

Can the transitive closure of general directed graphs be maintained using �rst�order queries
after deletions of edges� Using SQL queries�

Can the same�generation query �over two arbitrary relations� be maintained using �rst�order
queries if only insertions of tuples are considered�

It is easy to see that all views maintainable using �rst�order queries must be de�nable by
polynomial time queries� Can all views de�ned by polynomial queries be maintained using
�rst�order queries� Views de�ned by Datalog�

It is also interesting to have an analysis showing how much e�ciency gain can be achieved if these
maintenance algorithms are translated to sequential algorithms� compared to the recomputing from
scratch approach�

� Recursive Maintenance Methods

At least �ve methods �Kuc��� CW��� UO��� HD��� GMS��� have been given to maintain views
de�ned by strati�ed Datalog� programs� These algorithms were similar in the following aspects�
They rewrite rules in the given strati�ed Datalog� program� some of these rules are then applied
iteratively �to �xpoint� to derive some estimate of the changes to the view caused by the base relation
update� some other rules are then applied to prune the false estimate� this yields the proper change
to the view�

Some of the algorithms may di�er in some �ne details such as how often the pruning steps are
applied� For example� in �HD��� the estimate�pruning cycle is applied for each step of the semi�
naive iterations�
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These algorithms need to use auxiliary relations to store the intermediate derived relations �de�ned
by IDB predicates which are not the view predicate��

These algorithms can be used if the underlying database system can handle strati�ed Datalog�

evaluation� but cannot be used within a pure relational database system�

Intuitively these algorithms seem more e�cient than recomputing the view from scratch� mainly
due to the observation that �small changes in base relations should lead to small changes in views��
Formal veri�cation of such gain of e�ciency has been lacking in the literature� In particular� the
e�ciency gain cannot be justi�ed at a language level� since the view maintenance language is usually
the same as the view de�nition language�

In �GKM��� some counting based algorithms are proposed to maintain views� where associated with
each derived fact we record the number of times this fact is derived� The algorithms are applicable
mostly to acyclic databases� in order to ensure �nite counts� The computation is recursive� and
additionally stores integers and uses integer arithmetics�

In �AP�� algorithms for maintaining models of strati�ed Datalog� programs are given� These
algorithms use the iterative �xpoint evaluation method� They use di�erent kinds of auxiliary infor�
mation� ranging from sets of facts to sets of sets � or nested sets� of facts� for each fact currently in
the model� Again these methods are not usable within normal relational database systems�

Research about on�line algorithms and their complexity from the graph algorithms community �see
�Yan��� for references� and the complexity theory community �MSVT��� are also related to view
maintenance�
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ABSTRACT

Query processing can be sped up by keeping frequently accessed users� views materialized� However� the

need to access base relations in response to queries can be avoided only if the materialized view is adequately

maintained� We propose a method in which all database updates to base relations are �rst �ltered to

remove from consideration those that cannot possibly a�ect the view� The conditions given for the detection

of updates of this type� called irrelevant updates� are necessary and su�cient and are independent of the

database state� For the remaining database updates� a di�erential algorithm can be applied to re�evaluate

the view expression� The algorithm proposed exploits the knowledge provided by both the view de�nition

expression and the database update operations�

� Introduction

In a relational database system� a database may be composed of both base and derived relations� A
derived relation�or view�is de�ned by a relational expression �i�e�� a query evaluated over the base
relations�� A derived relation may be virtual� which corresponds to the traditional concept of a view�
or materialized� which means that the resulting relation is actually stored� As the database changes
because of updates applied to the base relations� the materialized views may also require change�
A materialized view can always be brought up to date by re�evaluating the relational expression
that de�nes it� However� complete re�evaluation is often wasteful� and the cost involved may be
unacceptable�

The need for a mechanism to update materialized views e�ciently has been expressed by several
authors� Gardarin et al� �GSV��� consider concrete views �i�e�� materialized views� as a candidate
approach for the support of real time queries� However� they discard this approach because of the lack
of an e�cient algorithm to keep the concrete views up to date with the base relations� Horwitz and
Teitelbaum �HT�
� propose a model for the generation of language�based environments which uses
a relational database along with attribute grammars� and they suggest algorithms for incrementally
updating views� motivated by the e�ciency requirements of interactive editing� Buneman and

�
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Clemons �BC�� propose views for the support of alerters� which monitor a database and report to
some user or application whether a state of the database� described by the view de�nition� has been
reached�

It must be stressed that the problem analyzed in this chapter is di�erent from the traditional view
update problem� In the traditional view update problem� a user is allowed to pose updates directly
to a view� and the di�culty is in determining how to translate updates expressed against a view into
updates to the base relations� In the model proposed in this chapter� the user can only update base
relations� direct updates to views are not considered� Therefore� rather than analyzing the traditional
problem of deriving appropriate update translations� this chapter is concerned with �nding e�cient
ways of keeping materialized views up to date with the base relations�

The purpose of this chapter is to present a framework for the e�cient update of materialized views
when base relations are subject to updates� Section � presents some previous related work� Section
� presents the notation and terminology used throughout the chapter� Section � describes how to
detect updates that have no e�ect on a view� Section 
 describes a method for di�erentially updating
materialized views� �nally� Section 	 contains some conclusions and suggestions for further research�

� Previous work

Work directly related to the maintenance of materialized views has been reported by Koenig and
Paige �KP��� and by Shmueli and Itai �SI���� Koenig and Paige �KP��� investigate the support of
derived data in the context of a functional binary�association data model� This data model puts to�
gether ideas borrowed from binary�association models� functional models� and the entity�relationship
model� within a programming language suitable for data de�nition and manipulation� In their model�
views can be explicitly stored and then maintained� For each possible change to the operands of
the view� there exists a procedure associated with this change that incrementally updates the view�
This procedure is called the derivative of the view de�nition with respect to the change� Their
approach relies on the availability of such derivatives for various view de�nition�change statement
combinations�

Shmueli and Itai�s approach consists of continuously maintaining an acyclic database� together with
information that may be useful for future insertions and deletions� Their de�nition of views is limited
to the projection of a set of attributes over the natural join of all the relations in the database scheme�
This is a restricted class of views� since views based on the join of some� but not all� of the relations
in the database scheme cannot be handled by this mechanism� Another restriction on the views is
the omission of selection conditions�

In related work� Hammer and Sarin �HS� present a method for e�ciently detecting violations of
integrity constraints� called integrity assertions� as a result of database updates� For each integrity
assertion� there exists an error�predicate which corresponds to the logical complement of the asser�
tion� If the error�predicate is true for some instance of the database� then the instance violates
the assertion� Their approach to the problem of e�ciently checking database assertions is based on
analyzing the potential e�ects that an update operation may have on the assertions� This analysis is
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performed by a compile�time assertion processor� The result is a set of candidate tests that will be
executed at run�time to determine if the update causes the assertion to be violated� The selection
of the least expensive test from the set of candidate tests requires a procedure similar to the one
required in query optimization�

Buneman and Clemons �BC�� propose a procedure for the e�cient implementation of alerters� In
general� the condition that triggers an alerter is expressed in terms of a query called the target
relation over several base relations� in our terminology� a target relation corresponds to a virtual
view� One aspect that is emphasized in their work is the e�cient detection of base relation updates
that are of no interest to an alerter� thus determining when re�evaluation of the associated query is
unnecessary�

� Notation and terminology

We assume that the reader is familiar with the basic ideas and notation concerning relational data�
bases� as described in �Mai���� A view denition V corresponds to a relational algebra expression on
the database scheme� A view materialization v is a stored relation resulting from the evaluation of
this relational algebra expression against an instance of the database� In this chapter� we consider
only relational algebra expressions formed from the combination of selections� projections� and joins�
called SPJ expressions�

A transaction is an indivisible sequence of update operations to base relations� Indivisible means
that either all the update operations are successfully performed or none are performed� Furthermore�
updates within a transaction may update several base relations�

Considering that base relations are updated before the views� it is reasonable to assume that the
complete a�ected tuples from the base relations are available at the time the view is to be updated�
The net e�ect of a transaction on a base relation can be represented by a set of tuples that have been
inserted and a set of tuples that have been deleted� Formally� given a base relation r and a transaction
T � there exist sets of tuples ir and dr such that r� ir � and dr are disjoint and T �r� # r � ir � dr�
Therefore� without any loss of generality we will represent a transaction applied to a base relation
T �R� by insert�R� ir� and delete�R� dr�� where R is the name of the base relation with instance r
such that r� ir � dr are mutually disjoint�

It is assumed that all attributes are de�ned on discrete and �nite domains� Since such a domain can
be mapped to a subset of natural numbers� we use integer values in all examples�

� Relevant and irrelevant updates

In certain cases� a set of updates to a base relation has no e�ect on the state of a view� When this
occurs independently of the database state� we call the set of updates irrelevant� It is important to
provide an e�cient mechanism for detecting irrelevant updates so that re�evaluation of the relational
expression de�ning a view can be avoided or the number of tuples considered can be reduced�
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Consider a view de�ned by the expression

V # 
X��C�Y 	�R� � R� � � � � �Rp��

where C�Y � is a Boolean expression and X and Y are sets of variables denoting the names of �some�
attributes for the relations named R�� R�� � � � � Rp� The sets X and Y are not necessarily equal �i�e��
not all the attributes in the projection participate in the selection condition and vice versa�� and in
fact may be disjoint�

Suppose that a tuple t # �a�� a�� � � � � aq� is inserted into �or deleted from� relation rk de�ned on
scheme Rk� Let Y� # Rk � Y � and Y� # Y � Y�� so that Y # Y� � Y�� Let the selection condition
C�Y � be modi�ed by replacing the variables Y� by their corresponding values t�Y��� If the modi�ed
condition C�Y � can be shown to be unsatis�able regardless of the database state� then inserting or
deleting t from rk has no e�ect on the view v�

Example ��� Consider two relations r and s de�ned on R # fA�Bg and S # fC�Dg� respectively�
and a view v de�ned as

V # 
A�D���A���	��C�
	��B�C	�R� S���

That is� C�A�B�C� # �A � ��� � �C � 
� � �B # C��

r � A B
� �

 ��
�� �


s � C D
� ��
�� ��

v � A D

 ��

Suppose that the tuple ��� ��� is inserted into relation r� We can substitute the values ��� ��� for
the variables A and B in C�A�B�C� to obtain the modi�ed condition C��� ��� C� # �� � ���� �C �

� � ��� # C�� The selection condition C��� ��� C� is satis�able� that is� there exist instances of the
relations named R and S containing the tuples ��� ��� and ���� ��� for some value of � such that
C��� ��� �� # True� Therefore� inserting the tuple ��� ��� into relation r is relevant to the view v�
Notice that there may be some state of s that contains no matching tuple ���� ��� in which case the
tuple ��� ��� will have no e�ect on the view� However� the only way of verifying this is by checking
the contents of the database�

On the other hand� suppose that the tuple ���� ��� is inserted into relation r� After substituting the
values ���� ��� for the variables A and B in C�A�B�C� we obtain

C���� ��� C� # ��� � ���� �C � 
� � ��� # C��

We can see that C is now unsatis�able regardless of the database state� Therefore� inserting the
tuple ���� ��� into relation r is �provably� irrelevant to the view v� �
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The same argument applies for deletions� That is� if substituting the values of the deleted tuple in
the selection condition makes the selection condition unsatis�able regardless of the database state�
then the deleted tuple is irrelevant to the view� In other words� the deleted tuple is not visible in
the view� Similarly� if substituting the values of the deleted tuple in the selection condition makes
the selection condition satis�able� then the deleted tuple may need to be removed from the view�

De�nition ��� Consider a view

v # 
X��C�Y 	�r� � r� � � � � � rp���

and a tuple t # �a�� a�� � � � � aq� � ri de�ned on Ri for some i� � � i � p� Let Y� # Y � Ri and
Y� # Y � Y�� Denote by C�t� Y�� the modi�ed selection condition C�Y � obtained when substituting
the value t�A� for each occurrence of the variable A � Y� in C�Y �� C�t� Y�� is said to be a substitution
of t for Y� in C�

Theorem ��� Consider a view

v # 
X��C�Y 	�r� � r� � � � � � rp���

and a tuple t inserted into �or deleted from� ri de�ned on Ri for some i� � � i � p� Let Y� # Y �Ri

and Y� # Y � Y�� The update involving tuple t is irrelevant to the view v �for every database
instance D� if and only if C�t� Y�� is unsatis�able�

Proof� �if� If the substitution of C�t� Y�� is unsatis�able� then no matter what the current state of
the database is� C�t� Y�� evaluates to false and therefore does not a�ect the view� That is� if t were
inserted it could not cause any new tuples to become visible in the view� and if t were deleted it
could not cause any tuples to be deleted from the view� Hence� the tuple t is irrelevant to the view
v�

�only if� Assume that the tuple t is irrelevant to the view and that C�t� Y�� is satis�able� C�t� Y��
being satis�able means that there exists a database instance D� for which a substitution of values u
for Y� in C�t� Y�� makes the selection condition true� To construct such a database instance we need
to �nd at least p� � tuples tj � rj � � � j � p and j 	# i �since t � ri�� in such a way that


X��C�Y 	�ft�g � ft�g � � � � � ftg � � � � � ftpg�� 	# 	�

i� For all attributes A such that A � Ri and A � Y�� replace tj�A�� � � j � p� j 	# i by t�A��

ii� For all attributes B 	� Y � replace tj�B�� � � j � p� j 	# i by any value� say one�

iii� For all attributes C � Y�� replace tj�C�� � � j � p� j 	# i by any value in the domain of C that
makes C�t� Y�� true� Such values are guaranteed to exist because C�t� Y�� is satis�able�
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The database instance D� consists of p relations

r� # ft�g� r� # ft�g� � � � � ri # 	� � � � � rp # ftpg�

Clearly� the view state that corresponds to D� has no tuples� Creating D� from D� by inserting
t into ri produces a view state with one tuple� Thus the insertion of t is relevant to the view v�
Similarly� deleting t from D� shows that the deletion of t is also relevant to the view v� This proves
that the condition is necessary� �

Deciding the satis�ability of Boolean expressions is in general NP�complete� However� there is a
large class of Boolean expressions for which satis�ability can be decided e�ciently� as shown by
Rosenkrantz and Hunt �RH���� This class corresponds to expressions formed from the conjunction
of atomic formulae of the form x op y� x op c� and x op y % c� where x and y are variables de�ned
on discrete and in�nite domains� c is a positive or negative constant� and op � f#� �������g� The
improved e�ciency arises from not allowing the operator 	# in op�

Deciding whether a conjunctive expression in the class described above is satis�able can be done
in time O�n�� where n is the number of variables contained in the expression� The sketch of the
algorithm is as follows� ��� the conjunctive expression is normalized� that is� it is transformed into
an equivalent one where only the operators � or � are used in the atomic formulae� ��� a directed
weighted graph is constructed to represent the normalized expression� and ��� if the directed graph
contains a cycle for which the sum of its weights is negative then the expression is unsatis�able�
otherwise it is satis�able� To �nd whether a directed weighted graph contains a negative cycle one
can use Floyd�s algorithm �Flo	��� which �nds all the shortest paths between any two nodes in a
directed weighted graph�

We can also decide e�ciently the satis�ability of Boolean expressions of the form

C # C� � C� � � � � � Cm

where� Ci� i # �� � � � �m� is a conjunctive expression in the class described above� The expression C
is satis�able if and only if at least one of the conjunctive expressions Ci is satis�able� Similarly� C
is unsatis�able if and only if each of the conjunctive expressions Ci is unsatis�able� We can apply
Rosenkrantz and Hunt�s algorithm to each of the conjunctive expressions Ci� this takes time O�mn��
in the worst case� where n is the number of di�erent variables mentioned in C�

�
� Detection of relevant updates

This section presents an algorithm to detect those relation updates that are relevant to a view�
Before describing the algorithm we need another de�nition�

De�nition ��� Consider a conjunctive expression C�Y �� and a tuple
t # �a�� a�� � � � � aq� � r de�ned on R� Let ��C� denote the set of variables that participate in
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C� Y # ��C�� Y� # Y � R� Y� # Y � Y�� and C�t� Y�� be the substitution of t for Y� in C� We
distinguish between two types of atomic formulae in C�t� Y�� called variant and invariant formulae
respectively�

��� Variant formulae are those directly a�ected by the substitution of t�A� for A � Y� in C� This type
of formula may have the form �x op c�� or �c op d�� where x is a variable and c� d are constants�
Furthermore� formulae of the form �x op c� are called variant non�evaluable formulae� and
formulae of the form �c op d� are called variant evaluable formulae� Variant evaluable formulae
are either true or false�

��� Invariant formulae are those that remain invariant with respect to the substitution of t for Y�
in C� This type of formula may have the form �x op c�� or �x op y% c�� where x� y are variables�
and c is a constant� That is� the attributes X� Y represented by the variables x� y are not in
Y��

Notice that the classi�cation of atomic formulae in C depends on the relation scheme of the set of
tuples t substituting for attributes Y� in C�

Algorithm ���

The input to the algorithm consists of�

i� a conjunctive Boolean expression C # f� � f� � � � � � fn� where each fi� � � i � n� is an atomic
formula of the form �x op y�� �x op y % c�� or �x op c�� where x� y are variables �representing
attributes� and c is a constant�

ii� a relation scheme R of the updated relation� and

iii� a set of tuples Tin # ft�� t�� � � � � tqg on scheme R� Tin contains those tuples inserted to or deleted
from the relation r�

The output from the algorithm consists of a set of tuples Tout � Tin which are relevant to the view�

�� The conjunctive expression C is normalized�

�� The normalized conjunctive expression CN is expressed as CINV �CVEVAL�CVNEVAL� CINV is a
conjunctive subexpression containing only invariant formulae� CVEV AL is a conjunctive subex�
pression containing only variant evaluable formulae� CV NEVAL is a conjunctive subexpression
containing only variant non�evaluable formulae�

�� Using CINV � build the invariant portion of the directed weighted graph�
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�� For each tuple t � Tin� substitute the values of t for the appropriate variables in CVEV AL and
CV NEVAL� Build the variant portion of the graph and check whether the substituted conjunctive
expression represented by the graph is satis�able� If the expression is satis�able� then add t to
Tout� otherwise ignore it� �

An important component of the algorithm is the construction of a directed weighted graph G # �n� e��
where n # ��C� � f�g is the set of nodes� and e is the set of directed weighted edges representing
atomic formulae in C� Each member of e is a triple �no� nd� w�� where no� nd � n are the origin and
destination nodes respectively� and w is the weight of the edge� The atomic formula �x � y % c�
translates to the edge �x� y� c�� The atomic formula �x � y%c� translates to the edge �y� x��c�� The
atomic formula �x � c� translates to the edge �)��� x� c�� The atomic formula �x � c� translates to
the edge �x�)����c��

The normalization procedure mentioned in the algorithm takes a conjunctive expression and trans�
forms it into an equivalent one where each atomic formula has as comparison operator either �
or �� Atomic formulae �x � y % c� are transformed into �x � y % c � ��� Atomic formulae
�x � y % c�are transformed into �x � y % c% ��� Atomic formulae �x # y % c� are transformed into
�x � y % c� � �x � y % c��

The satis�ability test consists of checking whether the directed weighted graph contains a negative
weight cycle or not� The expression is unsatis�able if the graph contains a negative cycle�

We can generalize De�nition ��� to allow substitutions of several tuples for variables in an expression
C�

De�nition ��� Consider a view

v # 
X��C�Y 	�r� � r� � � � � � rp��

and tuples ti � ri� � � i � k� Assume that Ri�Rj # 	 for all i 	# j� Let Y� # Y ��R��R��� � ��Rk�
and Y� # Y � Y�� Denote by C�t�� t�� � � � � tk� Y�� the modi�ed selection condition obtained when
substituting the values ti�X�� � � i � k� for each occurrence of the variable A � Y� in C�Y ��
C�t�� t�� � � � � tk� Y�� is said to be the substitution of t�� t�� � � � � tk for Y� in C�

Theorem ��� Consider a view

v # 
X��C�Y 	�r� � r� � � � � � rp���

and tuples t�� t�� � � � � tk all either inserted to or deleted from relations r�� r�� � � � � rk respectively� Let
Y� and Y� be de�ned as before� The set of tuples ft�� t�� � � � � tkg is irrelevant to the view v �for every
database instance D� if and only if C�t�� t�� � � � � tk� Y�� is unsatis�able�
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Proof� Similar to the proof of Theorem ����

While we do not propose the statement of Theorem ��� as the basis of an implementation for the
detection of irrelevant updates� it shows that the detection of irrelevant updates can be taken further
by considering combinations of tuples from di�erent relations�

� Di�erential re�evaluation of views

The purpose of this section is to present an algorithm to update a view di�erentially as a result of
updates to base relations participating in the view de�nition� Di	erential update means bringing
the materialized view up to date by identifying which tuples must be inserted into or deleted from
the current instance of the view�

For simplicity� it is assumed that the base relations are updated by transactions and that the
di�erential update mechanism is invoked as the last operation within the transaction �i�e�� as part
of the commit of the transaction�� It is also assumed that the information available when the
di�erential view update mechanism is invoked consists of� �a� the contents of each base relation
before the execution of the transaction� �b� the set of tuples actually inserted into or deleted from
each base relation� �c� the view de�nition� and �d� the contents of the view that agrees with the
contents of the base relations before the execution of the transaction� Notice in particular that �b�
only includes the net changes to the relations� for example� if a tuple not in the relation is inserted
and then deleted within a transaction� it is not represented at all in this set of changes�

�
� Select views

A select view is de�ned by the expression V # �C�Y 	�R�� where C �the selection condition� is a
Boolean expression de�ned on Y � R� Let ir and dr denote the set of tuples inserted into or deleted
from relation r� respectively� The new state of the view� called v�� is computed by the expression
v� # v � �C�Y 	�ir� � �C�Y 	�dr�� That is� the view can be updated by the sequence of operations
insert�V� �C�Y 	�ir��� delete�V� �C�Y 	�dr��� Assuming jvj � jdrj� it is cheaper to update the view by
the above sequence of operations than re�computing the expression V from scratch�

�
� Project Views

A project view is de�ned by the expression V # 
X�R�� where X � R� The project operation
introduces the �rst di�culty to updating views di�erentially� The di�culty arises when the base
relation r is updated through a delete operation�

Example 	�� Consider a relation scheme R # fA�Bg� a project view de�ned as 
B�R�� and the
relation r shown below�
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r � A B

� ��
� ��
� ��

v � B

��
��

If the operation delete�R� f��� ���g� is applied to relation r� then the view can be updated by the
operation delete�V� f��g�� However� if the operation delete�R� f��� ���g� is applied to relation r� then
the view cannot be updated by the operation delete�V� f��g�� The reason for this di�culty is that the
distributive property of projection over di�erence does not hold �i�e�� 
X�r��r�� 	# 
X�r���
X �r����
�

There are two alternatives for solving the problem�

�� Attach an additional attribute to each tuple in the view� a multiplicity counter� which records
the number of operand tuples that contribute to the tuple in the view� Inserting a tuple already
in the view causes the counter for that tuple to be incremented by one� Deleting a tuple from
the view causes the counter for that tuple to be decremented by one� if the counter becomes
zero� then the tuple in the view can be safely deleted�

�� Include the key of the underlying relation within the set of attributes projected in the view�
This alternative allows unique identi�cation of each tuple in the view� Insertions or deletions
cause no trouble since the tuples in the view are uniquely identi�ed�

We choose alternative ��� since we do not want to impose restrictions on the views other than the
class of relational algebra expressions allowed in their de�nition� In addition� alternative ��� becomes
an special case of alternative ��� in which every tuple in the view has a counter value of one�

We require that base relations and views include an additional attribute� which we will denote N �
For base relations� this attribute need not be explicitly stored since its value in every tuple is always
one� The select operation is not a�ected by this assumption� The project operation is rede�ned as


X�r� # ft�X �� j X� # X � fNg and �u � r
�
�u�X� # t�X�� � �t�N � #

P
w�W w�N � where W #

fw j w � r � w�X� # t�X�g�
�
g� Notice that by rede�ning the project operation� the distributive

property of projection over di�erence now holds �i�e�� 
X�r� � r�� # 
X�r��� 
X�r����

To complete the de�nition of operators to include the multiplicity counter the join operation is

rede�ned as r � s # ft�Y�� j Y� # R�S and �u� v
�
�u � r�� �v � s�� �t�R�fNg� # u�R�fNg���

�t�S � fNg� # v�S � fNg�� � �t�N � # u�N � � v�N ��
�
g� where )�� denotes scalar multiplication�

�
� Join views

A join view is de�ned by the expression
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V # R� � R� � � � � � Rp�

We consider �rst changes to the base relations exclusively through insert operations� next we consider
changes to the base relations exclusively through delete operations� and �nally we consider changes
to the base relations through both insert and delete operations�

Example 	�� Consider two relation schemes R # fA�Bg and S # fB�Cg� and a view V de�ned as
V # R � S� Suppose that after the view v is materialized� the relation r is updated by the insertion
of the set of tuples ir � Let r

� # r � ir� The new state of the view� called v
�� is computed by the

expression

v� # r� � s
# �r � ir� � s
# �r � s� � �ir � s��

If iv # ir � s� then v� # v � iv� That is� the view can be updated by inserting only the new set
of tuples iv into relation v� In other words� one only needs to compute the contribution of the new
tuples in r to the join� Clearly� it is cheaper to compute the view v� by adding iv to v than to
re�compute the join completely from scratch� �

This idea can be generalized to views de�ned as the join of an arbitrary number of base relations
by exploiting the distributive property of join with respect to union�

Consider a database D # fr�� r�� � � � � rpg and a view V de�ned as V # R� � R� � � � � � Rp� Let
v denote the materialized view� and the relations r�� r�� � � � � rp be updated by inserting the sets of
tuples ir� � ir� � � � � � irp � The new state of the view v� can be computed as

v� # �r� � ir� � � �r� � ir� � � � � � � �rp � irp ��

Let us associate a binary variable Bi with each of the relation schemes Ri� � � i � p� The value
zero for Bi refers to the tuples of ri considered during the current materialization of the view v
�i�e�� the old tuples�� and the value one for Bi refers to the set of tuples inserted into ri since the
latest materialization of v �i�e�� the new tuples ir�� The expansion of the expression for v

�� using the
distributive property of join over union� can be depicted by the truth table of the variables Bi� For
example� if p # � we have
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B� B� B�

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

which
repre�
sents

r� � r� � r�
r� � r� � ir�
r� � ir� � r�
r� � ir� � ir�
ir� � r� � r�
ir� � r� � ir�
ir� � ir� � r�
ir� � ir� � ir�

where the union of all expressions in the right hand side of the table is equivalent to v�� The �rst row
of the truth table corresponds to the join of the base relations considering only old tuples �i�e�� the
current state of the view v�� Typically� a transaction would not insert tuples into all the relations
involved in a view de�nition� In that case� some of the combinations of joins represented by the rows
of the truth table correspond to null relations� Using the table for p # �� suppose that a transaction
contains insertions to relations r� and r� only� One can then discard all the rows of the truth table
for which the variable B� has a value of one� namely rows �� �� 	� and �� Row � can also be discarded�
since it corresponds to the current materialization of the view� Therefore� to bring the view up to
date we need to compute only the joins represented by rows �� 
� and � That is�

v� # v � �r� � ir� � r��
� �ir� � r� � r��
� �ir� � ir� � r���

The computation of this di�erential update of the view v is certainly cheaper than re�computing the
whole join�

So far we have assumed that the base relations change only through the insertion of new tuples� The
same idea can be applied when the base relations change only through the deletion of old tuples�

Example 	�� Consider again two relation schemes R # fA�Bg and S # fB�Cg� and the view V
de�ned as V # R � S� Suppose that after the view v is materialized� the relation r is updated by
the deletion of the set of tuples dr� Let r

� # r�dr� The new state of the view� called v�� is computed
as

v� # r� � s
# �r � dr� � s
# �r � s� � �dr � s��

If dv # dr � s� then v� # v � dv� That is� the view can be updated by deleting the new set of tuples
dv from the relation v� It is not always cheaper to compute the view v� by deleting from v only the
tuples dv� however� this is true when jvj � jdvj� �



Updating Materialized Views 	��

The di�erential update computation for deletions can also be expressed by means of binary tables�
Thus� the computation of di�erential updates depends on the ability to identify which tuples have
been inserted and which tuples have been deleted� .From now on� all tuples are assumed to be
tagged in such a way that it is possible to identify inserted� deleted� and old tuples�

Example 	�� Consider two relation schemes R # fA�Bg and S # fB�Cg� and a view V de�ned
as V # R � S� Let r and s denote instances of the relations named R and S� respectively� and
v # r � s� Assume that a transaction T updates relations r and s�
Case �� t � ir � is is a tuple that has to be inserted into v�
Case �� t � ir � ds is a tuple that has no e�ect in the view v� and can therefore be ignored�
Case �� t � ir � s is a tuple that has to be inserted into v�
Case �� t � dr � ds is a tuple that has to be deleted from v�
Case �� t � dr � s is a tuple that has to be deleted from v�
Case �� t � r � s is a tuple that already exists in the view v� �

In general� we can describe the value of the tag �eld of the tuple resulting from a join of two tuples
according to the following table�

r� r� r� � r�
insert insert insert
insert delete ignore
insert old insert
delete insert ignore
delete delete delete
delete old delete
old insert insert
old delete delete
old old old

where the last column of the table shows the value of the tag attribute for the tuple resulting from
the join of two tuples tagged according to the values under columns r� and r�� Tuples tagged
as �ignore� are assumed to be discarded when performing the join� In other words� they do not
�emerge� from the join�

The semantics of the join operation has to be re�de�ned once more to compute the tag value of
each tuple resulting from the join based on the tag values of the operand tuples� In the presence
of projection this will be in addition to the computation of the count value for each tuple resulting
from the join as explained in the section on project views� Similarly� the tag value of the tuples
resulting from a select or project operation is described in the following table�

r �C�Y 	�r� 
X�r�
insert insert insert
delete delete delete
old old old
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In practice� it is not necessary to build a table with �p rows� Instead� by knowing which relations have
been modi�ed� we can build only those rows of the table representing the necessary subexpressions
to be evaluated� Assuming that only k such relations were modi�ed� � � k � p� building the table
can be done in time O��k��

Once we know what subexpressions must be computed� we can further reduce the cost of materializ�
ing the view by using an algorithm to determine a good order for execution of the joins� Notice that a
new feature of our problem is the possibility of saving computation by re�using partial subexpressions
appearing in multiple rows within the table� E�cient solutions are being investigated�

�
� Select�Project�Join Views

A select�project�join view �SPJ view� is de�ned by the expression

V # 
X��C�Y 	�R� � R� � � � � � Rp���

where X is a set of attributes and C�Y � is a Boolean expression� We can again exploit the distributive
property of join� select� and project over union to provide a di�erential update algorithm for SPJ
views�

Example 	�	 Consider two relation schemes R # fA�Bg and S # fB�Cg� and a view de�ned as
V # 
A���C���	�R � S��� Suppose that after the view v is materialized� the relation r is updated
by the insertion of tuples ir� Let r� # r � ir � The new state of the view� called v�� is computed by
the expression

v� # 
A���C���	�r
� � s��

# 
A���C���	��r � ir� � s��
# 
A���C���	�r � s�� � 
A���C���	�ir � s��
# v � 
A���C���	�ir � s���

If iv # 
A���C���	�ir � s��� then v� # v � iv� That is� the view can be updated by inserting only
the new set of tuples iv into the relation v� �

We can again use a binary table to �nd out what portions of the expression have to be computed
to bring the materialized view up to date� To evaluate each SPJ expression associated with a row
of the table� we can make use of some known algorithm such as QUEL�s decomposition algorithm
by Wong and Yousse� �WY	�� Once more� there is a possibility of saving computation by re�using
partial computations common to several rows in the table�

We now present the outline of an algorithm to update SPJ views di�erentially�

Algorithm 	��
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The input consists of�

i� the SPJ view de�nition V # 
X ��C�R� � R� � � � �� Rp���

ii� the contents of the base relations rj � � � j � p� and

iii� the sets of updates to the base relations urj � � � j � p�

The output of the algorithm consists of a transaction to update the view�

�� Build those rows of the truth table with p columns corresponding to the relations being updated�

�� For each row of the table� compute the associated SPJ expression substituting rj when the
binary variable Bj # �� and urj when Bj # ��

�� Perform the union of results obtained for each computation in step �� The transaction consists
of inserting all tuples tagged as insert� and deleting all tuples tagged as delete� �

Observe that� �I� we can use for V an expression with a minimal number of joins� Such expression
can be obtained at view de�nition time by the tableau method of Aho Sagiv and Ullman �ASU��
extended to handle inequality conditions �Klu���� and �II� step � poses an interesting optimization
problem� namely� the e�cient execution of a set of SPJ expressions �all the same� whose operands
represent di�erent relations and where intermediate results can be re�used among several expressions�

� Conclusions

A new mechanism for the maintenance of materialized views has been presented� The mechanism
consists of two major components� First� necessary and su�cient conditions for the detection of
database updates that are irrelevant to the view were given� Using previous results by Rosenkrantz
and Hunt we de�ned a class of Boolean expressions for which this detection can be done e�ciently�
Our detection of irrelevant updates extends previous results presented by Buneman and Clemons
and by Hammer and Sarin� Since their papers were presented in the contexts of trigger support
and integrity enforcement� our results can be used in those contexts as well� Second� for relevant
updates� a di�erential view update algorithm was given� This algorithm supports the class of views
de�ned by SPJ expressions�

Our di�erential view update algorithm does not automatically provide the most e�cient way of
updating the view� Therefore� a next step in this direction is to determine under what circumstances
di�erential re�evaluation is more e�cient than complete re�evaluation of the expression de�ning the
view�

This chapter carries the assumption that the views are materialized every time a transaction updates
the database� It is also possible to envision a mechanism in which materialized views are updated
periodically or only on demand� Such materialized views are known as snapshots �AL��� and their
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maintenance mechanism as snapshot refresh�� The approach proposed in this chapter also applies
to this environment� and further work in this direction is in progress�
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�System R� provides a di�erential snapshot refresh mechanism for snapshots de�ned by a selection and projection

on a single base relation �BL��� However	 details of this mechanism have not been published�
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ABSTRACT

We present incremental evaluation algorithms to compute changes to materialized views in relational and

deductive database systems� in response to changes �insertions� deletions� and updates� to the relations� The

view de�nitions can be in SQL or Datalog� and may use UNION� negation� aggregation �e�g� SUM� MIN�� linear

recursion� and general recursion�

We �rst present a counting algorithm that tracks the number of alternative derivations �counts� for each

derived tuple in a view� The algorithm works with both set and duplicate semantics� We present the

algorithm for nonrecursive views �with negation and aggregation�� and show that the count for a tuple can

be computed at little or no cost above the cost of deriving the tuple� The algorithm is optimal in that it

computes exactly those view tuples that are inserted or deleted� Note that we store only the number of

derivations� not the derivations themselves�

We then present the Delete and Rederive algorithm� DRed� for incremental maintenance of recursive views �ne�

gation and aggregation are permitted�� The algorithm works by �rst deleting a superset of the tuples that

need to be deleted� and then rederiving some of them� The algorithm can also be used when the view

de�nition is itself altered�

� Introduction

A view is a derived �idb� relation de�ned in terms of base �stored� or edb� relations� A view
can be materialized by storing its extent in the database� Index structures can be built on the
materialized view� Consequently� database accesses to materialized view tuples is much faster than
by recomputing the view� Materialized views are especially useful in distributed databases� However�
deletion� insertions� and updates to the base relations can change the view� Recomputing the view
from scratch is too wasteful in most cases� Using the heuristic of inertia �only a part of the view
changes in response to changes in the base relations�� it is often cheaper to compute only the changes
in the view� We stress that the above is only a heuristic� For example� if an entire base relation

���
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is deleted� it may be cheaper to recompute a view that depends on the deleted relation �if the new
view will quickly evaluate to an empty relation� than to compute the changes to the view�

Algorithms that compute changes to a view in response to changes to the base relations are called in�
cremental view maintenance algorithms� Several such algorithms with di�erent applicability domains
have been proposed �BC�� NY��� SI��� BLT�	� TB��� BCL��� CW��� Kuc��� QW��� WDSY���
CW��a� DT��� HD���� View maintenance has applications in integrity constraint maintenance� in�
dex maintenance in object�oriented databases �de�ne the index between attributes of interest as a
view�� persistent queries� active database �SPAM��� RS��� �to check if a rule has �red� we may need
to determine if a particular tuple is inserted into a view��

We present two algorithms� counting and DRed� for incremental maintenance of a large class of views�
Both algorithms use the view de�nition to produce rules that compute the changes to the view using
the changes made to the base relations and the old materialized views� Both algorithms can handle
recursive and nonrecursive views �in SQL or Datalog extensions� that use negation� aggregation�
and union� and can respond to insertions� deletions and updates to the base relations� However� we
are proposing the counting algorithm for nonrecursive views� and the DRed algorithm for recursive
views� as we believe each is better than the other on the speci�ed domain�

EXAMPLE ��� Consider the following view de�nition� link�S�D� is a base relation and link�a� b�
is true if there is a link from source node a to destination b� hop�c� d� is true if c is connected to d
via two links i�e� there is a link from node c to some node x and a link from x to d�

CREATE VIEW hop�S�D� AS

�SELECT r��S� r��D

FROM link r�� link r�

WHERE r��D 	 r��S��

Given link # f�a� b�� �b� c�� �b� e�� �a� d�� �d� c�g� the view hop evaluates to f�a� c�� �a� e�g� The tuple
hop�a� e� has a unique derivation� hop�a� c� on the other hand has two derivations� If the view had
duplicate semantics then hop�a� e� would have a count of � and hop�a� c� would have a count of ��

Suppose the tuple link�a� b� is deleted� Then we can re�evaluate hop to f�a� c�g�

The counting algorithm infers that one derivation of each of the tuples hop�a� c� and hop�a� e� is
deleted� The algorithm uses the stored counts to infer that hop�a� c� has one remaining derivation
and therefore only deletes hop�a� e�� which has no remaining derivation�

The DRed algorithm �rst deletes tuples hop�a� c� and hop�a� e� since they both depend upon the
deleted tuple� The DRed algorithm then looks for alternative derivations for each of the deleted
tuples� hop�a� c� is rederived and reinserted into the materialized view in the second step� �

Counting The counting algorithm works by storing the number of alternative derivations of each
tuple t in the materialized view� We call this number count�t�� count�t� is derived from the multiplic�
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ity of tuple t under duplicate semantics� as de�ned in �Mum��� for positive programs and in �MS��b�
for programs with strati�ed negation� Given a program T de�ning a set of views V�� � � � � Vk� the
counting algorithm derives a program T� at compile time� T� uses the changes made to base re�
lations and the old values of the base and view relations to produce as output the set of changes�
&�V��� � � � �&�Vk�� that need to be made to the view relations� We assume that the count value for
each tuple is stored in the materialized view� In the set of changes� inserted tuples are represented
with positive counts and deleted tuples are represented with negative counts� The new materialized
view is obtained by combining the changes &�V��� � � � �&�Vk� with the stored views V�� � � � � Vk �com�
bining counts as de�ned in Section ��� The incremental view maintenance algorithm works for both
set and duplicate semantics� On nonrecursive views we show that counts can be computed at little
or no cost above the cost of evaluating the view �Section 
� for both set and duplicate semantics�
hence it can be used for SQL� For recursively de�ned views� the counting algorithm can be used
e�ectively only if every tuple is guaranteed to have a �nite number of derivations�� and even then
the computation of counts can signi�cantly increase the cost of computation�

We propose to use the counting algorithm only for nonrecursive views� and describe the algorithm
for nonrecursive views only�

Deletion and Rederivation The DRed algorithm can incrementally maintain �general� recursive
views� with negation and aggregation� Given the changes made to base relations� changes to the view
relations are computed in three steps� First� the algorithm computes an overestimate of the deleted
derived tuples� a tuple t is in this overestimate if the changes made to the base relations invalidate
any derivation of t� Second� this overestimate is pruned by removing �from the overestimate� those
tuples that have alternative derivations in the new database� Finally� the new tuples that need to
be added are computed using the partially updated materialized view and the changes made to the
base relations� Only set semantics can be used for this algorithm� The algorithm can also maintain
materialized views incrementally when rules de�ning derived relations are inserted or deleted�

Chapter Outline

Section � compares the results in this chapter with related work� Section � introduces the notation
used in this chapter� Section � describes the counting algorithm for maintaining nonrecursive views�
Section 
 describes how the counting algorithm can be implemented e�ciently� We show that
a computation of counts imposes almost no overhead in execution time and storage� Section 	
explains how negationand aggregation are handled by the counting algorithm of Section �� Section 
discusses the DRed algorithm for maintaining general recursive views� The results are summarized
in Section ��

� Related Work

Ceri and Widom �CW��� describe a strategy to e�ciently update views de�ned in a subset of SQL
without negation� aggregation� and duplicate semantics� Their algorithm depends on keys� and

�An algorithm to check �niteness appears in �MS��b
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cannot be used if the view does not contain the key attributes of a base relation� Qian and Wieder�
hold �QW��� use algebraic operations to derive the minimal relational expression that computes the
change to select�project�join views� The algorithms by Blakeley et al� �BLT�	� and Nicolas and
Yazdanian �The BDGEN system �NY���� are perhaps most closely related to our counting algo�
rithm� Blakeley�s algorithm is a special case of the counting algorithm applied to select�project�join
expressions �no negation� aggregation� or recursion�� In BDGEN� the counts re�ect only certain
types of derivations� are multiplied to guarantee an even count for derived tuples� and all recursive
queries are given �nite counts� Thus the BDGEN counts� unlike our counts� do not correspond to
the number of derivations of a tuple� are more expensive to compute� and the BDGEN algorithm
cannot be used with �SQL� duplicate semantics or with aggregation� while our algorithm can be�

Kuchenho� �Kuc��� and Harrison and Dietrich �the PF algorithm �HD���� discuss recursive view
maintenance algorithms related to our rederivation algorithm� Both of these algorithms cannot han�
dle aggregation �we can�� Where applicable� the PF �Propagation�Filteration� algorithm computes
changes in one derived predicate due to changes in one base predicate� iterating over all derived
and base predicates to complete the view maintenance� An attempt to recompute the deleted tu�
ples is made for each small change in each derived relation� In contrast� our rederivation algorithm
propagates changes from all base predicates onto all derived predicates stratum by stratum� and
recomputes deleted tuples only once� The PF algorithm thus fragments computation� can rederive
changed and deleted tuples again and again� and can be worse that our rederivation algorithm by
an order of magnitude �examples in the �nal section of this chapter�� Kuchenho��s algorithm needs
to store auxiliary relations� and fragments computation in a manner similar to the PF algorithm�

Dong and Topor �DT��� derive nonrecursive programs to update right�linear chain views in response
to insertions only� Dong and Su �DS��� give nonrecursive transformations to update the transitive
closure of speci�c kinds of graphs in response to insertions and deletions� The algorithm does not
apply to all graphs or to general recursive programs� They also need auxiliary derived relations�
and cannot handle negation and aggregation� Urpi and Olive �UO��� need to derive functional
dependencies� a problem that is known to be undecidable� Wolfson et al� �WDSY��� use a rule
language with negation in the head and body of rules� along with auxiliary information about the
number of certain derivations of each tuple� They do not discuss how to handle recursively de�ned
relations that are derivable in in�nitely many iterations� and do not handle aggregation�

� Notation

We use Datalog� mostly as discussed in �Ull���� extended with strati�ed negation �Gel�	� ABW����
and strati�ed aggregation �Mum���� Datalog extended with strati�ed negation and aggregation can
be mapped to a class of recursive SQL queries� and vice versa �Mum���� We chose Datalog syntax
over SQL syntax for conciseness�

De�nition ��� �Stratum Numbers �SN� and Rule Stratum Number �RSN��� Stratum num�
bers are assigned as follows� Construct a reduced dependency graph �RDG� of the given pro�
gram by collapsing every strongly connected component �scc� of the dependency graph �as de�ned
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by �ABW���� to a single node� A RDG is guaranteed to be acyclic� A topological sort of the RDG
assigns a stratum number to each node� If a node represents a scc� all predicates in the scc are
assigned the stratum number of the node� By convention� base predicates have stratum number
# �� The rule stratum number of a rule r� RSN�r�� having predicate p in the head is equal to SN�p��

P refers to the relation corresponding to predicate p� P # fab�mng represents tuples p�a� b� and
p�m�n��

De�nition ��� �&�P ��� For every relation P � relation &�P � contains the changes made to P �

For each tuple t � P � count�t� represents the number of distinct derivations of tuple t� Similarly every
tuple in &�P � has a count associated with it� Negative and positive counts correspond to deletions
and insertions respectively� For instance� &�P � # fab � ��mn � ��g says that four derivations of
tuple p�a� b� are inserted into P and two derivations of tuple p�m�n� are deleted�

The union operator� �� is de�ned over sets of tuples with counts� Given two such sets S� and S��
S� � S� is de�ned as follows�

�� If tuple t appears in only one of S� or S� with a count c� then tuple t appears in S� � S� with
a count c�

�� If a tuple t appears in S� and S� with counts of c� and c� respectively� and c� % c� 	# �� then
tuple t appears in S��S� with a count c�% c�� If c�% c� # � then t does not appear in S��S��

P � refers to the relation P after incorporating the changes in &�P �� Thus� P � # P �&�P �� The
correctness of our algorithm guarantees that a tuple in P � will not have a negative count� only tuples
in relation &�P � will have negative counts� The join operator is also rede�ned for relations with
counts� when two or more tuples join� the count of the resulting tuple is a product of the counts of
the tuples joined�

� Incremental Maintenance of Nonrecursive Views using

Counting

This section gives an algorithm that can be used to maintain nonrecursive views that use negation
and aggregation� We �rst give the intuition using an example�

EXAMPLE ��� Intuition� Consider the view hop de�ned in Example ���� We rewrite the view
de�nition using Datalog for succinctness and ease of explanation� Recall that link # fab�mng
represents tuples link�a� b� and link�m�n��
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Algorithm ���
Input� A nonrecursive program P�

Stored materializations of derived relations in P�
Changes �deletions�insertions� to the base relations occurring in

program P�
Output� Changes �deletions�insertions� to the derived relations in P�
Method�

Mark all rules unprocessed�
For all derived predicates p in program P� do
initialize P � to the materialized relation P �
initialize &�P � # fg

While there is an unprocessed rule
f Q # fr j rule r has the least RSN among all unprocessed rulesg

For every rule r � Q do
f Compute &�P � using the delta rules &i�r�� � � i � n derived

from rule r �De�nition ����
��i�r�� ��p� � s�� � � � � � s�i�� � ��si� � si�� � � � ��

� � � � sn � � � � � � � � � � � � ���
P �# P �&�P �� � Update the predicate that is dened by rule r�

&�P � # set�P ��� set�P � � � � � � � � � � � � � ���

� For optimization only� discussed in Section �
Mark rule r as processed�

g g �

�v�� hop�X�Y � � link�X�Z� � link�Z�Y ��

If the base relation link changes� the derived relation hop may also change� Let the change to
the relation link be represented as &�link�� &�link� contains both inserted and deleted tuples�
represented by positive and negative counts respectively� The new relation link� can be written as�
link % &�link�� The following rule computes the new value for the hop relation in terms of the
relation link� �

hop� �X�Y � � link��X�Z� � link��Z�Y ��

Using link� # link �&�link� and distributing joins over unions� the above rule can alternatively
be written as the following set of rules�

hop� �X�Y � � link�X�Z� � link�Z�Y ��

hop� �X�Y � � ��link��X�Z� � link�Z�Y ��

hop� �X�Y � � link�X�Z� � ��link��Z�Y ��
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hop� �X�Y � � ��link��X�Z� � ��link��Z�Y ��

The �rst rule recomputes relation hop� The remaining three rules de�ne &�hop�� the changes in
relation hop� Of these three rules� the last two can be combined� using the fact that link� #
link�&�link�� The set of rules that de�nes predicate &�hop� is therefore�

�d�� � &�hop��X�Y � �� &�link��X�Z� � link�Z� Y � �d�� � &�hop��X�Y � �� link��X�Z� � &�link��Z� Y �

�

De�nition ��� �Delta Rules�� With every rule r of the form�

�r� p � s� � � � � � sn�

we associate n delta rules &i�r�� � � i � n� de�ning predicate &�p� as follows�

��i�r�� ��p� � s�� � � � � � s�i�� � ��si� �

si�� � � � � � sn�

The counting algorithm is listed as Algorithm ���� Ignore statement ��� �surrounded by a box� for
now� it will be discussed in Section 
�

EXAMPLE ��� Consider the view tri hop de�ned using the view hop �rule v�� Example �����

�v�� � tri hop�X�Y � �� hop�X�Z� � link�Z� Y �

The stratum numbers of predicates hop and tri hop are � and � respectively� Consider the following
base relation link and the associated derived relations hop and tri hop�

link 	 fab� ad� dc� bc� ch� fgg�

hop 	 fac � �� dh� bhg�

tri hop 	 fah � �g�

Let the base relation link be altered as follows�

��link� 	 fab � ��� df�afg�

link� 	 fad� af� bc� dc� ch� df�fgg�

In order to compute the changes� �rst consider the rule with the least RSN� namely v��
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�&��v��� � &hop�X�Y � �� &link�X�Z� � link�Z� Y � �&��v��� � &hop�X�Y � �� link
��X�Z� � &link�Z� Y �

Apply rule &��v��� &�hop� # fac � ��� ag� dgg
Apply rule &��v��� &�hop� # fafg

Combining the above changes� we get�

hop� 	 fac� af� ag� dg� dh� bhg�

Now consider the rules with RSN �� namely rule v� that de�nes predicate tri hop�

����v��� �tri hop�X�Y � � �hop�X�Z� �

link�Z�Y ��

����v��� �tri hop�X�Y � � hop��X�Z� �

�link�Z�Y ��

Apply rule &��v��� &�tri hop� # fah � ��� agg
Apply rule &��v��� &�tri hop� # fg

Combining the above changes� we get�

tri hop� 	 fah� agg�

�

Lemma ��� Let &� be the set of base tuples deleted from E� and t be any ground atom that has
count�t� derivations w�r�t� program P and database state �edb� E� If &� � E then Algorithm ���
derives tuple &�t� with a count of at least �� � count�t��

That is� given that we insist that the deleted base tuples be a subset of the original database� no more
than the original number of derived tuples are deleted from any derived relation during evaluation
of Algorithm ���� Therefore all non�& subgoals have positive counts�

Theorem ��� Let t be any ground atom that has count�t� derivations w�r�t� program P and database
state �edb� E� Suppose tuple t has count�t�� derivations when edb E is altered to a new edb E� �by
insertions�deletions�� Then� Algorithm ��� derives tuple &�t� with a count of count�t��� count�t��

If the program needed set semantics� then Algorithm ��� is optimized by propagating changes to
predicates in higher strata only if the relation P � considered as a set changes from relation P
considered as a set� This optimization is done by Statement ��� in Algorithm ��� and illustrated in
Example 
���
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� Implementation Issues and Optimizations

Algorithm ��� needs a count of the number of derivations for each tuple� Let us see how counts

might be computed during bottom�up evaluation in a database system�

We �rst consider database systems that implement duplicate semantics� such as DB� and SQL�DS
from IBM� and Nonstop SQL from Tandem� The query language SQL in the above systems requires
duplicates to be retained for semantic correctness �ISO���� In an implementation� duplicates may
be represented either by keeping multiple copies of a tuple� or by keeping a count with each tuple�
In both cases� our algorithm works without incurring any overhead due to duplicate computation�
The � operator in our algorithm is mapped to the union operator of the system when the operands
have positive counts� When an operand has negative counts� the � operator is equivalent to multiset
di�erence� Though multiset di�erence is not provided in any of the above example SQL systems� it
can be executed in time O�n�log�n� or O�n� �where n is the size of the operands� depending on the
representation of duplicates�

Second� consider systems that have set semantics� such as NAIL�GLUE! and LDL� Such systems can
treat duplicates in one of two possible ways during query evaluation� ��� Do not eliminate dupli�
cates since duplicate elimination is expensive� and may not have enough payo�� and ��� Eliminate
duplicates after each iteration of the semi�naive evaluation� The �rst implementation is likely to
be useful only for nonrecursive queries because recursive queries may have in�nite counts associated
with them� The �rst implementation is similar to computing duplicate semantics since all derivation
trees will be derived during evaluation� The second implementation removes duplicates� and so it
may seem that our incremental view maintenance algorithm must do extra work to derive all the
remaining derivation trees� But it is not so for nonrecursive queries�

Note� if a view depends on intermediate views� then all the intermediate views have to be mate�
rialized� Alternatively� all the intermediate view de�nitions can be expanded out in full and the
maintenance algorithm applied subsequently to the �attened out de�nition�

�
� Optimization

The boxed statement � in Algorithm ��� optimizes the counting algorithm for views where duplicate
semantics is not desired� and for implementations that eliminate duplicates�

First� note that duplicate elimination is an expensive operation� and we can augment the operation
to count the number of duplicates eliminated without increasing the cost of the operation� counts
can then be associated with each tuple in the relation obtained after duplicate elimination� Let us
assume that we do full duplicate computation within a stratum �by extending the evaluation method
in some way�� and then do duplicate elimination and obtain counts for each tuple computed by the
stratum� When computing the next higher stratum i % �� we do not need to make derivations once
for each count of a tuple in stratum i or less� We do not even need to carry the counts of tuples in
stratum i or lower while evaluating tuples in stratum i% �� We assume that each tuple of stratum
i or less has a count of one� and compute the duplicate semantics of stratum i % �� Consequently�
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the count value for each tuple t corresponds to the number of derivations for tuple t assuming that
all tuples of lower strata have count � or �� Maintaining counts as above in�uences the propagation
of changes in a positive manner� For instance� let predicate p in stratum � have �� derivations for a
tuple p�a�� and let changes to the base tuples delete �� of them� However the changes need not be
cascaded to a predicate q in stratum � because as far as derivations of q are concerned� p�a� has a
count of one as long as its actual count is positive� The incremental computation therefore stops at
stratum �� The boxed statement � in Algorithm ��� causes us to maintain counts as above� Consider
Example ��� if the views had set semantics�

EXAMPLE 	�� Consider relations hop� and hop after the rules &��v�� and &��v�� have been
applied� In order to compute &�hop� we apply the optimization of Statement � from Algorithm ����

��hop�	 set�hop��� set�hop�

	 fac� af� ag� dg� dh� bhg � fac� dh� bhg

	 faf� ag� dgg�

Note that unlike Example ���� the tuple hop�ac���� does not appear in &�hop� and is not cascaded
to relation tri hop� Consequently the tuple �ah � ��� will not be derived for &�tri hop�� �

Using the above optimizations� the extra evaluation cost incurred by our incremental view mainte�
nance algorithm is in computing the duplicate semantics of each stratum� For a nonrecursive stratum
there is usually no extra cost in computing the duplicate semantics� A nonrecursive stratum consists
of a single predicate de�ned using one or more rules� evaluated by a sequence of select� join� project�
and union operators� Each of these operators derives one tuple for each derivation� Thus� tracking
counts for a nonrecursive view is almost as e�cient as evaluating the nonrecursive view�

Even in SQL systems implementing duplicate semantics� it is possible for a query to require set
semantics �by using the DISTINCT operator�� The implementation issues for such queries are similar
to the case of systems implementing set semantics�

� Negation and Aggregation

Algorithm ��� can be used to incrementally maintain views de�ned using negation and aggregation�
However� we need to describe how statement � in Algorithm ��� is executed for rules with negated
and aggregated subgoals� speci�cally how &�S� is evaluated for a negated or GROUPBY subgoal s in
rule r�

�
� Negation

We consider safe strati�ed negation� Negation is safe as long as the variables that occur in a negated
subgoal also occur in some positive subgoal of the same rule� Negation is strati�ed if whenever
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a derived predicate q depends negatively on predicate p� then SN�p� � SN�q� where SN�p� is the
stratum number of predicate p� Nonrecursive programs are always strati�ed�

The following Example 	�� gives the intuition for computing counts with negated subgoals� A
negated subgoal is computed in the same way for both set and duplicate semantics��

EXAMPLE 
�� Consider view only tri hop that uses views tri hop and hop as de�ned in Ex�
ample ���� only tri hop contains all pairs of nodes that are connected using three links but not
using just two�

�v�� only tri hop�X�Y � � tri hop�X�Y � � �hop�X�Y ��

Consider the relation link # fab� ae� af� ag� bc� cd� ck� ed� fd� gh� hkg� The relations hop and tri hop

are fac� ad � �� ah� bd� bk� gkg and fad� ak � �g respectively� The relation only tri hop # fak � �g�
Tuple �a� d� does not appear in only tri hop because hop�a� d� is true� Note that hop�a� d� is true as
long as count�hop�a� d�� � �� Therefore even if count�hop�a� d�� was � or 
 �as against the indicated
value of ��� relation only tri hop would not have tuple �a� d�� �

Consider a negated subgoal �q�X�Y � in rule r de�ning a view� Because negation is safe� the variables
X and Y also occur in positive subgoals in rule r� We represent the relation corresponding to the
subgoal �q as (Q� The relation (Q is computed using relation Q and the particular bindings for
variables X and Y provided by the positive subgoals in rule r� A tuple �a� b� is in (Q with a count of
� if� and only if� �i� the positive subgoals in rule r assign the values a and b to the variables X and
Y � and �ii� the tuple q�a� b� is false ��a� b� 	� Q��

Recall that Algorithm ��� creates and evaluates Delta rules of the form &i�r��

��i�r�� ��p� � s�� � � � � � s�i�� � ��si� � si�� � � � � � sn�

In order to de�ne how rule &i�r� is evaluated� we exhaustively consider all the positions where a
negated subgoal can occur in rule &i�r� and de�ne how the subgoal will be computed�

Case �� Subgoal sj # �q� j between i % � and n� The relation (Q is computed as described above�

Case �� Subgoal s�j # ��q�
� � j between � and i� �� The relation (Q

�
is equal to the relation (Q� by

the following Lemma�

Lemma 
�� For a negated subgoal� �q� predicate ��q�� is equivalent to predicate ��q���

Because negation is strati�ed� relation Q� is computed before rule &i�r� is used� Relation (Q� is
computed from Q� in the same way that (Q is computed from Q�

�Formal semantics of Duplicate Datalog with negation is given in �MS��b
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Case �� Subgoal &�si� # &��q�� The relation &� (Q� is computed from relations &�Q� and Q
according to De�nition 	���

De�nition 
�� �&� (Q��� Say Q represents the relation for predicate q and &�Q� represents the
changes made to Q� A tuple t is in &� (Q� with count�t� # � if

t � &�Q� and t 	� Q �&�Q��

and with count�t� # �� if
t � &�Q� and t 	� Q�

Note that t � &� (Q� only if t � &�Q��

Note that De�nition 	�� allows &�Q� to be computed without having to evaluate the positive subgoals
in rule &i�r�� This is important for e�ciency� since the &�subgoal is usually the most restrictive
subgoal in the rule and would be used �rst in the join order�

Theorem 
�� Algorithm ��� works correctly in the presence of negated subgoals�

�
� Aggregation

Aggregation is often used to reduce large amounts of data to more usable form� In this section we
use the semantics for aggregation as discussed in �Mum���� The following example illustrates the
notation and semantics�

EXAMPLE 
�� Consider the relation link from Example ��� and let tuples in link also have a
cost associated with them� i�e� link�s� d� c� represents a link from source s to destination d of cost
c� We now rede�ne the relation hop as follows�

hop�S�D�C� % C�� �� link�S� I� C�� � link�I�D�C��

Using hop we now de�ne the relation min cost hop as follows�

�v�� min cost hop�S�D�M� � GROUPBY�hop�S�D�C�� �S�D��M 	 MIN�C���

Relation min cost hop contains pairs of nodes along with the minimum cost of a hop between them�
�

Consider a rule r that contains a GROUPBY subgoal de�ned over relation U � The GROUPBY sub�
goal represents a relation T whose attributes are the variables de�ned by the aggregation� and
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the variables (Y over which the groupby occurs� In Example 	��� the variable de�ned by the
aggregation is M � and the groupby occurs over the variables fS�Dg� The GROUPBY subgoal
GROUPBY�hop�S�D�C�� �S�D��M # MIN�C�� thus de�nes a relation over variables fS�D�Mg� The
relation T contains one tuple for every distinct value of the groupby attributes� All tuples in the
grouped relation U that have the same values for the grouping attributes in set (Y � say (y� contribute
one tuple to relation T � a tuple we denote by T�y� In Example 	��� the relation for the GROUPBY
subgoal has one tuple for every distinct pair of nodes �S�D��

Like negation� aggregation subgoals are non�monotonic� Consider inserting tuple � into the relation
U where the values of the (Y attributes in tuple � are # (c� Inserting � can possibly change the
value of the aggregate tuple in relation T that corresponds to (c� i�e� tuple T(c� For instance� in
Example 	��� inserting the tuple hop�a� b� ��� can only change the min cost hop tuple from a to b�
The change actually occurs if the previous minimum cost from a to b had a cost more than ��� A
similar potential change can occur to tuple T(c if an existing tuple � is deleted from relation U � Using
the old tuple T(c and the tuples in &�U �� the new tuple corresponding to the groupby attribute value
(c can be computed incrementally for each of the aggregate functions COUNT� SUM� and for any other
incrementally computable function �DAJ���� For instance consider the aggregation operation SUM�
The sum of the attribute A of the tuples in a group can be computed using the old sum when a new
tuple is added to the group by adding ��A to the old sum� Functions like AVERAGE and VARIANCE that
can be decomposed into incrementally computable functions can also be incrementally computed�
For aggregations like MIN� MAX incremental computation is not possible with respect to deletions
from the underlying relation� However� the aggregates can be incrementally computed in response
to insertions into the underlying relation�

To apply Algorithm ��� we need to specify how a GROUPBY subgoal is evaluated in a Delta rule &i�r��

��i�r�� ��p� � s�� � � � � � s�i�� � ��si� � si�� � � � � � sn�

&i�r� could have one or more aggregate subgoals� If an aggregate subgoal t occurs between positions
i % � and n� then the relation T for the subgoal is computed as in the case of a normal aggregate
subgoal� If an aggregate subgoal occurs between positions �� � � � � i � � then the relation T � for the
subgoal can be computed as before using relation U� � If the aggregate subgoal occurs in position j�
then the following algorithm is used to compute the relation &�T ��

Algorithm 
��
Input� An aggregate subgoal�

t # GROUPBY�U� (Y � (Z # � � ���
Changes to the relation for the grouped

predicate u� &�U ��
Output� &�T ��
Method�

For every grouping value (y � 
�Y&�U �
Incrementally compute T�y

� from T�y �old�
and &�U ��

If T�y
� and T�y are di�erent then
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&�T � # &�T � � f�T�y����g � Insert old
� tuple T�y into &�T � with a count # ���

&�T � # &�T � � f�T�y
� � ��g � Insert new

� T�y
� into &�T � with a count # ��

� Else the aggregate tuple is unchanged
� and nothing needs to be done�

�

If the aggregation function is not incrementally computable �DAJ���� and is not even decomposable
into incrementally computable functions� then the computation of T�y

� may be more expensive� Also
note that relation U has to be materialized for e�cient incremental computation of T�y

�� For non
incrementally computable aggregate functions� the tuple T�y

� has to be computed using the tuples
of relation U� that have the value (y for the variables (Y �

Lemma 
�� For an aggregate subgoal t� relation T � is equivalent to T �&�T ��

Theorem 
�� Algorithm ��� works correctly in the presence of aggregate subgoals�

� Incremental Maintenance of Recursive Views

We present the DRed algorithm to incrementally maintain recursive views that use negation and
aggregation and have set semantics�� The DRed algorithm can also be used to maintain nonrecur�
sive views� however the counting algorithm is expected to be more e�cient for nonrecursive views�
Conversely� we note that the counting algorithm can also be used to incrementally maintain certain
recursive views �GKM����

A semi�naive �Ull��� computation is su�cient to compute new inserted tuples for a recursively de�ned
view when insertions are made to base relations� In the case of deletions however� simple semi�naive
computation would delete a derived tuple that depends upon a deleted base tuple i�e� if tuple t has
even one derivation tree that contains a deleted tuple� then t is deleted� Alternative derivations of t
are not considered� Semi�naive therefore computes an overestimate of the tuples that actually need
to be deleted� The DRed algorithm re�nes this overestimate by considering alternative derivations
of the deleted tuples �in the overestimate� as follows�

�� Delete a superset of the derived tuples that need to be deleted�

�� Put back those deleted tuples that have alternative derivations�

�The DRed algorithm is similar to an algorithm developed independently	 and at the same time as our work	 by

Ceri and Widom �CW��a	 though their algorithm is presented in a production rule framework	 and they don�t handle

aggregation and insertions�deletions of rules�



Maintaining Views Incrementally 
��

If base tuples are inserted into the database� then a third step is used to compute new derived tuples�
This three step process is formalized as an algorithm� and proved correct� in �GMS����

A recursive program P can be fragmented into programs P�� � � � �Pn� where Pi # frjRSN�r� # ig
constitutes stratum i� The DRed algorithm computes change to a view de�ned by a recursive
program P� by applying the above three steps successively to every stratum of P� Every derived
predicate in program Pi depends only on predicates that are de�ned in P�� � � � �Pi��� All base tuples
are in stratum � i�e� in P�� Changes made to stratum i a�ect only those strata whose SN is � i�
Propagating the changes stratum by stratum avoids propagating spurious changes across strata�
Let Deli�� �Addi��� be the set of tuples that have been deleted �inserted� from strata �� � � � � i � �
respectively� Consider stratum i after strata �� � � � � i�� have been updated� Tuples are deleted from
stratum i based on the set of deleted tuples Deli��� New tuples are inserted into stratum i based
on the set of inserted tuples Addi���

Theorem ��� Let &� and &� be the set of base tuples deleted and inserted respectively� from the
original set of base tuples E� The new derived view computed by the DRed algorithm contains tuple
t if and only if t has a derivation in the database E� # �E �&�� �&��

The DRed algorithm can be applied to recursive views with strati�ed negation and aggregation also�
The details of the algorithm are given in �GMS����

 Conclusions and Future Work

We have presented general techniques for maintaining views in relational and deductive databases�
including SQL with duplicate semantics� when view de�nitions include negation� aggregation and
general recursion� The algorithms compute changes to a materialized view in response to insertions�
deletions and updates to the base relations�

The counting algorithm is presented for nonrecursive views� We show how this incremental view
maintenance algorithm �ts nicely into existing systems with both set and multiset semantics� The
counting algorithm is a general�purpose algorithm that uniformly applies to all nonrecursive views�
and is the �rst to handle aggregation� The DRed algorithm is presented for maintaining recursive
views� DRed is the �rst algorithm to handle aggregation in recursive views� The algorithm �rst
computes an over estimate of tuples that need to be deleted in response to changes to the underlying
database� This estimate is re�ned to obtain an exact answer� New derived tuples are computed
subsequently�

Counting can be used to maintain recursive views also� However computing counts for recursive
views is expensive and furthermore counting may not terminate on some views� Techniques to
detect �niteness �MS��b� and to use partial derivations for counting are being explored� Similarly
DRed can be used for nonrecursive views also but it is less e�cient than counting�
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The techniques to handle negation and aggregation as described in this chapter can be used to
extend many other existing view maintenance techniques�

Examples comparing PF with DRed

The view maintenance algorithm described in �HD��� is called the PF algorithm�

EXAMPLE ��� This example shows that DRed can beat PF by a factor of n� Consider the derived
view tc to be the transitive closure of a given edge predicate e� Consider the graph shown in Figure ��

Say that tuple e�x� a�� is deleted �the crossed out edge�� The tuples tc�x� ai�� � � i � m should also
be deleted� Whenever PF concludes that a tuple tc�x� ai� is deleted� it also concludes that tuple
tc�x� y� is deleted and then derives tc�x� y� using the alternative derivation of tc�x� y� of length N �
Therefore PF rederives the tuple m times� DRed on the other hand rederives tuple tc�x� y� once
and that too using just one inference that involves the tc tuples for the valid paths of length N � �
on the alternative derivation of tc�x� y�� �

EXAMPLE ��� This example show that PF can beat DRed by a factor of n� Consider the graph
shown in Figure ��

Say that tuple e�x� b� is deleted �the crossed out edge�� PF concludes that tc�x� d� is not deleted
using the alternative path through c� None of the tuples tc�x� ai� is therefore considered potentially
deleted� However� DRed propagates the deletion of tc�x� d� to each of the ais and later rederives
them� �

If DRed is applied to a nonrecursive program� then DRed always does as well as PF because both PF
and DRed derive the same overestimate of deleted tuples� However� PF can still do worse because it
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propagates changes predicate by predicate and strata are not completely computed at intermediate
stages� Therefore to �nd alternative derivations for a tuple in the kth stratum PF uses the base
predicates and recomputes �some� tuples in strata �� � � � � k� �� For nonrecursive programs� PF can
easily be modi�ed to address this problem� However� PF faces another problem if a tuple t can be
deleted because of n base tuples band has an alternative derivation� then the alternative derivation
will be computed n times�
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INCREMENTAL MAINTENANCE OF VIEWS

WITH DUPLICATES

Timothy Gri�n� Leonid Libkin

ABSTRACT

We study the problem of e�cient maintenance of materialized views that may contain duplicates� This

problem is particularly important when queries against such views involve aggregate functions� which need

duplicates to produce correct results� Unlike most work on the view maintenance problem that is based on

an algorithmic approach� our approach is algebraic and based on equational reasoning� This approach has

a number of advantages it is robust and easily extendible to new language constructs� it produces output

that can be used by query optimizers� and it simpli�es correctness proofs�

We use a natural extension of the relational algebra operations to bags �multisets� as our basic language� We

present an algorithm that propagates changes from base relations to materialized views� This algorithm is

based on reasoning about equivalence of bag�valued expressions� We prove that it is correct and preserves a

certain notion of minimality that ensures that no unnecessary tuples are computed� Although it is generally

only a heuristic that computing changes to the view rather than recomputing the view from scratch is more

e�cient� we prove results saying that under normal circumstances one should expect the change propagation

algorithm to be signi�cantly faster and more space e�cient than complete recomputing of the view� We also

show that our approach interacts nicely with aggregate functions� allowing their correct evaluation on views

that change�

� Introduction

In database management systems base relations are often used to compute views� Views are derived
data that can be materialized �stored in a database� and subsequently queried against� If some
of the base relations are changed� materialized views must be recomputed to ensure correctness of
answers to queries against them� However� recomputing the whole view from scratch may be very
expensive� Instead one often tries to determine the changes that must be made to the view� given
the changes to the base relations and the expression that de�nes the view�

���
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The problem of �nding such changes to the views based on changes to the base relations has come
to be known as the view maintenance problem� and has been studied extensively �BC�� BLT�	�
Han�� QW��� GMS��� CW��� Kuc��� SI���� The name is slightly misleading since� as a reading of
this literature will indicate� any solution to the problem is applicable in a large number of practical
problems� including integrity constraint maintenance� the implementation of active queries� triggers
and monitors�

Most of the work on view maintenance has assumed that relations are set�valued� that is� duplicates
are eliminated� However� most practical database systems use bags �multisets� as the underlying
model� They do handle duplicates� which is particularly important for evaluation of aggregate
functions� For instance� if the average salary of employees is to be computed� then one applies the
aggregate AVG to 'Salary�Employees�� Duplicates cannot be removed from the projection since the
result would be wrong when at least two employees had the same salary� Not eliminating duplicates
also speeds up query evaluation� as duplicate elimination is generally a rather expensive operation�

Many theoretical results obtained for set�theoretic semantics do not carry over to bags� In trying to
bridge the gap between theoretical database research and practical languages� one active research
topic has been the design of bag languages �Klu��� zzM�� KG�
�� Bag primitives �Alb��� formed the
basis for the algebras suggested by �GM��� LW��b�� These algebras turned out to be equivalent and
accepted as the basic bag algebra� In this chapter we use the basic bag algebra from �GM��� LW��b��
It was also shown that the basic bag algebra essentially adds the correct evaluation of aggregate
functions to the relational algebra� and this continues to hold when nested relations are present
�LW��a�� There are a number of deep results on the complexity and expressive power of bag languages
�GM��� Alb��� LW��b� LW��a� LW��a� LW��b� JVdB����

The main goal of this chapter is to lay the foundation for incremental maintenance of views de�ned in
the bag algebra� We advocate an approach based on equational reasoning� That is� for each primitive
in the bag algebra we derive an equation that shows how the result of applying this primitive changes
if some changes are made to its arguments� We do it independently for each primitive in the language�
then� if an expression is given� the change propagation algorithm calculates changes to the view by
recursively applying those rules�

Our approach can be seen as generalizing �BLT�	� Han�� to unrestricted queries in the the full
bag algebra� A similar equational approach was used in �GLT�� for the relational algebra� That
work grew out of an analysis of �QW���� which presented an iterative algorithm for propagating
changes� This was improved in �GLT�� with a recursive algorithm that is similar in style to the one
we present here for the bag algebra� The recursive form of these algorithms allows correctness to be
proved with a simple proof by induction� In addition� our approach has a number of other positive
features� In particular�

As we shall see in section �� the recursive form of our algorithm allows us to use invariants
concerning minimality to further simplify change expressions� Such assumptions would not be
available to a later phase of query optimization�
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Figure � Relations S�	 S�	 Paid and view Unpaid

The approach is robust� if language changes �e�g� new primitives are added�� one only has to
derive new rules for the added primitives� leaving all other rules intact� As long as the new
rules are correct� the correctness of the change propagation algorithm is not a�ected�

The resulting changes to the view are obtained in form of expressions in the same language used
to de�ne the view� This makes additional optimizations possible� For example� the expressions
for changes that are to be made �e�g� for sets�bags of tuples to be deleted�added� can be given
as an input to any query optimizer that might �nd an e�cient way of calculating them�

In contrast� these features may be very di�cult to obtain in a purely algorithmic approach to view
maintenance� In section  we will outline the di�erence between our approach and a more algorithmic
presented in �GMS����

Example� Suppose we have a database with the relations S��Pid�Cost�Date� and S��Pid�Cost�Date�
for recording shipments of parts received from two di�erent suppliers� The attribute Pid is a unique
identi�er for parts� Cost is the associated cost of a part� and Date is the day the shipment arrived�
In addition we have the relation Paid�Pid�Cost� S�� which registers parts that have been paid for�
The attribute S must have the value � or �� indicating which supplier was paid �see Figure ���

We would like to compute the total amount of money we owe  the cost of all parts received by
not yet paid for� One way of doing this is to de�ne a view Unpaid as

V�
def
# �'Pid�Cost�S�� �'Pid�Cost�S���

V�
def
# 'Pid�Cost�Paid�

Unpaid
def
# V� � V�
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Here � is the additive union that adds up multipliicities of elements in bags� In particular� it
will produce two copies of the record �Pid 
 P�� Cost 
 �� ���� in calculating V�� The modi�ed
subtraction monus � subtracts multiplicities� If a record r occurs n times in S and m times in T �
then the number of occurrences of r in S � T is n�m if n � m and � if n � m�

Assume that the derived data that we are interested in is the amount still owed�

Owe # TOTAL�'Cost�Unpaid��

Note that multiset semantics gives the correct answer here� while set�theoretic semantics would not�
For example� for relations shown in �gure �� the amount Owe is ������ However� if we switch to
set semantics and calculate Unpaid as �'Pid�Cost�S�� � 'Pid�Cost�S��� � 'Pid�Cost�Paid�� then Owe
calculated by the same formula equals ������� Thus� we do need multiset semantics for maintaining
the view Unpaid in a correct manner�

Suppose that a transaction changes Paid by deleting the bag �Paid and inserting the bag �Paid�
That is�

Paidnew # �Paid � �Paid� ��Paid�

Rather than recomputing the entire view Unpaid from scratch� we would like to �nd expressions
�Unpaid and �Unpaid such that

Unpaidnew # �Unpaid � �Unpaid� ��Unpaid�

This has the potential of greatly reducing the amount of computational resources needed to recom�
pute this new value�

For example� let �Paid contain the single record �Pid 
 P
�Cost 
 �� ���� S 
 �� and �Paid
contain the single record �Pid
 P��Cost
 �� ���� S
 ��� �That is� we discovered that a payment
was made to the �rst supplier for P� rather than the second for P
�� Then it is fairly easy to see
that �Unpaid should evaluate to �Pid 
 P��Cost
 �� ���� and that �Unpaid should evaluate to
�Pid
 P
�Cost
 �� �����

Our algorithm treats the changes to base relations as black boxes� For this example it produces the
delete bag� �Unpaid�

�'Pid�Cost��Paid� � 'Pid�Cost��Paid��minUnpaid�

and the insert bag� �Unpaid�

�'Pid�Cost��Paid� � 'Pid�Cost��Paid�� � �V� � V���

Here SminT is a multiset such that the number of occurrences of a record r in it is min�n�m��
where n and m are numbers of occurrences in S and T respectively� Notice that the evaluation
of the expressions for �Unpaid and �Unpaid can be made very e�cient� First we assume that
all relations S�� S� and Unpaid have an index built on the them that uses Pid as a key� Then� in
order to evaluate the expressions for �Unpaid and �Unpaid we only have to �nd the numbers of
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occurrences of elements of 'Pid�Cost��Paid� and 'Pid�Cost��Paid� in V�� V� and 'Pid�Cost�Paid��
For example� to �nd �Unpaid� for each r � �Paid we �nd x� y� z� v as the numbers of occurrences
of r in �Paid� �Paid� V� and V�� Then R occurs minf�x � y�� �z � v�g times in �Unpaid� Thus�
the complexity of such evaluation depends on how fast we can access elements of the base relations�
Access to the base relations is typically fast� compared to access to views�

Even if no index exists� the time complexity is still linear in the sizes of the base relations� The big win
here is in space usage� Whereas recomputing the whole view Unpaid would require space linear in the
size of base relations� the propagation algorithm only requires that we �nd the number of occurrences
of certain records in base relations and then evaluate an arithmetic expression� Therefore� space
needed for updating the view Unpaid is linear in the size of changes to the base relations� Typically�
these changes are relatively small compared to the size of the relations� Thus� calculating changes to
the view as opposed to reconstructing the view from scratch leads at least to substantial improvement
in space usage�

Once changes to Unpaid are calculated� the new value of Owe is found as

Owenew # �Owe � TOTAL�'Cost��Unpaid���

% TOTAL�'Cost��Unpaid���

The correctness of this is guaranteed for our solution� Indeed� Owenew calculated above is ��������
and one can see that it is the correct amount still owed once changes to Paid have been made�

Organization� In Section � we introduce our notation� describe our basic bag algebra� and state
the problem� We present some basic facts concerning equational reasoning for our bag algebra in
Section �� In Section � we present our change propagation algorithm for view maintenance� We
then address aggregate functions in Section 
� In Section 	 we analyze the complexity of the results
produced by our algorithm� We discuss related work in Section � Finally� we conclude in Section �
with some remarks concerning future work� All proofs can be found in �GL�
��

� Basic Notation

�
� The Bag Algebra� BA

As we mentioned in the introduction� several equivalent approaches to bag�based database languages
have been proposed �GM��� LW��b� LW��b�� As our basic language in which we formulate the
change propagation algorithm we take a restriction of those languages to �at bags �that is� bag�
valued attributes are not allowed��

In what follows� base relation names are denoted by the symbols R� R�� R�� � � �� Let p range over
quanti�er�free predicates� and A range over sets of attribute names� BA expressions are generated
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by the following grammar�

S ��# 	 empty bag
j R name of stored bag
j �p�S� selection
j 'A�S� projection
j S � S additive union
j S � S monus
j SminS minimum intersection
j SmaxS maximum union
j ��S� duplicate elimination
j S � S cartesian product

To de�ne the semantics of these operations� let count�x� S� be the number of occurrences of x in a
bag S� Then� for any operation e in the language� we de�ne count�x� e�S� T �� or count�x� e�S�� as a
function of count�x� S� and count�x� T � as follows�

count�x� �p�S�� #

�
count�x� S� p�x� is true
� p�x� is false

count�x�'A�S�� #
X

y�S��A�y	�x

count�y� S�

count�x� S � T � # count�x� S� % count�x� T �

count�x� S � T � # max�count�x� S�� count�x� T �� ��

count�x� SminT � # min�count�x� S�� count�x� T ��

count�x� SmaxT � # max�count�x� S�� count�x� T ��

count�x� ��S�� #

�
� count�x� S� � �
� count�x� S� # �

count��x� y�� S � T � # count�x� S� � count�y� T �

This language is not intended to be minimal� For example� min can be de�ned as SminT
def
# S �

�S � T �� For the full characterization of interde�nability of the operations of BA� consult �LW��b��

We use the symbols S� T � W � and Z to denote arbitrary BA expressions� and s to denote a database
state� that is� a partial map from relation names to multisets� If s is a database state and T is
a BA expression such that s is de�ned on all relation names mentioned in T � then s�T � denotes
the multiset resulting from evaluating T in the state s� �Note that s is a function� so we consider
evaluating T in s as the result of applying s to T �� The notation T #b S means that for all database
states s� if s is de�ned on all relation names mentioned in S and T � then s�T � # s�S��

�
� Transactions

A transaction is a program that changes the state of a database in one atomic step� There are many
approaches to languages for specifying transactions� �see for example �AV��� Qia��� Ull����� In this
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chapter we prefer to adopt an abstract view of transactions� in order to make the results independent
of a particular language used� but at the same time readily applicable to any such language�

The abstract transactions to be considered are of the form

t # fR� � �R�
� �R�� ��R��
� � � �

Rn � �Rn
� �Rn� ��Rng�

The expressions �Ri and �Ri represent the multisets deleted from and inserted into base relation
Ri� More formally� when transaction t is executed in state s� then value of Ri in state t�s� becomes
s��Ri

� �Ri� ��Ri��

The expression T is a pre�expression of S w�r�t� t if for every database state s we have s�T � #b t�s��S��
It is easy to check that

pre�t� S�
def
# S��R�

� �R�� ��R��
� � � �

�Rn
� �Rn� ��Rn��

is a pre�expression of S w�r�t� t� In other words� we can evaluate pre�t� S� before we execute t in
order to determine the value that S will have afterwards�

�
� Problem Statement

Suppose S�R�� � � � � Rn� is a BA expression and t is a transaction� We would like to determine how
t�s changes to the base relations propagate to changes in the value of S� In particular� we seek to
construct expressions �S and �S� called a solution for pre�t� S�� such that

pre�t� S� #b �S � �S� ��S�

Note that the expressions �S and �S are to be evaluated before t is executed �and committed��
These solutions can be used in many applications involving the maintenance of derived data� For
example� in the case of view maintenance this allows us to recompute the value of S in the new state
from its value in the old state and the values of �S and �S� For integrity maintenance it allows
us to check data integrity before a transaction is committed� thus allowing for the transaction to be
aborted without the expense of a roll�back operation�

Clearly� not all solutions are equally acceptable� For example� �S # S and �S # pre�t� S� is
always a solution� How can we determine which are �good� solutions� First� if S is a materialized
view� then it should be generally cheaper to evaluate �S � �S� � �S than to evaluate pre�t� S�
in the current state �or to evaluate S after t has been executed�� Second� we should impose some
�minimality� conditions on �S and �S to make sure that no unnecessary tuples are produced� In
particular�

�� �S � S #b 	 � We only delete tuples that are in S�
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�� �Smin�S #b 	 � We do not delete a tuple and then reinsert it�

A solution meeting condition ��� will be called weakly minimal� while a solution meeting both
conditions ��� and ��� will be called strongly minimal� Note that� in contrast to the relational
case �QW���� it does not make sense to insist that S be disjoint from �S since a transaction may
increase the multipliicities of elements in S�

We will argue that minimality �weak or strong� is especially desirable due to the way in which
changes interact with aggregate functions� For example� we have

TOTAL��S � �S� ��S� # �TOTAL�S� � TOTAL��S�� % TOTAL��S�

assuming a �weakly or strongly� minimal solution�

Again� not all strongly minimal solutions are equally acceptable� For example� the pair

�Q # Q � pre�t� Q�

and
�Q # pre�t� Q� � Q

is a strongly minimal solution� However� one does not win by using it for maintaining the view given
by Q�

The main goal of this chapter is to present an algorithm for generating �at compile time� strongly
minimal solutions to the view maintenance problem and demonstrate that they are computationally
more e�cient than recomputing the view �at run�time��

� Preliminaries

This section presents the equational theory underlying our change propagation algorithm� A change
propagation algorithm for the relational algebra was presented in �QW���� based on a collection
of equations that are used to �bubble up� change sets to the top of an expression� For example�
�QW��� uses the equation

�S ��S�� T # �S � T � � ��S � T �

to take the insertion �S into S and propagate it upward to the insertion �S � T into S � T �

Our �rst step is to de�ne a collection of such propagation rules for bag expressions� The situation
is more complicated for BA expressions since they do not obey the familiar laws of boolean algebra
that we are accustomed to using with set�valued relational expressions� For bag expression� the
above example now becomes

�S ��S� � T # �S � T � � ��S � �T � S���

which is not immediately obvious�
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P�� �p�S � �S� #b �p�S� � �p��S�
P�� �p�S ��S� #b �p�S� � �p��S�
P�� 'A�S � �S� #b 'A�S� � 'A��SminS�
P�� 'A�S ��S� #b 'A�S� �'A��S�
P
� �S � �S� � T #b �S � T � � ��SminS�
P	� �S ��S� � T #b �S � T � ��S
P� �S � �S� � T #b �S � T � � �S
P�� S � �T � �T � #b �S � T � � ���T minT � � �T � S��
P�� �S ��S� � T #b �S � T � � ��S � �T � S��
P��� S � �T ��T � #b �S � T � � �T
P��� �S � �S�minT #b �SminT � � ��S � �S � T ��
P��� �S ��S� minT #b �SminT � � ��Smin �T � S��
P��� �S � �S�maxT #b �SmaxT � � ��Smin �S � T ��
P��� �S ��S� maxT #b �SmaxT � � ��S � �T � S��
P�
� ��S � �S� #b ��S� � ����SminS� � �S � �S��
P�	� ��S ��S� #b ��S� � ����S� � S�
P�� �S � �S�� T #b �S � T � � ��S � T �
P��� �S ��S� � T #b �S � T � � ��S � T �

Figure � Change propagation equations for bag expressions

Figure � contains our equations for change propagation in bag expressions� Some subexpressions
are annotated with a � �for a deletion bag� or a � �for an insertion bag�� This annotation simply
emphasizes the intended application of these equations � when read as left�to�right rewrite rules�
they tell us how to propagate changes upward in an expression� Note that the correctness of these
equations involves no assumptions concerning minimality of the change bags�

Theorem � The equations of Figure � are correct�

Example� By repeated applications of the rules in �gure � we can propagate any number of changes
upward� Consider the expression U # S � T � Suppose that

pre�t� U � #b ��S � �S� ��S� � ��T � �T � ��T ��

The changes to S and T can be propagated upward and expressed as changes to U as follows�

��S � �S� ��S� � ��T � �T � ��T �
P�
#b ���S � �S� ��S� � �T � �T �� ��T
P�
#b ���S � �S� � �T � �T �� ��S� ��T
P�
#b ����S � �S� � T � � ��T minT �� ��S� ��T
P�
#b ����S � T � � ��SminS�� � ��T minT �� ��S� ��T

#b �U � ��U � ���U
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where ��U # ��SminS����T minT � and��U # �S��T � The last step is simply an application
of the general rules

G�� �S � T � �W #b S � �T �W �
G�� �S � T � � W #b S � �T �W �

which are applied in order to collect all deletions into one delete bag and all insertions into one insert
bag�

Repeated application of the rules of �gure � guarantees a solution� but not necessarily a strongly
minimal one� However� the following theorem tells us that any solution can be transformed into a
strongly minimal one�

Theorem � Suppose that W #b �Q � ��Q� ���Q� Let

��Q # �Qmin��Q� � ��Q

and
��Q # ��Q � �Qmin��Q��

Then it follows that
a� W #b �Q � ��Q� ���Q
b� ��Q � Q #b 	
c� ��Qmin��Q #b 	�

Returning to the example from above� ��U and ��U can be transformed to a strongly minimal
solution by taking ��U to be

�U min ���SminS� � ��T minT ��� � ��S ��T �

and ��U to be
��S ��T � � �U min ���Smin S� � ��T minT ���

Although these expressions are rather complex� they can be greatly simpli�ed to

��U
def
# ��S � �T � � ��T � �S�

��U
def
# ��S � �T � � ��T � �S�

under the assumption that the solutions ��S��S� and ��T��T � are strongly minimal �details
omitted��

This example illustrates the three�step process that was used to derive the recursive algorithm
presented in the next section� First� a general solution is derived by repeated application of the
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propagation rules of �gure �� Second� a strongly minimal solution is obtained by application of the�
orem �� Third� the results are simpli�ed under the assumption that all solutions for subexpressions
are strongly minimal�

Note that if we are only concerned with correctness� then there is considerable freedom in the design
of the propagation rules presented �gure �� For example� we could replace rule P� with

S � �T � �T � #b �S � T � � ��S � �T � �T �� � �S � T ��

However� we have designed our rules from a computational point of view� Note that the structure
of each equation in �gure � follows the same pattern� For any operation e and its value V #
e�R�� � � � � Rn�� n # � or n # �� if one of its arguments changes� then its value V � on changed
arguments is obtained as either V � � or V ��� The expressions for� and � are always of special
form� Intuitively� they are �controlled� by �Ris and �Ris� that is� could be computed by iterating
over them and fetching corresponding elements from base relations� rather than by iterating over
base relations� Furthermore� this special form is preserved in the transformations de�ned in theorem
��

For example� to compute Z # ���T minT � � �T � S�� �rule P� in �gure ��� for each element
x � �T � let n�m and k be numbers of occurrences of x in �T � T and S respectively� Then x
occurs min�n�m� � �m � k� times in Z� Thus� to compute Z� we only fetch elements in �T from
T and S� Since �Ris and �Ris are generally small compared to the size of base relations Ris� this
special form of expressions for � and � will make the change propagation algorithm suitable for
maintaining large views� This intuition will be made more precise in the analysis of section 	�

� Change Propagation Algorithm

This section presents our algorithm for computing a strongly minimal solution to a given view
maintenance problem� That is� given a transaction t and a BA expression Q� we will compute
expressions �Q and �Q such that pre�t� Q� #b �Q � �Q� ��Q�

We �rst de�ne two mutually recursive functions ��t� Q� and ��t� Q� such that for any transaction
t pre�t� Q� #b �Q � ��t� Q�� ���t� Q�� These functions are presented in �gure �� For readability�
we use the abbreviations add�t� S� for S ���t� S� and del�t� S� for S � ��t� S��

We derived the clauses of these recursive functions in three steps� a� a general solution was obtained
by repeated applications of the propagation rules of �gure �� b� theorem � was applied to obtain
a strongly minimal solution� c� the results were further simpli�ed by assuming that all recursively
derived solutions are strongly minimal�

This last step is quite important since the assumptions of strong minimality would not be available
to a query optimizer at a later stage� It is also why we want to apply theorem � at every stage�
rather than just once at the end� The three steps were outlined in the previous section for the S �T
case�
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Algorithm� Our algorithm is simply this� given inputs t and Q� use the functions ��t� Q� and
��t� Q� to compute a solution for pre�t� Q�� Note that in an actual implementation ��t� Q� and
��t� Q� could be combined into one recursive function� Thus the algorithm requires only one pass
over the expression Q�

Q ��t� Q� +

R �R� if R� �R � �R� ��R is in t� and 	 otherwise ��
�p�S� �p���t� S�� ��
'A�S� 'A���t� S�� � 'A���t� S�� ��
S � T ���t� S� � ��t� T �� � ���t� T � � ��t� S�� ��
S � T ����t� S� � ��t� T �� � ���t� T � � ��t� S���minQ �

SminT ��S � �S � T ��max ��T � �T � S�� �	

SmaxT
���t� S� � ���t� T �min �T � add�t� S����max
���t� T � � ���t� S� min �S � add�t� T ����

�

��S� ����t� S�� � del�t� S� ��

S � T
���t� S� ���t� T ���
��del�t� S����t� T �� � ���t� S� � del�t� T ����
����t� S� � del�t� T �� � �del�t� S� ���t� T ���

��

Q ��t� Q� +

R �R� if R� �R � �R� ��R is in t� and 	 otherwise ��
�p�S� �p���t� S�� ��
'A�S� 'A���t� S�� � 'A���t� S�� ��
S � T ���t� S� � ��t� T �� � ���t� T � � ��t� S�� ��
S � T ����t� S� � ��t� T �� � ���t� T � � ��t� S��� � �T � S� �


SminT
���t� S� � ���t� T �min �del�t� S� � T ���min
���t� T � � ���t� S�min �del�t� T � � S���

�	

SmaxT ��S � �T � S��max ��T � �S � T �� �
��S� ����t� S�� � S ��

S � T
���t� S� ���t� T ���
��del�t� S� ���t� T �� � ���t� S� � T ���
����t� S� � del�t� T �� � S ���t� T ��

��

Figure � Mutually recursive functions � and ��

The following theorem shows that the functions � and � correctly compute a solution to the view
maintenance problem and that they preserve strong minimality�

Theorem � Let t be a strongly minimal transaction� That is� �R � R #b 	 and �Rmin�R #b 	
for any R� �R � �R� ��R in t� Let Q be a BA expression� Then
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�� pre�t� Q� #b �Q � ��t� Q�� ���t� Q�

�� ��t� Q� � Q #b 	

�� ��t� Q�min��t� Q� #b 	

Although some of the clauses in the de�nition of functions � and � are rather complex� we believe
that in practice many of the subexpressions will be 	 or will easily simplify to 	� To illustrate this�
recall the example from section ��

V�
def
# �'Pid�Cost�S�� �'Pid�Cost�S���

V�
def
# 'Pid�Cost�Paid�

Unpaid
def
# V� � V�

where the t is a transaction that changes Paid to �Paid � �Paid� � �Paid� Using our change
propagation functions� the delete bag can be calculated as follows�

��t�Unpaid�
# ��t� V� � V��
�

# ����t� V�� � ��t� V��� � ���t� V�� � ��t� V����
minUnpaid

# ��	 � ��t� V��� � ���t� V�� � 	��minUnpaid
# ��t� V��minUnpaid
# ��t�'Pid�Cost�Paid�� minUnpaid
��
# �'Pid�Cost���t�Paid�� � 'Pid�Cost���t�Paid���
minUnpaid

������
# �'Pid�Cost��Paid� � 'Pid�Cost��Paid��minUnpaid

In a similar way we can compute the change bag for insertions� ��t�Unpaid�� to be

�'Pid�Cost��Paid� � 'Pid�Cost��Paid�� � �V� � V���

One advantage of our approach is that it produces queries that can be further optimized by a query
optimizer� Consider the following example� Suppose that we have a view WellPaid de�ned as

WellPaid # 'Name��Salary�
������Employees��

Now if a deletion has been made to Employees� then we compute

�WellPaid # 'Name��Salary�
�������Employees��
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We have treated deletions and insertions as black boxes� but often they are speci�ed in some trans�
action language or as queries� For example� if �Employees # �Salary�
�����Employees�� then we can
substitute this value for �Employees in the equation for �WellPaid� obtaining

'Name��Salary�
�������Salary�
�����Employees���

for �WellPaid� A query optimizer that �knows� that �p���p��S�� # �p�p� �S� and that 
 � 
� will
�gure out that �WellPaid # 	 and no computation needs to be done�

� Top�Level Aggregate Functions

Most database query languages provide a number of aggregate functions such as COUNT� TOTAL�
AVG� STDEV�MIN� MAX �MPR��� GMS��� Ull���� It was noticed in �LW��a� LW��b� that a number
of aggregates �in fact� all of the above except MIN and MAX� can be expressed if the query language
is endowed with arithmetic operations and the following summation operator�

-f fjx�� � � � � xnjg # f�x�� % � � �% f�xn�

For example� COUNT is -� where the function � always returns �� TOTAL is -id � AVG is TOTAL�COUNT�
For more complex examples� see �LW��a� LW��a��

Any strongly minimal solution for the view maintenance problem allows us to handle duplicates
correctly because the following will hold�

-f ��S � �S� ��S� # �-f �S� �-f ��S�� % -f ��S�

Now if an aggregate function is de�ned as AGR�S� # ��-f� �S�� � � � �-fk�S�� where � is an arithmetic
expression in k arguments� to be able to maintain the value of AGR when the view S changes� one
has to keep k numbers� -fi �S�� i # �� � � � � k� Once changes to the view ��S and�S� become known�
the values of -fi are recomputed by the formula above and then � is applied to obtain the value of
AGR�

For example� AVG�S� # TOTAL�S��COUNT�S� # -id�S��-��S�� Assume that n # TOTAL�S� and
m # COUNT�S�� If S changes and a strongly minimal solution Sn # �S � �S� ��S is computed�
let n� # -id��S�� n� # -id��S�� m� # -���S�� m� # -���S�� Then AVG�Sn� can be computed
as �n� n�% n����m�m� %m��� Notice that all additional computation of aggregates is performed
on changes to the views� so one may expect it to be fast�

Two aggregates that require special treatment are MIN and MAX� Assume that MIN�S� # n� and
we want to compute MIN�Sn� where Sn # �S � �S� � �S is strongly minimal� If we compute
m # MIN��S� and k # MIN��S�� then k � n implies MIN�Sn� # k and m � n implies MIN�Sn� #
min�n� k�� However� if n # m and k � n� then there is no way to say what the value of MIN�Sn�
is for the minimal value n can be reached at several elements of S and we do not know if all of
them were deleted in �S� Thus� in only this case one has to recompute Sn in order to evaluate MIN

correctly�
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� Complexity Analysis

While it is generally faster to compute changes to the view from changes to base relations rather
than recompute the whole view from scratch� this is only a heuristic and need not be true in all
cases� Changes to base relations are also typically small� but it is conceivable that in some situations
a base relation R can be replaced by another relation R�� In this case �R # R and �R # R�� so
changes to R are not small compared to R itself� If these changes �dominate� computing ��t� Q�
and ��t� Q�� then one should not expect a signi�cant improvement in time and space e�ciency from
using the change propagation algorithm�

All this tells us that it is impossible to prove a general statement saying that it is better to use
the change propagation algorithm rather than recompute the view� This is also one of the reasons
why so little e�ort has been devoted to the complexity analysis of the view maintenance problem�
But intuitively� if changes are small� computing solutions for pre�expressions should be easier than
computing pre�expressions themselves� In particular� one may expect that in most cases the sizes of
�S and �S are small compared to the size of S� and these are relatively easy to compute� In this
section we present an attempt to formalize this statement�

Our approach is the following� We de�ne two functions on BA expressions� These functions give a
reasonable time �or space� estimate for computing the delta�expressions for the change propagation
algorithm �the function t�� and for recomputing the view from scratch �the function tview�� Then
we shall prove that if changes to base relations are small� the expected complexity of evaluating
��t� Q� and ��t� Q� is small compared to the expected complexity of re�evaluating Q on changed
arguments� In other words� t����t� Q�� % t����t� Q�� is small compared to tview�pre�t�Q�� The
special form of ��t� Q� and ��t� Q� where all expressions that are hard to evaluate occur inside the
scope of a simpler � or � will play the crucial role�

Our �rst step is to de�ne tview � We give an optimistic estimate for tview � because our goal is to
prove that generally recomputing the view is more expensive than maintaining it� We �rst de�ne
tview�R� # size�R� for any base relation R� For binary operation de�ne

tview �SminT � # tview�S � T � # tview�SminT �
# tview �SmaxT � # tview�S� % tview�T �

The idea is that to compute the new view� we have to compute S and T � and then� being optimistic�
we disregard the time needed to compute min� max� � or � � For cartesian product� de�ne tview�S �
T � # tview�S� � tview�T �� Finally� for unary operations we use the optimistic estimate again� and
disregard overhead for doing computation on the argument� That is�

tview ��p�S�� # tview�'A�S�� # tview���S�� # tview�S�

To de�ne the function t� that estimates a reasonable evaluation time for expressions used in the
change propagation algorithm� we use the special form of the expressions in �gure � that allow us
to iterate over subexpressions in scope of � or �� as was explain before� To do this� as the �rst
step� we de�ne a new function fetch�S� that estimates the complexity of retrieving a given element
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from the value of S�R�� � � � � Rn�� We assume that fetch�Ri�s are given and bounded above by some
number F � Then for any binary operation � � BA we de�ne fetch�S � T � # fetch�S� % fetch�T �� For
example� to retrieve x from S � T � we �rst retrieve x�s projection onto attributes of S from S� and
then x�s projection onto T �s attributes from T � and use the result to obtain the right number of x�s
duplicates in S �T � For �p��� and ���� we assume fetch��p�S�� # fetch���S�� # fetch�S� as an upper
bound� Finally� we make an assumption that fetch�'A�S�� # fetch�S� which need not be true in
general but holds if the index on S is not projected out� As we explained in the introduction� if the
index does get projected out� there is no guarantee of winning in terms of time� but we still win in
terms of space� Indeed� the space occupied by 'A�S� is bounded by the space needed for S itself�
and then the following theorem can be seen as a con�rmation of the fact that one should expect to
reduce the space complexity�

Now we de�ne inductively the estimated time complexity of evaluation of �S and �S� First� we
assume that for any base relation R� t���R� # size��R� and t���R� # size��R�� In the de�nitions
for BA operations we disregard time needed for projecting out some �elds or checking the selection
conditions� assuming that it is constant� We also assume that the number of duplicates is known
for all elements� and disregard the computational overhead of duplicate elimination� That is�

t���p�S�� # t��'A�S�� # t����S�� # t��S��

For operations ��max and � we de�ne

t��S � T � # t��SmaxT � # t��S� % t��T �

and
t��S � T � # t��S� � t��T ��

The only thing out of ordinary in the de�nition of t� is the clauses for min and monus�

t��S � T � # t��S� � fetch�T �
t��Smin T � # min�t��S� � fetch�T �� t��T � � fetch�S��

Unlike in the case of ��max and �� elements of T need not be stored as they are only used to reduce
the size of S� Hence� to compute S � T or SminT � one only has to fetch elements of the computed
value S from T � and that requires fetch�T � rather than t��T � time for each element in S� In the
case of min� which is a symmetric operation� we can alternatively iterate over T � the estimated time
complexity is obtained by taking the minimum of the two possible iterations�

Let D # fR�� � � � � Rng be a family of base relations stored in a database� We assume that a
transaction t is �xed for the remainder of the section� and omit it in all de�nitions� De�ne

c�D� # max
i�������n

size��Ri� % size��Ri�

size�Ri�

That is� c�D� gives the upper bound on the relative size of the changes to base relations� The
following result shows that if c�D� is small� then one should expect to win in terms of time �or
space� by using the change propagation algorithm�
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Theorem � Let Q�R�� � � � � Rn� be a BA expression� Let �Q and �Q be calculated according to the
change propagation algorithm� Then

lim
c�D	��

t���Q� % t���Q�

tview�pre�Q��
# �

Let us apply this theorem to our working example� Recall that the positive change to the view
Unpaid was calculated as

�Unpaid # �'Pid�Cost��Paid� � 'Pid�Cost��Paid�� � �V� � V��

Assuming that for base relations the value of the fetch function equals F � we obtain

t���Unpaid� # size��Paid� � �F � # O�size��Paid���

Similarly�
t���Unpaid� # O�size��Paid���

Therefore� it is expected that modi�cations to the table Unpaid can be calculated in O�size��Paid�%
size��Paid�� time� One can derive the same result just by looking at the expressions for �Unpaid
and �Unpaid� Indeed� to calculate �Unpaid� we iterate over �Paid and fetch its elements from
�Paid� V� and V� and then compute the value of an arithmetic expression� The time needed for that
is linear in the size of �Paid� assuming F is constant�

On the other hand� to recompute the view Unpaid� one should expect to spend time O�size�S�� %
size�S���� and this is exactly what tview�pre�Unpaid�� is� If sizes of�Paid and �Paid are small� this
tells us that it is better to compute �Unpaid and �Unpaid than to recompute Unpaid�

One may ask what happens if one tries to use the same evaluation strategy for both change propa�
gation and recomputing the view� It should not be surprising that in several cases the complexity of
both is the same� as we should not always expect to win by propagating changes� To give an exam�
ple� let R�� R� and R� be base relations� where R��s attributes are a�� a�� R��s sole attribute is a�
and R��s attribute is a�� De�ne our view as V �# R�min�R��R��� Now assume that size�Ri� # n�
i # �� �� �� Assume that fetch�Ri� # F is constant� Then it is easy to see that t���V � # O�n� and
t���V � # O�n��

Now assume that changes to base relations Ris are small� Then one can use the evaluation strategy
that gave us the function t� and calculate that t��pre�V �� # O�n�� where pre�V � # ��R�

�

�R�� ��R��min���R�
� �R�� � �R�� � ��R�

� �R�� � �R���� The reason for this is that it is
not necessary to calculate the second argument of min as we only have to retrieve certain elements
from it�

This example shows that even for a simple view de�nition it may be the case that using the change
propagation algorithm is as complex as recomputing the view from scratch� provided that we do not
use a straightforward evaluation strategy �corresponding to tview ��
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� Related Work

In �BLT�	� Han��� only views of the form

V # 
Y ��X�Ri �R� � � � � �Rn��

are considered� The tables Ri are de�ned to be sets� although the resulting view is� in general� a
multiset� This can be viewed as a special case of our more general algorithm�

Our approach is closest to that of �GLT��� which treats the standard relational algebra� That work
grew out of an analysis of �QW���� which in turn was in�uenced by the notion of )�nite di�erencing�
of �Pai���� The algorithm for change propagation in �QW��� is an iterative one that propagates
changes� one�by�one� to the top of an expression� It was shown in �GLT�� that this is not enough to
guarantee strong minimality� Instead �GLT�� de�nes recursive functions to compute change sets�
as we have done here� and proves correctness by induction�

Another change propagation algorithm for multisets was presented in �GMS��� in the context of
a modi�ed Datalog where programs produce multisets� Informally� a tuple�s multiplicity in the
multiset resulting from the evaluation of a program P indicates the number of di�erent possible
derivations showing that it was produced by P using Datalog semantics �see �GMS�����

Given a program P and a transaction t� the change propagation algorithm of �GMS��� produces a
program Pn by concatenating the clauses of program P with the clauses of a new program �	P �
Concatenation corresponds to the additive union operation� The program�	P is de�ned so that for
any database state s� the evaluation of Pn in state s will result in the same multiset as the evaluation
of program P in the new state t�s�� If P is a materialized query� then in order to evaluate P in the
new state we need only evaluate the clauses of �	P in the old state and form this union with the
old �stored� value of P � In order to make this work with deletions� the semantics of �GMS��� allows
for negative multiplicities in the change sets �	P �s��

For example� consider the program

minus�X� � � S�X� " �T �X��

If we have a database transaction that induces changes to both S and T � then the algorithm
of �GMS��� produces the program �	minus with clauses

minus�X� � � �	S�X� " �T �X��
minus�X� � � Sn�X� " �	T �X��

where �	T computes a set W such that

count�x�W � #

��
�

�� if x � �	T and x 	� T ��	T
� if x � �	T and x 	� T
� otherwise

There are many di�erences between our approach and that of �GMS���� First� we are treating
di�erent query languages� The nonrecursive fragment of the language of �GMS��� cannot represent
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our operations of duplicate elimination� monus� min� and max� This follows from general results on
the expressive power of bag languages �LW��b�� On the other hand� our language does not handle
GROUPBY or recursive queries� as does �GMS����

Our approach does not require negative multiplicities� If a program P can be represented as a
BA expression ,P � then an incremental change program �	P can be represented in BA as a pair
of queries �� ,P�� ,P � where � ,P �� ,P � represents those tuples of �	P with a negative �positive�
multiplicity� Then program Pn corresponds to � ,P � � ,P � �� ,P �

This highlights the fact that our approach is linguistically closed� That is� we give explicit algebraic
representations to all expressions generated in change propagation� and these are represented in the
language BA� For example� while �GMS��� must extend their language with a new operation in order
to evaluate the program �	T � we would represented this operation explicitly as the pair of queries

�����t� T �� � T� ���T � � �T � �T ���

This makes additional optimizations possible� both in the process of generating change expressions
and in any later optimization stages�

Next� our approach gives a declarative semantics to change propagation that is not tightly bound to
one computational model� That is� we have an algebraic approach rather than an algorithmic one�
This makes correctness proofs much easier� and also simpli�es the process of extending the algorithm
to new constructs� It also allows us to apply our results to problems other than view maintenance�
For example� suppose that we are given the integrity constraint

�
def
# ��x � R�� x�a # count fjz � R� � z�b # x�bjg� �z 	

multiset

and a strongly minimal transaction t # fR� � �R�
� �R����R�g� Furthermore� suppose that we

would like to transform t to a safe transaction�

t� # if � then t else abort�

that can never leave the database in a state violating �� If we assume that � will always hold before
t� is executed� then we can use our algorithm� together with some logical manipulations� to produce

��x � R�� countfjz � �R� � z�b # x�bjg # countfjz � �R� � z�b # x�bjg

as the formula �� Indeed� this type of problem provided the original motivation for our work �GT����

Finally� we are able to use the inductive assumptions of strong minimality to further simplify our
solutions� Since this information is not available to a general purpose query optimizer� it may fail
to produce an e�cient solution that can be found with our approach�

A comparison of performance must wait for implementations of the two approaches�
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 Further Work

Our use of strong minimality in the simpli�cation of queries suggests that this information should
be available to a specialized query optimizer� We are currently working on the design of such an
optimizer based on a collection of inference rules for deriving disjointness �for example� if S is disjoint
form T � then S � W is disjoint from T � Z� and simpli�cation rules that exploit disjointness �for
example� if S is disjoint from T � then S � T simpli�es to S�� The optimization process is initiated
by recognizing that all pairs produced by our algorithm� ��S��S�� are disjoint�

The work of �GMS��� does handle recursive Datalog programs� One current drawback to our ap�
proach is that� as with the relational algebra� bag languages such as BA cannot express recursive
queries �LW��b�� We hope to address this issue in the future by extending BA with loops or a
�xed�point operator� as in �GG��� LW��b��

The other extension of our approach deals with complex objects� Our bag algebra BA is the �at
fragment of what was originally designed as an algebra for nested bags� We are currently working on
an approach that allows us to extend the equations of the change propagation algorithm to complex
objects�

Acknowledgements� We would like to thank Rick Hull for directing our attention to some of
the relevant literature� Inderpal Mumick for his very helpful discussions� and Doug McIlroy and Jon
Riecke for their careful reading of our working drafts�
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ABSTRACT

Materialized views and view maintenance are important for data warehouses� retailing� banking� and billing

applications� We consider two related view maintenance problems �� how to maintain views after the base

tables have already been modi�ed� and �� how to minimize the time for which the view is inaccessible during

maintenance�

Typically� a view is maintained immediately� as a part of the transaction that updates the base tables�

Immediate maintenance imposes a signi�cant overhead on update transactions that cannot be tolerated in

many applications� In contrast� deferred maintenance allows a view to become inconsistent with its de�nition�

A refresh operation is used to reestablish consistency� We present new algorithms to incrementally refresh a

view during deferred maintenance� Our algorithms avoid a state bug that has arti�cially limited techniques

previously used for deferred maintenance�

Incremental deferred view maintenance requires auxiliary tables that contain information recorded since the

last view refresh� We present three scenarios for the use of auxiliary tables and show how these impact

per�transaction overhead and view refresh time� Each scenario is described by an invariant that is required

to hold in all database states� We then show that� with the proper choice of auxiliary tables� it is possible

to lower both per�transaction overhead and view refresh time�

� Introduction

Interest in materialized views has increased in recent years �GM�	�� primarily due to the expanding
range of their applications �GM�
�� Most of the research on materialized views has focussed on
techniques for incrementally updating materialized views when the base tables used to derive the
views are updated �BLT�	� CW��� GL�
� GMS��� Han�� QW��� RK�	b� SI��� SP��b��

Maintenance of a view may involve several steps� one of which brings the view table up�to�date� We
call this step refresh� There may be other steps involved in the process of maintaining a view� For

���
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example� it may be necessary to maintain auxiliary tables that store the history of updates to the base
tables� View maintenance techniques depend on when the view is refreshed� A view can be refreshed
within the transaction that updates the base tables� or the refresh can be delayed� The former case
is referred to as immediate view maintenance� while the latter is called deferred view maintenance�
Deferred maintenance may be done periodically or on�demand when certain conditions arise� In the
past� the term deferred maintenance has sometimes been used for on�demand maintenance�

Most of the work on view maintenance has involved the immediate case �BLT�	� CW��� GL�
�
QW���� The immediate maintenance approach has the disadvantage that each update transaction
incurs the overhead of updating the view� The overhead increases with the number of views and
their complexity�

In some applications� immediate view maintenance is simply not possible� For example� in a data
warehousing system� if a component database does not know what views exist at the warehouse�
it cannot modify transactions updating base tables so that they also refresh materialized views�
Even in a centralized system where all the views are known� it may be necessary to minimize the
per�transaction overhead imposed by view maintenance� In such cases� deferred maintenance is most
appropriate�

Other applications may have a certain tolerance for out�of�date data� or even require that the view be
frozen for analysis and other functions �AL���� In this case� the view could be refreshed periodically
or just before querying� Deferred maintenance also allows several updates to be batched together�

This chapter contributes to the work on deferred view maintenance by presenting solutions to the
following problems�

Minimize View Downtime By downtime we mean the execution time required by the transaction
that refreshes the view table� While the view is being refreshed� an exclusive write lock is typically
held over the view� and all queries and scans against the view are disallowed� Therefore� we would
like to do maintenance in a manner that minimizes the time for which access to the view is blocked
�during refresh�� and at the same time minimizes the overhead on update transactions�

Avoid the State Bug Incremental view maintenance is typically based on �incremental queries�
that avoid the need to recompute a materialized view from scratch� These queries use the updates
made to base tables to compute changes that can be directly applied to a materialized view table
to bring it up�to�date� Such queries can be evaluated in one of two states� the pre�update state
where the base�table changes have not yet been applied� or the post�update state where the base�
table changes have been applied� Most of the algorithms for view maintenance assume that the
incremental queries are evaluated in the pre�update state� In the deferred case� since the base tables
have already been modi�ed� the pre�update algorithms are not directly applicable� In fact� direct
application of pre�update algorithms in the post�update state can result in incorrect answers� a fact
we call the state bug� The state bug can be avoided by severely restricting the class of updates and
views considered� However� such restrictions limit the scope of deferred maintenance techniques�
What is required is a general post�update algorithm that avoids the state bug and allows a large
class of updates and views�
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In the rest of the introduction� we elaborate on the above points and outline the contributions of
the chapter�

�
� Minimizing view downtime

Consider the following example� patterned after a real application at a large retailing company�

Example ��� Point�of�sale information is collected in a sales table� and a customer table is used to
keep records pertaining to customers� The sales table can be very large and can contain duplicates�

sales�custId� itemNo� quantity� salesPrice�
customer�custId� name� address� score�

CREATE VIEW V �custId� name� score� itemNo� quantity� AS

SELECT c�custId� c�name� c�score� s�itemNo�

s�quantity

FROM customer c� sales s

WHERE c�custId 	 s�custId AND

s�quantity � 	 � AND

c�score 	 
High� �

Suppose that insertions into the sales table are made continuously� The view V � de�ned above�
uses a join of these tables to compute sales made to highly valued customers� �In practice� views
with aggregation are more likely� For simplicity� we omit aggregation since it is orthogonal to the
problems that we discuss�� Suppose further that this view is materialized in a table MV � and that
it is refreshed once every �� hours� Between refreshes� the table MV is used by decision support
applications for market analysis� If we assume that the entire view is write�locked during refresh�
then it is important to minimize this view downtime� �

Contribution �� We de�ne consistency for databases that support deferred view maintenance in
terms of invariants that describe relationships between base tables� materialized views� and auxiliary
tables� Solutions to the deferred view maintenance problem are algorithms for extending user trans�
actions with auxiliary operations needed to maintain the view invariants� and additional operations
for refreshing materialized view tables� We present three such invariants together with associated
algorithms for deferred view maintenance� Each solution can accommodate various update policies�
and we present policies that di�er in their impact on refresh times and update transaction overhead�
One of these policies provides for minimal view downtime while also minimizing the overhead on
update transactions�
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�
� Avoiding the state bug

We illustrate the state bug by applying the algorithm of �BLT�	� in both pre� and post�update
states�

Example ��� Let us suppose that we have a view U de�ned as follows and materialized in table
MU �we assume SQL duplicate semantics��

CREATE VIEW U �A� AS

SELECT R�A

FROM R� S

WHERE R�B � S�B �

Suppose that the contents of R� S and MU are as shown below�

R�
A B

a� b�
S�

B C

b� c�
b� c�
b� c�

MU �

A

a�
a�

Suppose that R and S are to be updated by inserting the tuple �a�� b�� in R and the tuple �b�� c�� in
S� We can use the algorithm of �BLT�	� Han�� for calculating the incremental update toMU � The
algorithm of �BLT�	� is a pre�update algorithm that is based on the availability of the base tables
before the update� The changes to the view are computed with the incremental query MMU � given
below �the symbols MR and MS denote bags of tuples inserted into tables R and S��


R�A�R �� �MS�� � 
R�A��MR� �� S� � 
R�A��MR� �� �MS��

To be consistent with SQL semantics� we assume that all operators have multiset �bag� seman�
tics� Using this equation� the incremental insert to MU can be calculated correctly as f�a��� �a��g�
Now suppose that the same equation is evaluated in a post�update state� i�e�� after the tuples
�a�� b�� and �b�� c�� have been inserted in R and S� Then MMU would incorrectly evaluate to
f�a��� �a��� �a��� �a��g� �

Example ��� We present another example that shows how the state bug can lead to wrong answers
other than incorrect multiplicities� Consider a view U de�ned as R � S� Let R # f�a�� �b�� �c�g and
S # f�c�� �d�g� In the current state� U is materialized in a table MU that contains tuples �a� and �b��
Let t be a transaction that deletes the tuple �b� from R and inserts it into S� Then the algorithms
of �QW��� GL�
� that extend �BLT�	� Han�� to the full relational and bag algebra calculate the
delete bag for the view using the following equation �the symbols OR� and OMU denote bags of
tuples deleted from tables R and MU ��

OMU # �OR � S� � �MS �R� # �f�b�g � S� � �f�b�g �R��
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Note that it is irrelevant which semantics �set or bag� we use as no duplicates are present in any of
the tables before or after the transaction� If OMU is evaluated in the pre�update state� the result
is f�b�g and then MU becomes f�a�g �which is correct�� However� the same expression for OMU
evaluated in the post�update state� after transaction t is applied� yields OMU # fg� which means
that MU is not updated and keeps the incorrect tuple �b�! �

In the past� the same algorithm has been used in both pre�update and post�update states� However�
the state bug has been avoided either by assuming availability of pre�update base tables in the
post�update state� or by considering only restricted classes of views and updates� The �rst approach
is illustrated in �Han��� where di	erential tables are maintained on base tables that contain the
suspended updates that have not actually been applied to the database state� One problem with
this approach is that it slows down the evaluation of all queries over base tables�

As an example of the second approach� �ZGMHW�
� investigates view maintenance in a warehousing
environment� Their algorithms comprise a standard view maintenance part and a compensating part�
The view maintenance part is based on the pre�update algorithm of �BLT�	� Han��� but is applied
in the post�update state� The state bug is not encountered since their solution imposes restrictions
that require ��� updates to change only one table� and ��� view de�nitions to be SPJ queries without
self�joins� Their algorithms would yield incorrect results if these restrictions were relaxed�

Other papers dealing with deferred maintenance �KR�� LHM��	� SP��b� have considered even
smaller �select�project� classes of views� Select�project views are self�maintainable �GJM�	� in the
sense that such views can be maintained without looking at base tables� Consequently� the issue
of pre�update state vs� post�update state of base tables is irrelevant for maintaining select�project
views�

Contribution �� Our second contribution is to derive algorithms for view maintenance in the
post�update state that avoid the state bug� These algorithms work for the full multiset algebra and
permit insertions and deletions to any number of tables�

Chapter Outline� After introducing the notation and basic concepts in Section �� we present� in
Section �� a framework that casts the problem of view maintenance as that of maintaining database
invariants� Four di�erent scenarios are discussed � one for the immediate update of materialized
views and three variations on deferred maintenance� In Section �� we exploit a duality between
pre�and post�update states to arrive at incremental algorithms that avoid the state bug and work
for a large class of updates and views� Section 
 presents algorithms for solving the three scenarios
of deferred view maintenance described in Section �� We present refresh policies that use these algo�
rithms and solve the problem of minimizing view downtime� Related work is discussed in Section 	�
All proofs can be found in the full paper �CGL��	��
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� Preliminaries

�
� The bag algebra� BA

A bag �or multiset� X is like a set� except that multiple occurrences of elements are allowed� An
element x is said to have multiplicity n in the bag X if X contains exactly n copies of x� The
notation x � X means that x has multiplicity n � � in X� and x 	� X means that x has multiplicity
� in X�

A database schema is a collection of base table names fR�� � � � � Rng� A database state is a mapping
from table names fR�� � � � � Rng to �nite bags of tuples� We write Ri�s� to denote the value of table
Ri in the state s�

Our query language will be the bag algebra of �GM��� LW��c�� restricted to �at bags �bags of tuples�
i�e�� no bag�valued attributes�� Let p range over quanti�er�free predicates� and A range over sets of
attribute names� BA expressions are generated by the following grammar�

Q ��# 	 empty bag
j fxg singleton bag
j R table name
j �p�Q� selection
j 'A�Q� projection
j ��Q� duplicate elimination
j Q� �Q� additive union
j Q�

� Q� monus
j Q� � Q� cartesian product

We will use the symbols Q� Q�� Q�� E� and F to denote BA expressions� which will usually be called
queries� If s is a database state and Q is a query� then Q�s� denotes the multiset resulting from
evaluating Q in the state s�

The only operation that may require explanation is monus� If x occurs n times in Q� and m times
in Q�� then the number of occurrences of x in Q�

� Q� is the maximum of � and n � m� Monus
corresponds to the EXCEPT ALL operation in SQL��� �MS��a�� The SQL EXCEPT operator di�ers in
that Q� EXCEPT Q� eliminates all tuples that occur in Q�� no matter what their multiplicity� and
in addition this operation eliminates duplicates in the result� The EXCEPT operation can be de�ned
in our bag language as

Q� EXCEPT Q�
def
# ��Q�� � Q�

We include monus in our bag algebra because it cannot be de�ned using EXCEPT and the rest of BA�
This follows from the characterization of interde�nability of the operations of BA in �GM��� LW��c��

We will also use the operations Q�minQ� �minimal intersection� and Q�maxQ� �maximal union�
that create bags in which the multiplicity of any tuple is the minimum �maximum� of its multiplicities

in Q� and Q�� These can be de�ned in BA as Q�minQ�
def
# Q�

� �Q�
� Q�� and Q�maxQ�

def
#

Q� � �Q�
� Q���
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For arbitrary queries Q� and Q� we use the notation Q� � Q� to mean that for all database states
s� Q��s� # Q��s�� The notation Q� � Q� means that for all database states s� Q��s� is a subbag of
Q��s��

�
� Transactions

Transactions T are functions from states to states� If s is a database state� then T�s� is the state
resulting from the execution of transaction T in state s� Q�T�s�� represents the value of query Q
after T is executed in state s�

We consider abstract transactions de�ned with the notation

T # fR��#Q�� � � � � Rn�#Qng�

abbreviated as T # fRi�#Qig� When T is executed in state s� then the value of Ri in state T�s�
becomes Qi�s�� That is� T executed in state s has the e�ect of simultaneously replacing the contents
of each Ri with the result of evaluating query Qi in state s�

Since we only consider view maintenance in response to insertions and deletions into base tables
caused by a transaction� we will consider only simple transactions T of the form

fR��#�R�
�
OR�� �MR�� � � � � Rn�#�Rn

�
ORn� �MRng�

In other words� the value ofRi in state T�s� is ��Ri
�
ORi��MRi��s�� This is without loss of generality

since any abstract transaction can be transformed to an equivalent simple transaction�

�
� Logs and di�erential tables

A log L is a collection of auxiliary base tables HR�� NR�� � � �� HRn� NRn� Suppose that database
states are ordered and sp � sc� where sp represents a state of the database that existed before the
database entered state sc� Informally� think of sp as a past state and sc as the current state� A log

L records the transition from state sp to the state sc� written sp
L
� sc� if� for each table Ri�

Ri�sp� # ��Ri
�
NRi� �HRi��sc��

That is� log L records all deletions �HRi� from and insertions �NRi� into each table Ri that comprise
the transition from state sp to state sc� Note that in order to compute the past value of Ri from the
value of Ri in the current state� we must delete the bag that was inserted and insert the bag that
was deleted� A similar technique is used in �CW��� with transition tables� which can be thought of
as transient logs�

Our notion of logs is not the same as that of di�erential tables introduced in �SL	�� The tables B�
A� and D are di�erential tables for table R if R # �B � D��A� In this approach� every �base table�
R is treated as a virtual table �view�� Tables D and A can be thought of as suspended deletions




�� Chapter ��

and insertions� while B represents an �old� value of the table R� In contrast� our notion of a log
assumes that the changes have been applied to the base tables�

A word about our use of white triangles �O and M� and black triangles �H and N�� The white
triangles represent changes speci�ed by the transactions� or changes computed from those speci�ed
in the transactions� The black triangles represent changes in the log or changes computed from the
log�

�
� Substitutions

We will denote general substitutions with the notation � # �Q��R�� � � � � Qn�Rn�� The notation ��Q�
denotes the query that results from simultaneously replacing every occurrence of Ri in Q by Qi� For
example� if � is ���R���R�� �q�R���R�� and Q is �p�R� � R��� then ��Q� is �p���R��� �q�R����

The next subsection will make use of two substitutions bT and bL that are derived from simple
transactions T and logs L as�

���R�
�
OR�� �MR���R�� � � � � ��Rn

�
ORn� �MRn��Rn�

and
���R�

�
NR�� �HR���R�� � � � � ��Rn

�
NRn� �HRn��Rn�

�
� Past and future queries

Past and future queries are the key concepts of view maintenance as they allow us to compute the
value of a query in a state that is di�erent from the current one�

Sambade�nition � �Past and Future Queries��

�� Suppose sp is a state that precedes state sc� A query PQ is a past�query at state sc for a query
Q at sp if Q�sp� # PQ�sc�� Informally� we can evaluate a past�query PQ in the current state
in order to determine the value that Q had in an earlier state�

�� A query FQ is called a future�query at state sp for Q at state sc if FQ�sp� # Q�sc�� We call
FQ a future�query for Q with respect to a transaction T if for every database state s we have
FQ�s� # Q�T�s��� That is� if the database is currently in state s� then we can evaluate FQ in
order to determine the �future� value that query Q will have in the state immediately after T
is executed� �

Transactions and logs can be used to compute future� and past�queries� If T is a simple transaction�
then future�T � Q� de�ned as

bT�Q� � Q��R�
�
OR�� �MR�� � � � � �Rn

�
ORn� �MRn�
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is a future�query for Q�R�� � � � � Rn� with respect to T � Indeed� for any state s� �future�T� Q���s� #
Q�T�s���

If L is a log from state sp to state sc� then the values of Ri at sp can be computed from the values
of Ri at sc and the log as Ri�sp� # ��Ri

�
NRi� �HRi��sc�� Therefore� past�L� Q� de�ned as

bL�Q� � Q��R�
�
NR�� �HR�� � � � � �Rn

�
NRn� �HRn�

is a past�query� at state sc for Q at state sp� That is� Q�sp� # �past�L� Q���sc��

In summary� future�queries allow us to anticipate state changes� while past�queries allow us to
compensate for changes that have already been made�

� View Maintenance Scenarios

In what follows� the view V is de�ned by a query Q and materialized in the tableMV � A materialized
view is said to be consistent with its de�nition in state s if Q�s� # MV �s��

Any correct solution to the immediate view maintenance problem must guarantee that the contents of
the view tableMV always be consistent with the de�nition of the view V � In other words� the formula
Q � MV is an invariant that should hold in all database states� Any solution to the immediate
view maintenance problem must then employ some method of augmenting user transactions with
the updates to table MV needed to maintain this invariant�

This section demonstrates that the same approach can be used to characterize deferred view main�
tenance problems� We use database invariants to specify three deferred view maintenance scenarios�
For each invariant� we specify algorithms for transforming user transactions into ones that maintain
the invariant� These invariants are more complex than the immediate case since they must relate
table MV to query Q as well as auxiliary tables� Unlike the immediate case� the deferred scenarios
also require additional algorithms for refreshing view tables as well as for propagating changes to
auxiliary tables� For each scenario considered� we explain the main idea behind the associated view
maintenance algorithms� The details of the algorithms will be given in Section 
�

�
� Database invariants

First� we need to introduce some terminology� For formula � and database state s� the notation
s j# � means that � holds in state s� Given formulas �� �� and a transaction T � we will use the
Hoare triple f�gTf�g �see �Gri���� to assert that for every state s� if s j# �� then T�s� j# �� A
transaction T is said to be safe for � if f�gTf�g� That is� if � holds in a given state� then it will
hold in the state after T is executed�

We assume that the database tables are partitioned into external tables that can be changed by
user transactions �user�de�ned base tables� and internal tables that are used to store and support
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INVC past�L� Q� � �MV �

OMV � �MMV

di�erential tables

INVBL  past�L�Q� �MV INVDT Q � �MV �
OMV � �MMV

VIEW MAINTENANCE

immediate deferred

deferred with

base logs

deferred with

Figure � Invariants for view maintenance

materialized views �such as MV � log tables� and view di�erential �les�� User transactions are not
allowed to directly update internal tables�

A formula is called a database invariant if it is guaranteed to hold in every state� We shall denote
database invariants by INV
 where the index � speci�es a named scenario for view maintenance�
Given an invariant INV
 and a user transaction T � it cannot be expected that T will be safe for
INV
� Thus� each scenario requires an algorithm for transforming any user transaction T into a
transaction makesafe
�T� that is safe for INV
� This transaction should have the same behavior as
T on external tables� Hence� makesafe
�T� will augment T with changes to internal tables�

The scenarios describing deferred maintenance will also require various auxiliary functions to refresh
view tables� For each INV
� we will de�ne a transaction refresh
 such that fINV
grefresh
fQ �MV g�

�
� Immediate maintenance

We review the immediate update scenario in order to facilitate comparison with the deferred sce�
narios�

Suppose that we require that the table MV always be consistent with its de�nition� As noted� this
amounts to declaring the formula below to be a database invariant�

INVIM Q � MV

The literature on immediate view maintenance �BLT�	� CW��� GL�
� QW��� SI��� presents various
approaches to converting any transaction T to a transaction makesafeIM�T� that is guaranteed to
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maintain INVIM� The method of choice is to produce incremental queries� O�T � Q� and M �T � Q��
such that augmenting T with

MV �#�MV �
O�T � Q�� �M �T � Q�

correctly maintains the view� Note that the incremental queries are typically evaluated in the state
before the updates of T have been applied�

Although incremental queries can avoid the work of recomputing Q from scratch� their evaluation
can still impose a large per�transaction overhead�

�
� Deferred maintenance with base logs

Suppose that the table MV is allowed to become inconsistent with the de�nition of view V � This
means that the content of table MV is equal to the value of Q in some past state when MV was last
refreshed or was initialized� Suppose that log L records the changes made to base tables that make
up the transition from this past state to the current state� This scenario can be captured with the
invariant

INVBL past�L� Q� � MV

Note that if the log is empty� then the view table is consistent since in this case Q � past�L� Q��
A solution to this scenario involves de�ning the transformation makesafeBL��� that maintains the
invariant and a function refreshBL that brings the view up�to�date�

For any user transaction T � makesafeBL�T� must do two things� �� execute T � and ��� correctly extend
the log L in order to maintain the invariant� This imposes little overhead on each transaction since
we only need to record the changes made to base tables�

The refresh function must satisfy the speci�cation fINVBLgrefreshBLfQ � MV g� In a manner
similar to the immediate case� we could formulate incremental queries� H�L� Q� and N�L� Q�� such
that the transaction

MV �#�MV �
H�L� Q�� �N�L� Q�

correctly refreshes the table MV � Unlike the immediate case� these incremental queries must be
evaluated in a post�update state that re�ects the changes recorded in log L� In Section �� we present
a technique for computing incremental queries for post�update states�

We should expect that in most cases this incremental approach will be much less expensive than
recomputing Q from scratch� However� the computation of the incremental queries still may be
costly� which implies a high refresh time�
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�
� Deferred maintenance with di�erential tables for views

Many applications require a low refresh time� One way to minimize view downtime is to precompute
the changes necessary for refreshing table MV and store them in �di�erential tables�� This scenario
can be captured with the invariant

INVDT Q � �MV � OMV � �MMV

where OMV and MMV are the di�erential tables that maintain the changes needed to bring the
view table up�to�date� Another way of saying this is that the di�erential tables record the di�erence
of the past value of Q �stored in MV � and its current value� Note that if the di�erential tables are
empty� then the view table MV is consistent�

The refresh function in this case applies the di�erential tables to MV �

MV �#�MV �
OMV � �MMV �

and empties them� If the di�erential tables contain exactly the net change needed to refresh MV
�that is� OMV � MV and OMV minMMV � 	�� then this represents the minimal possible refresh
time for MV �

However� as in the immediate update case� the per�transaction overhead for maintaining the invariant
may be high since makesafeDT�T� must maintain correct values for OMV and MMV �

�
� Deferred maintenance with di�erential tables and base

logs

One of our goals is to present a new solution to the deferred view maintenance problem that pro�
vides ��� a fast refresh algorithm� and ��� low per�transaction overhead for maintaining auxiliary
information�

Our solution combines the last two approaches� We maintain both a log L on base tables and a pair
of di�erential tables� OMV and MMV � for the view table MV � The combined invariant is

INVC past�L� Q� � �MV � OMV � �MMV

To understand this scenario� it helps to keep in mind three di�erent states� ��� a past state sp such
that the table MV is consistent with Q in state sp� ��� the current database state sc� and ��� an
intermediate state si� with sp � si � sc� The log L records the transition from si to sc� That is� in
this scenario the log is used to maintain the view di	erential tables �OMV and MMV �� and records
the changes to the base tables made since the last refresh of the di�erential tables �in state si�� If the
di�erential tables are applied to the view table MV to refresh it� then the contents of the table MV
will correspond to the value that Q had in state si� when the log was initialized� That is� updating
MV using the di�erential tables gives us the value of the past query for Q� past�L� Q��
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The transaction makesafeC�T� is essentially the same as makesafeBL�T�  it only needs to update
the log in order to maintain invariant INVC� The refresh function for this scenario must satisfy the
speci�cation fINVCgrefreshCfQ � MV g� In addition� this scenario suggests two auxiliary transac�
tions� a transaction propagate

C
� that propagates to the di�erential tables the changes recorded in

the log L� and a transaction partial refresh
C
� that partially refreshes the view table by applying the

di�erential tables� These transactions have the speci�cations�

fINVCg propagateC fQ � �MV �
OMV � �MMV g�

fINVCg partial refresh
C
fpast�L� Q� � MV g�

By decoupling incremental computation from both refreshC and makesafeC�T�� these auxiliary trans�
actions will allow us to achieve our goal of low refresh time while simultaneously obtaining low
per�transaction overhead� A more detailed discussion is presented in Section 
� Here we are only
interested in a formal speci�cation of this scenario�

Figure � summarizes the four invariants that describe di�erent scenarios for view maintenance� Note
that both the INVBL and INVDT scenarios can be considered as special cases of the INVC scenario�

� Exploiting Duality

As mentioned in the previous section� the method of choice for solving the immediate view mainte�
nance problem involves �nding incremental queries O�T � Q� and M �T � Q� such that the operation

MV �#�MV �
O�T � Q�� �M �T � Q�

will correctly update the materialized view� provided that the queries O�T � Q� and M �T � Q� are
evaluated in the pre�update database state� This amounts to solving for O�T � Q� and M �T � Q� in the
equation

��� future�T� Q� � �Q �
O�T � Q�� �M �T � Q�

since table MV is assumed to contain the current value of Q and we wish to update MV to contain
the value that Q will have in the future� after T is executed� An example of such an algorithm for
the bag algebra can be found in �GL�
��

Now let us turn to the simple case of deferred maintenance� Suppose that MV was initialized or
last refreshed at state sp and the database is currently in state sc� Suppose that L is a log from sp
to sc� In order to incrementally refresh MV we want to �nd two queries H�L� Q� and N�L� Q� such
that the operation

MV �#�MV �
H�L� Q�� �N�L� Q�

will correctly update the materialized view�

Note that these incremental queries must be evaluated in the post�update database state that re�ects
all of the changes recorded in L� Finding such incremental queries amounts to solving for H�L� Q�
and N�L� Q� in the equation

��� Q � �past�L� Q� � H�L� Q�� �N�L� Q�
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since table MV is assumed to contain the past value of Q and we wish to update MV to contain
the current value of Q�

Can we use the same algorithm for the pre� and post�update states� As we have indicated �see
Section ����� this cannot be done directly without producing incorrect results� There is� however� a
natural duality between future� and past�queries that can be exploited to solve this problem� Recall
from Section ��
 that both of these queries are formed as substitution instances�

future�T� Q�
def
# bT�Q�� past�L� Q�

def
# bL�Q�

and that each query is formed by replacing every occurrence of a base table name Ri with a query of
the form �Ri

� Di��Ai� However� the roles of insertions and deletions are reversed since future�queries
anticipate the changes that a transaction will make� while past�queries compensate for changes that
have already been made�

Suppose that � is a substitution �see Section ����� and suppose that we have a method for constructing
queries Del���Q� and Add���Q� such that

��� ��Q� � �Q � Del���Q�� �Add���Q��

Algorithms that produce the queries Del���Q� and Add���Q� are called di	erential algorithms
�terminology is from �Pai����� Solving Equation ��� is then simply a matter of de�ning O�T � Q� and
M �T � Q� as

O�T � Q�
def
# Del�bT � Q�� M �T � Q�

def
# Add�bT � Q��

Solving ��� for H�L� Q� and N�L� Q� is not quite so simple� First� applying Equation ��� with � # bL
results in

past�L� Q� � bL�Q� � �Q � Del� bL� Q�� �Add� bL� Q��
Now in order to solve Equation ��� we must �cancel� the incremental queries� We can do this using
the following lemma�

Lemma � �cancellation� Suppose that N � O� I� and D are queries� If N � �O � D� � I� then
O � �N � I� � �OminD�� �

Applying this lemma to the above equation yields

Q � �past�L� Q� � Add� bL� Q�� � �QminDel� bL� Q���
Therefore� ��� can be solved by de�ning the queries H�L� Q� and N�L� Q� as

H�L� Q�
def
# Add� bL� Q�

N�L� Q�
def
# QminDel� bL� Q��
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�
� Incremental computation

Note that the query N�L� Q�
def
# QminDel� bL� Q� could be rewritten to the simpler form Del� bL� Q��

if we knew that Del� bL� Q� � Q� This is related to the �minimality� conditions of �GL�
� QW����
These conditions limit the number of unnecessary tuples produced by the incremental change queries�

The minimality constraints typically imposed on Del���Q� and Add���Q� are

�a� Del���Q� � Q � Only tuples actually in Q are in the deleted bag�

�b� Del���Q�minAdd���Q� � 	 � No tuple is deleted and then reinserted�

The design of di�erential algorithms to compute Del���Q� and Add���Q� then involves a choice
of imposing none of these constraints� or of imposing one of the three possible combinations of
them� A solution meeting condition �a� will be called weakly minimal� while a solution meeting both
conditions �a� and �b� will be called strongly minimal� In this chapter� we present algorithms that
produce weakly minimal solutions� for which the following simpler equations hold�

H�L� Q�
def
# Add� bL� Q�

N�L� Q�
def
# Del� bL� Q��

We will assume that every substitution � # �Q��R�� � � � � Qn�Rn� has a factored form� That is� every

query Qi is of the form �Ri
� Di� � Ai� Note that ��� if � # bT� then Di # ORi and Ai # MRi� and

��� if � # bL� then Di # NRi and Ai # HRi�

A factored substitution is called weakly minimal if Di � Ri� Note that any factored substitution �
can be transformed into an equivalent weakly or strongly minimal substitution�

A simple transaction is called weakly minimal if bT is a weakly minimal substitution� Similarly� a log
L is called weakly minimal if bL is a weakly minimal substitution� This amounts to declaring that
NRi � Ri is a database invariant� for each table Ri� As we will see in the next section� care must be
taken to guarantee that these invariants are maintained�

Figure � presents our algorithm for calculating Del���Q� and Add���Q� for weakly minimal sub�
stitutions� When Q is 	 or fxg� then Del���Q� � Add���Q� � 	� This algorithm is derived from
the same change propagation rules for the bag algebra that were used in �GL�
� to derive a strongly
minimal algorithm� The functions O�T � Q�� M �T � Q�� H�L� Q�� N�L� Q� can be derived straightfor�
wardly from Figure �� For example� the equation for Del���E � F � in Figure � gives rise to the
equation

O�T � E � F �
def
# �O�T � E� �M �T � F ��min �E � F ��

as well as its dual equation

N�L� E � F �
def
# �N�L� E� �H�L� F ��min �E � F ��
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Q Del���Q�

Ri Di� where ��Ri� # �Ri
� Di� �Ai

�p�E� �p�Del���E��
'A�E� 'A�Del���E��
��E� ��Del���E�� � �E � Del���E��
E � F Del���E� �Del��� F �
E � F �Del���E� �Add��� F ��min �E � F �

E � F
�Del���E��Del��� F ���
�Del���E�� �F � Del��� F ����
��E � Del���E�� �Del��� F ��

Q Add���Q�

Ri Ai� where ��Ri� # �Ri
� Di� �Ai

�p�E� �p�Add���E��
'A�E� 'A�Add���E��
��E� ��Add���E�� � �E � Del���E��
E � F Add���E� �Add��� F �

E � F
��Add���E� �Del��� F �� � �F � E�� �

��Del���E� �Add��� F �� � �E � F ��

E � F
�Add���E��Add��� F ���
�Add���E�� �F � Del��� F ����
��E � Del���E���Add��� F ��

Figure � Mutually Recursive functions Del���Q� and Add���Q��

Theorem � �Correctness of Di�erentiation� For any query Q and any weakly minimal substi�
tution ��

�a� ��Q� � �Q � Del���Q�� �Add���Q��

�b� Del���Q� � Q� �

It can be veri�ed that our post�update algorithm gives the correct answers in the examples presented
in Section ����

One of the reasons that we chose to use a weakly minimal solution in this chapter is that the
expressions are somewhat less complicated than for other solutions� and the algorithm can be seen
as a generalization of �BLT�	� Han�� to the full bag algebra BA�

It should be emphasized that the issue of minimality of incremental algorithms is completely or�
thogonal to the problem of maintaining views in a deferred manner� Any abstract transaction can



Deferred View Maintenance 
��

be transformed into an equivalent �weakly or strongly� minimal simple transaction� and the same is
true for logs� The algorithms in Figure �� and those of Section 
�� could be modi�ed to maintain
any combination of the minimality conditions �a� and �b�� including no minimality constraints at all�
For example� in order to produce a strongly minimal solution� one could use the strongly minimal
incremental algorithm presented in �GL�
�� and then modify the algorithms in Figure � by enforcing
strong minimality�

�
� How the state bug has been avoided

There are two ways of directly using the pre�update algorithm in the post�update state� The �rst is
exempli�ed by �Han��� where di�erential tables are used to suspend the application of changes to
database tables� In other words� updates are not actually applied but simply stored in di�erential
tables� Past values of base tables are directly available and do not have to be computed� In this
way� the pre�update algorithm will give the correct result� However� this approach is not su�ciently
general since it assumes that all database tables are implemented with di�erential tables� This
assumption may be unrealistic in many applications�

The second method can be explained with this observation�

Remark � For certain restricted classes of views and updates� the equations derived by the pre�
update and post�update algorithms produce the same results upon evaluation in the post�update state�

For example� it can be shown that if Q is an SPJ query without self�joins� T is a weakly minimal
transaction that inserts into and�or deletes from a single table R� and log L records only the changes
of one such transaction T � then O�T � Q� � H�L� Q� and M �T � Q� � N�L� Q��

If these restrictions are relaxed even slightly �i�e�� an SPJ query is allowed to have self�joins� or
multiple tables are updated�� then it is easy to �nd examples of views and�or updates for which the
pre�update algorithms of �BLT�	� GL�
� Han�� QW��� will give incorrect results if the incremental
queries are evaluated in the post�update state�

� Algorithms and Policies

This section presents algorithmic solutions for the three scenarios of deferred view maintenance
described in Section �� Each set of algorithms can be used to implement a wide range of view
update policies� By a policy we mean a scheme by which the refresh functions are actually invoked
for a given view� For example� in the simple scenario de�ned by invariant INVBL� the function
refreshBL could be invoked ��� only on demand by a user� ��� whenever the table MV is queried� or
��� in a periodic way� The section ends with a presentation of two policies for the INVC scenario
that can be used to minimize view downtime�
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INVBL� past�L� Q� � MV

makesafeBL�T� #

�
HRi �# HRi � �ORi

�
NRi��

NRi �# �NRi
�
ORi� �MRi



% T

refreshBL # fMV �#�MV �
H�L� Q�� �N�L� Q�� L �# 	g

INVDT � Q � �MV �
OMV � �MMV

makesafeDT�T� #

�
OMV �# OMV � �O�T � Q� � MMV ��
MMV �# �MMV �

O�T � Q�� �M �T � Q�



% T

refreshDT # fMV �#�MV �
OMV � �MMV � OMV �#	� MMV �#	g

INVC � past�L� Q� � �MV �
OMV � �MMV

makesafeC�T� # makesafeBL�T�

propagate
C
#

��
�
OMV �# OMV � �H�L� Q� � MMV ��
MMV �# �MMV �

H�L� Q�� �N�L� Q��
L �# 	

��


partial refresh
C
# refreshDT

refreshC #
�propagate

C
followed by partial refresh

C
� or

�partial refresh
C
followed by refreshBL�

Figure � Deferred View Maintenance Algorithms

�
� Algorithms

Figure � presents algorithmic solutions for the three scenarios of deferred view maintenance described
in Section �� The notation L�#	 is used to abbreviate the operations needed to empty log tables
�HR��#	� � � � � NRn�#	�� If T� and T� are transactions� then T� % T� denotes the transaction that
has the same behavior as performing the operations of T� and T� simultaneously� That is� we may
view T� % T� as performing T� and T� in a way that operations in T� do not see the e�ect of
operations in T�� and vice versa�

These high�level algorithms are built from two main components� the pre� and post�update di�er�
ential algorithms presented in Section �� and a method for composing two sequential updates into a
single update� The latter is provided by the following lemma�

Lemma � �Weakly Minimal Composition� Suppose that O� I�� I�� D� and D� are queries such

that D� � O and D� � �O � D�� � I�� Let D�
def
# D� � �D�

� I�� and I�
def
# �I� � D�� � I�� Then

�a� ���O � D�� � I�� � D�� � I� � �O � D�� � I��
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�b� D� � O�

As an example� we show how propagate
C
from Figure � is derived� Equation ��� in Section � tells us

that
Q � �past�L� Q� � H�L� Q�� �N�L� Q��

and invariant INVC tells us that

past�L� Q� � �MV �
OMV � �MMV �

This implies that
Q � ���MV �

OMV � �MMV � � H�L� Q�� �N�L� Q��

By the composition lemma� we then get

Q � �MV � �OMV � �H�L� Q� � MMV ����
��MMV � H�L� Q�� �N�L� Q���

�
� Correctness

As discussed in Section ��� our solutions will impose the following minimality invariants� in addition
to the invariants described in Figure �� In the two cases that use a log L� we require that the
invariants NRi � Ri be maintained� In the two cases that use di�erential tables we will require that
the invariant OMV �MV be maintained�

The following lemma tells us that the transactions of Figure � correctly extend the log and maintain
the minimality invariants�

Lemma � Suppose that L is a weakly minimal log� sp
L
� sc� and T is a weakly minimal transaction�

Then sp
L
� �makesafeBL�T���sc�� Furthermore� the transaction makesafeBL�T� is safe for NRi � Ri

for each table Ri� and the transactions makesafeDT�T� and propagate
C

are safe for OMV �MV � �

The following theorem tells us that our algorithms meet the speci�cations given in Section ��

Theorem 	 The algorithms of Figure � are correct� That is� every transaction makesafe
�T� is safe
for INV
 for � being BL� DT and C� The refresh transactions are correct�

fINV
grefresh
fQ � MV g

In addition� the following holds�

fINVCg propagate
C
fQ � �MV �

OMV � � MMV g
fINVCg partial refresh

C
fpast�L� Q� � MV g �
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�
� Minimizing view downtime

The two transactions� propagate
C
and partial refresh

C
� of the INVC scenario allow for a very rich

set of maintenance policies� We now present two policies for that scenario and describe how they
minimize view downtime�

Policy �� Every k time units� the transaction propagate
C
is invoked to propagate changes from the

log L to the di�erential tables� OMV and MMV � Every m time units �m � k�� the view table
MV is brought up�to�date using refreshC�

Policy �� The use of propagate
C
is the same as that in Policy �� Every m time units �m � k�� the

view table MV is partially refreshed using partial refresh
C
�

With both policies� per�transaction overhead is minimized since makesafeC�T� only adds the work
required to update the log tables� Policy � can be expected to have a refresh time much lower than
that of the INVBL scenario� This is because much of the work of computing incremental changes
has already been done during periodic propagation� Policy � has the least downtime since it merely
applies the precomputed di�erential tables to the view table� Policy � refreshes the view to a state
that is at most k time units out�of�date� This policy is appropriate for applications that can tolerate
data that is slightly out�of�date �assuming k is small��

One can minimize view downtime further by removing� from OMV and MMV � tuples that exist in
both OMV and MMV � Such a solution would be generated by using strong minimality �Section �����
and requires a strongly minimal analog of Lemma ��

Example 	�� Again we consider the retail application of Section ���� Suppose that we use the
INVC scenario for the materialized view MV � and maintain logs on the changes to the sales table�
In this example� the refresh period is �� hours �m # ���� Suppose that propagation is done every
hour �k # ���

Using Policy �� we can expect the downtime to be much smaller than it would be in the INVBL

scenario� since the log would contain at most an hour�s worth of changes rather than a day�s worth�
The refresh of Policy � results in a view table that is no more than one hour out�of�date� and has
the minimal downtime� �

Of course� there are many possible variations on these two policies� For example� rather than using
a �xed interval k� the transaction propagate

C
could be invoked asynchronously whenever any free

cycles are available� Similarly� refreshC or partial refreshC could be invoked only when a user queries
the view�
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� Related Work

Several incremental view maintenance algorithms for immediate maintenance have been proposed �BLT�	�
GL�
� Han�� QW���� These algorithms are based on the assumption that access to the pre�update
base tables is available� Equations that involve both pre�update and post�update base tables are
presented in �CW��� GMS���� In �CW���� the incremental changes are computed in the post�update
state� The pre�update state of a table is computed from its post�update state and from the tran�
sition tables that contain update information� Our future queries are similar to the when�clause of
�GHJ�	��

Research related to deferred view maintenance has focussed on two main issues� �a� computing the
changes to the view and �b� applying the changes to the view� The work on computing updates has
involved issues such as the types of auxiliary information needed to compute incremental changes�
and detecting relevant updates� All of this work� however� has been done in the context of restrictive
classes of views� Database snapshots were proposed in �AL��� as a means of providing access to old
database states and also as a way of optimizing the performance of large� distributed databases�
An algorithm for determining the changes that should be made to snapshots �restricted to select�
project views over base tables� is presented in �LHM��	�� Techniques for maintaining update logs to
allow e�cient detection of relevant updates to select�project views are given in �KR�� and �SP��b��
Deferred maintenance for select�join views is implemented in ADMS �RK�	b��

Issues related to the process of applying the computed updates to the view have been studied
in �SR��� and �AGMK�
�� The problem of determining the optimal refresh frequency� based on
queueing models and parameterization of response time and processing cost constraints� has been
investigated in �SR���� View refresh strategies based on di�erent priorities for transactions that apply
computed updates to a view and transactions that read a view are presented in �AGMK�
�� While
this chapter is also concerned with the issue of balancing the costs of refresh with the constraints
of other transactions� the focus is on high�level algorithms for incremental maintenance based on
the various methods of keeping auxiliary information to achieve this balance� A comparison of view
processing techniques based on non�materialization� and immediate and deferred view maintenance
is presented in �Han��� The algorithms for deferred maintenance used in that paper are based on
future updates and hypothetical tables�

� Future work

There are many directions for future work� For example� are there algorithms to refresh only those
parts of a view needed by a given query� How should log information be stored so that the work
done by makesafeBL�T� is minimal� and independent of the number of views supported� What are
the problems related to concurrency control in the presence of materialized views�

Acknowledgments� We would like to thank Teradata�Walmart Support Group and Dave Belanger
for the initial discussions that led to this work� and Dan Lieuwen and the referees for helpful
comments�
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INCREMENTAL EVALUATION OF DATALOG

QUERIES

Guozhu Dong� Rodney Topor

� Introduction

We consider the problem of repeatedly evaluating the same �computationally expensive� query to a database

that is being updated between successive query requests� In this situation� it should be possible to use the

di�erence between successive database states and the answer to the query in one state to reduce the cost of

evaluating the query in the next state� We call this process 
incremental query evaluation��

We show how and when incremental query evaluation can be performed for Datalog queries to a relational

database and updates that are insertions of �nite sets of facts�

The problem is analogous to and can be viewed as a generalization of the problem of reducing the cost of

checking integrity constraint satisfaction in one state by using �i� database updates and �ii� the fact that

the integrity constraint was satis�ed in the state prior to the updates �BDM��� LST��� Nic����

Our task is closely related to the problem of e�ciently updating the standard model �ABW��� of a de�nite

or more generally strati�ed database �AP��� Kuc���� It is also closely related to the problem of partially

evaluating de�nite logic programs �LS���� Finally� when restricted to standard transitive closure programs�

our task can be viewed as solving the incremental transitive closure computation problem for graphs �BKV���

IK��� Ita� �� where the incremental algorithm is a nonrecursive Datalog program and where no recursive

algorithm or elaborate data structure is used�

In general� all these optimization approaches store extra information to reduce the time required for sub�

sequent computations� In our case� we store the answer to the query in one database state �and possibly

additional derived facts� to reduce the cost of evaluating the query in subsequent database states�

Informally� the idea of incremental query evaluation is as follows� Let Q be a Datalog query� D an initial

database state� Q�D� the answer to query Q in database D� A a set of facts to be inserted� and D� the

resulting database state� Then our approach is to store Q�D� �and possibly additional derived facts��

to use the update A to transform the query Q to a new 
incremental query� Q� with the property that

Q�D�� 	 Q��Q�D��D���Q�D��

�
�
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Using incremental evaluation� the task of evaluating Q is replaced by the task of evaluating Q�� Naturally�

our aim is to construct a query Q� that can be evaluated as e�ciently as possible� and whose answer contains

only new facts �irredundancy� Q��Q�D��D�� 	Q�D� 	 ��

As we shall see� for these goals to be achievable� it is necessary to store facts �not necessarily de�ned by Q�

in addition to the query answer Q�D��

Our main contribution is an algorithm for transforming any regular chain query and update into an incre�

mental query that is correct� irredundant �for a reasonable class of database states�� and� most importantly�

nonrecursive� Nonrecursive Datalog programs can be evaluated very e�ciently� �Much attention has been

given in the database �eld to conditions under which programs are equivalent to nonrecursive programs� See

�HKMV��� for recent advances on this issue��

Thus� our main result implies that regular chain queries can be evaluated incrementally by using nonrecur�

sive programs only� Furthermore� as shall be seen� we can construct a bounded number of �nonrecursive�

incremental programs �one for each EDB predicate� as our base of incremental programs� after each update�

we need only apply an incremental program from this base�

We also present an algorithm for transforming an arbitrary Datalog query and update into an incremental

query that is correct and irredundant �for some database states�� but which is not in general nonrecursive�

Section � de�nes the above concepts in more detail� Section � presents our incremental query construction

algorithm for regular chain queries and the proof of its properties� Section � describes our results for arbitrary

Datalog queries� and Section � discusses the connection between our results and related work� and suggests

some directions for future research�

� Basic concepts

After brie!y reviewing de�nitions of databases� queries� and answers� we introduce the main concept of the

chapter� i�e�� an incremental evaluation system�

A database is a �nite set of ground atomic formulas �facts� in some �rst�order function�free language� The

predicates that occur in a database are called extensional or EDB predicates� A Datalog program is a �nite

set of rules of the form A
 A�� � � � �An� where A and A�� � � � �An are atomic formulas� �We disallow built�in

predicates�� Predicates that occur in the heads of such rules are called intensional or IDB predicates� A

Datalog query Q is a pair �"� p�� where " is a Datalog program and p is a �query� predicate symbol�

The result "�D� of applying a Datalog program " to a database D is the least �Herbrand� model for "�D

or� equivalently� the set of facts that are logical consequences of "�D �vEK� �� The answer Q�D� to a

query Q 	 �"� p� in a database D is simply the set� of facts "�D�jp�

�For each set S of predicate symbols	 the restriction of a set F of facts to those with predicate in S is denoted F jS�

We write F jp for F jfpg�
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De�nition ��� �Incremental Evaluation System �IES��� Let Q 	 �"� p� be a Datalog query and A a

�nite set of facts� An incremental evaluation system �or IES� for Q with respect to A is a triple h"p� S�"Ai�

where

"p is a Datalog program� called the initial program for Q� such that "p�D�jp 	 "�D�jp for each

�extensional� database D�

S is a set of IDB predicate symbols containing p� and

"A is a Datalog program� called the incremental program for Q and A� such that "p�D�A�jS 	

"A���"p�D�jS�D��A�jS�"p�D�jS for each extensional database D� where � is a function that system�

atically maps each predicate symbol q to a new symbol qo� �Symbol qo denotes the relation q in the

state before inserting the facts in A��

As indicated in the introduction� we store "p�D�jS to reduce the cost of evaluating "p�D�A�jS� This is in�

tended to avoid recomputing the facts in "p�D�jS after inserting A� Note that "p�D�A�jp 	 �"p�D�A�jS�jp�

The bene�ts that can be achieved by incremental evaluation depend on the choice of "p� S and "A� and

particularly on "A� the program used to compute the new facts in the answer to the query in the updated

database� We would like this program to be e�cient� i�e�� to be nonrecursive� and to be irredundant �de�ned

later��

The following example attempts to illustrate the above concepts�

EXAMPLE ��� Consider the query Q 	 �"� path�� where " is the program

path�x� z�
 edge�x� z�

path�x� z�
 edge�x� y�� path�y� z�

Let S 	 fpathg� "p 	 "� A 	 fedge�a� b�g� and "A be the program

path�x� z�
 edge�x� z�

path�x� z�
 edge�x� y�� patho�y� z�

path�x� z�
 patho�x� y�� edge�y� z�

path�x� z�
 patho�x� y��� edge�y�� y��� path
o�y�� z�

Then h"p� S�"Ai is an incremental evaluation system for A� �The correctness will follow from Theorem �����

Thus we have transformed the computation of a recursive program into the computation of a nonrecursive

program �with the help of stored results�� �Recall that each predicate of the form po in "A denotes the

subset of facts for predicate p in the model before inserting the facts in A� Each predicate of the form p

�without the superscript o� denotes the additional set of facts for predicate p following the insertion of the

facts in A��
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To illustrate incremental evaluation� suppose D is the database fedge��� ��� edge��� ��� edge��� ��� edge���  �g�

and A is fedge��� ��g� �That is� a 	 � and b 	 ��� Then "p�D� 	 fpath��� ��� path��� ��� path��� ���

path��� ��� path���  �� path���  �g� To compute "p�D � A� from "p�D� using "A� the facts in "p�D� �D

are marked with a superscript o to indicate that they were facts in the state before inserting the facts in A�

the predicate edge �resp�� path� in "A denotes the additional set of facts that are added �resp�� derived� for

edge �resp� path�� Thus� the additional fact for edge is fedge��� ��g� and the additional facts for path are

fpath�i� j� j � � i � � and � � j �  g�

As an aside� we can transform "A into a more e�cient program by instantiating "A with the speci�c

fact in A� The resulting rules are path�a� z� 
 patho�b� z�� path�x� b� 
 patho�x� a� and path�x� z� 


patho�x� a�� patho�b� z�� This technique also applies to other examples described below� �

The next example illustrates why it is sometimes necessary to use an initial program "p di�erent from "�

and why it is sometimes necessary to store the set of facts "p�D�jS instead of the query answer "�D�jp�

EXAMPLE ��� Consider the query Q 	 �"� p�� where " is the following program that represents the

propagation of signals p on wires x� y� z through a network of logical OR gates s with inputs r�

p�x�
 s�x� y� z�� p�y�

p�x�
 s�x� y� z�� p�z�

p�x�
 r�x�

For no update A is there a nonrecursive incremental program "A if we let "p be "� However� by using a

di�erent "p� and storing derived facts �for a new predicate� in addition to the derived facts for p� we can

construct an IES for Q with a nonrecursive incremental program as shown below� Indeed� let "p be the

program

t�x�y�
 s�x� y� z� p�x�
 r�x�

t�x�z�
 s�x� y� z� p�x�
 t�x�y�� r�y�

t�x�z�
 t�x� y�� t�y� z�

and let S be the set fp� tg �not simply fpg�� Here� t�x�y� is true if x is 
on� whenever y is 
on�� Now�

if A 	 fr�a�g� we can de�ne "A to be the program consisting of the single rule p�x� 
 to�x�a�� Then

h"p� S�"Ai is an IES for Q with respect to A� and "A is a nonrecursive incremental program� Furthermore�

"A���"p�D�jS�D��A� can be evaluated using� in e�ect� a single selection operation�

Alternatively� if A 	 fs�a� b� c�g� we can de�ne "A to be the program

t�a� b� t�y� c�
 to�y� a�

t�a� c� t�x� y�
 to�x�a�� to�b� y�

t�a� y�
 to�b� y� t�x� y�
 to�x�a�� to�c� y�

t�a� y�
 to�c� y�

t�y� b�
 to�y� a� p�x�
 t�x�y�� ro�y�
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�Recall that atoms with predicate symbol t denote facts computed by "A after inserting A� whereas atoms

with predicate symbol to denote facts in the state before A is inserted�� Then h"p� S�"Ai is an IES for Q

with respect to A� and "A is a nonrecursive incremental program� The nonrecursive incremental programs

when A is an arbitrary �nite set of facts can be constructed using the approach for regular chain queries

given in the next section� �

We are especially interested in incremental evaluation systems h"p� S�"Ai that are irredundant in the sense

that� for each extensional database D and each A disjoint from D� "A���"p�D�jS�D��A�jS is disjoint from

"p�D�jS� Note that� in the above example� because there can be several proofs that some p�b� holds� for

neither update is the resulting incremental evaluation system irredundant� Thus it is necessary to re�ne the

concept to make irredundancy a realistic goal�

De�nition ��� �Irredundant IES�� An incremental evaluation system h"p� S�"Ai is called irredundant

with respect to a class D of extensional databases if "A���"p�D�jS�D��A�jS is disjoint form "p�D�jS for

each D � D disjoint from A�

EXAMPLE ��	 The incremental evaluation system h"� S�"Ai of Example ��� is irredundant with respect

to extensional databases whose underlying directed graph has the following 
forest property� there is at

most one path between each pair of nodes in the updated database D�A� �

� Regular chain programs

In this section we consider the incremental evaluation of Datalog queries associated with 
regular chain

programs�� The main result is an algorithm for constructing for each regular query and each insertion an

IES with a nonrecursive incremental program� We assume familiarity with the elements of formal language

theory�

A chain Datalog program is a �nite set of chain rules of the form

q�x� z�
 q��x� y��� q��y�� y��� � � � � qk�yk��� z� �����

where k  � and x� y�� � � � � yk��� and z are distinct variables� Note that chain Datalog programs contain

only variables and binary predicate symbols�

Chain Datalog programs and generalizations allow special optimization techniques� Indeed� several papers

have considered e�ciency issues of such programs �AC��� Don��� Don���� The current chapter also explores

such possibilities�

It is well known that� for each chain Datalog program "� the query �"� p� is associated with a context�

free grammar G which can be constructed as follows� The terminal �resp�� nonterminal� symbols are the

EDB �resp�� IDB� predicates� the start nonterminal is the query predicate p� and for each rule in " of the

form ������ there is a production of the form q � q�q� � � � qk�
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De�nition 	�� �Regular Query�� A Datalog query �"� p� is called regular if " is a chain Datalog program

and the context�free grammar associated with the query is right�linear� �

The standard edge�path query �"� path� given in Example ��� is regular� whereas the standard same�

generation query �see Section �� is not�

Our main result of this chapter is as follows

Theorem 	�� �Main� Let Q be a regular chain query and A a �nite set of facts� Then there exists an

algorithm that constructs an incremental evaluation system for Q wrt A whose incremental program is

nonrecursive�

This theorem will be a direct consequence of Theorem ���� as the incremental program constructed by

Algorithm ��� below is indeed nonrecursive�

We �rst need an auxiliary notion �given next� and a key lemma �Lemma ����� We can regard a database D

over a set of binary EDB predicates as a directed graph whose vertices are constant symbols and whose edges

are labelled by EDB predicates such that there is an edge labelled p from a to b in the graph if and only

if p�a� b� � D� Let L be an ��free regular language over the alphabet of binary EDB predicates� For each

directed graph D� an L�path from c� to ck is an expression of the form 
q��c�� c��q��c�� c�� � � � qk�ck��� ck��

where each qi�ci��� ci� is in D� For example� for D 	 fedge��� ��� edge��� ��g� edge��� ��edge��� �� is an

L�edge���path from � to ��

Lemma 	�� Let D be a labeled directed graph	 q�a�� a�� be a labeled edge in D	 E be a f�� �� �g�free regular

expression	 and b� and b� be nodes� If there is an L�E��path in D from b� to b�	 then there is such a path in

which q�a�� a�� occurs at most #q�E� times��

Proof Let $ be the set of labels appearing in E and n 	 Sumx��#x�E�� Then n  �� For each i � ����n��

we replace the ith occurrence of symbols in E from $ by i� Let %E be the resulting regular expression�

Clearly� no terminal symbol occurs in %E twice� Let f be the homomorphic mapping from ����n� to $ such

that f� %E� 	 E� Then f�L� %E�� 	 L�E��

Suppose there exists an L�E��path q��c�� c�� � � � qk�ck��� ck� from b� to b�� Let m be the number of oc�

currences of q�a�� a�� in this path� It su�ces to assume m � #q�E�� Since q� � � � qk is in L�E� and since

f�L� %E�� 	 L�E�� there exists a word i� � � � ik in L� %E� such that f�i� � � � ik� 	 q� � � � qk� Since m � #q�E��

there exist � � 	 � 	� � k such that i� 	 i�� and q��c���� c�� 	 q���c����� c��� 	 q�a�� a��� Intuitively� the two

equations mean that q�a� b� appears at the 
position� i� in E twice� It can be veri�ed �using an automata�

theoretic argument� that i� � � � i�i���� � � � ik is in L� %E�� Since q� � � � q�q���� � � � qk 	 f�i� � � � i�i���� � � � ik��

�A grammar is right�linear if the only nonterminal symbol in the right hand side of each production is the rightmost

symbol�
��q�E� denotes the number of occurrences of symbol q in regular expression E�
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q� � � � q�q���� � � � qk is in L�E�� Since c� 	 c�� 	 a�� it follows that q��c�� c�� � � � q��c���� c��q�����c��� c����� � � �

qk�ck��� ck� is an L�E��path from b� to b�� Clearly� q�a�� a�� occurs in this path at most m� � times� Re�

peating the above argument� one ultimately obtains a desired L�E��path�

EXAMPLE 	�� We now illustrate the construction used in the proof of the lemma� Let E 	 �qr � q�t���

Then n 	 �� %$ 	 f�� �� �� �g� %E 	 �� � � �� ���� and f��� 	 f��� 	 q� f��� 	 r� and f��� 	 t�

Suppose the following L�E��path is in graph D

q�c�� c��q�c�� c��t�c�� a��q�a�� a��r�a�� a��q�a�� a��

t�a�� a��q�a�� a��r�a�� a��q�a�� a��t�a�� a	�

Then the word w in L� %E� such that f�w� 	 qqtqrqtqrqt is w 	 ������������ The edge q�a�� a�� occurs

three times in the path� and #q�E� 	 �� We observe that the �rst and third usages of q�a�� a�� correspond

to the same integer � in %E� �The second usage corresponds to integer � in %E�� By removing ����� we get

the shorter word ������� in L� %E�� The corresponding L�E��path from c� to a	 is

q�c�� c��q�c�� c��t�c�� a��q�a�� a��r�a�� a��q�a�� a��t�a�� a	��

Note that q�a�� a�� now occurs only once in this L�E��path� �

We are now ready to present the main algorithm�

Algorithm 	�� �IES� Let Q 	 �"� p� be a regular chain query and A a �nite set of facts� We construct

an IES h"p� S�"Ai for Q with respect to A as follows

Step � Construct a regular expression E� from Q such that the associated grammar of Q generates L�E���

Step � Construct a f�� �� �g�free regular expression E such that L�E� 	 L�E���

Step � For each regular expression e occurring in E� let pe be a predicate symbol� Assume that pE 	 p�

and pr 	 r for each EDB predicate symbol r� Let "p consist of the following rules

pe�x� z�
 pe��x� y��� pe��y�� y��� � � � � pek�yk��� z�� if e 	 e� � � � ek �k  ���

pe�x� z�
 pei�x� z� for each i � ����k�� if e 	 e�� � � � �ek �k  ���

pe�x� z�
 pe��x� z� and pe�x� z�
 pe��x� y�� pe�y� z�� if e 	 e�� �

pE�x� z�
 r�x� z�� if E 	 r for some EDB predicate r�

Let S be the set of all IDB predicate symbols of "p�

Step � We use the predicate symbols occurring in "p together with their 
old� versions of the form poe� Let

"A consist of the following rules
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pe�x� z�
 p��x�y��� p��y�� y��� � � � � pk�yk��� z�� for each sequence p�� � � � � pk such that each pi � fpei � p
o
eig

and at least one pi 	 pei � if e 	 e� � � � ek �k  ���

pe�x� z�
 pei�x� z� for each i � ����k�� if e 	 e�� � � � �ek �k  ���

pe�x� z�
 p��x�y�� � � � pk�yk��� z� for each subsequence
 p� � � � pk of �p
o
epe��

mpoe �wherem 	 jAjmaxf#q�e� j

q is a predicate symbol occurring in Ag�� such that �i� there is at least one j such that pj 	 pe� � and

�ii� there are no consecutive poe�s� if e 	 e�� �

pE�x� z�
 r�x� z�� if E 	 r for some EDB predicate r�

�

The program "A constructed by this algorithm computes the new facts for predicates of the form pe� by

using the old facts for pe in the state before the facts in A were inserted�

Note that the incremental program "A constructed by the above algorithm is nonrecursive� Furthermore� "A

only depends on the predicate symbols occurring in A and the size of A� it does not depend on the constants

occurring in facts in A� Thus� if we restrict A to singleton sets� the number of incremental programs for "

�which form the incremental program base for "� is the number of EDB predicates occurring in "�

Note that "p and "A do not correspond to right�linear grammars in general�

Example ��� illustrated the construction applied to the standard edge�path query� A more involved example

follows�

EXAMPLE 	�� Suppose Q 	 �"� p� is a regular query and A 	 fq�a� b�g� Suppose the �rst two steps of

Algorithm ��� yield the regular expression E 	 �qr � q�t��� Let e� 	 qr� e� 	 q�� e� 	 e�t� e
 	 e� � e��

and e� 	 e�
 � Then S 	 fpei j � � i � �g� "p is the program

pe��x� z�
 q�x� y�� r�y� z� pe� �x�z�
 pe��x�z�

pe��x� z�
 q�x� z� pe� �x�z�
 pe��x�z�

pe��x� z�
 q�x� y�� pe� �y� z� pe� �x�z�
 pe��x�z�

pe��x� z�
 pe��x� y�� t�y� z� pe� �x�z�
 pe��x�y�� pe��y� z�

and "A is the program

pe��x� z�
 q�x� y�� ro�y� z� pe� �x�z�
 pe� �x�y�� t
o�y� z�

pe��x� z�
 q�x� z� pe� �x�z�
 pe� �x�z�

pe��x� z�
 q�x� y�� poe� �y� z� pe� �x�z�
 pe� �x�z�

pe��x� z�
 poe��x� y�� q�y� z� pe� �x�z�
 pe� �x�z�

pe��x� z�
 poe��x� y��� q�y�� y��� p
o
e��y�� z� ��� other rules de�ning pe��

pe��x� z�
 poe��x� y��� pe��y�� y��� p
o
e��y�� y��� pe��y�� y
�� p

o
e��y
� z�


Given a sequence or word s � s�s� � � � sk 	 a subsequence of s is a sequence si� si� � � � sij 	 where j � � and

� � i� � i� � � � � � ij � k�
�jAj denotes the cardinality of A and �q�e� denotes the number of occurrences of q in e�
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Recall that pe in "A denotes the newly derived or added atoms for pe after inserting A� and poe represents

the atoms for pe before inserting A� �

Theorem 	�� Let Q be a regular chain query and A a �nite set of facts� Then Algorithm 
�� constructs an

IES for Q with respect to A whose incremental program is nonrecursive�

Proof For simplicity� we only consider the case where A is a singleton set� By an abuse of notation� we

use A to denote the fact� We need to verify the two equations in the de�nition of an IES� To this end�

let D be an arbitrary extensional database� E the f�� �� �g�free regular expression constructed in steps �

and �� and "p the program constructed in step � of Algorithm ���� It is then straightforward to verify that

"p�D�jp 	 "�D�jp holds�

We now verify the other equation� namely�

"p�D�A�jS 	 "A���"p�D�jS�D��fAg�jS�"p�D�jS�

We �rst prove that the right hand side is contained in the left hand side� Due to monotonicity� "p�D�jS �

"p�D�fAg�jS� Observe that every �bottom�up� derivation of a fact F from the database ��"p�D�jS�D��fAg

using the program "A can be transformed into a derivation of F from D � fAg using "p by deriving each

atom of the form poe�� � �� from D using "p� Hence "A���"p�D�jS�D��fAg�jS � "p�D�fAg�jS�

To prove the reverse containment� it su�ces to assume A �� D� Let q be the predicate symbol occurring in

A� By induction� we show that for each regular subexpression e of E�

�y� if pe�a� b� is in "p�D � fAg��"p�D�� then pe�a� b� is in "A���"p�D�jS�D��fAg��

The following is easy to verify�

�z� For each regular subexpression e of E using at least one operator� pe�a� b� is in "p�D�A�jS if and only

if there is an L�e��path in D � fAg�

Basis �Zero operators� e is an EDB predicate symbol� Then �y� holds trivially because there is no EDB fact

in "p�D � fAg��

Induction �One or more operators� Assume �y� holds for all regular subexpressions of E with fewer than i

operators� i  �� Let e be a regular subexpression of E with i operators�

Case � e 	 e� � � � � � ek� Suppose pe�a� b� � "p�D � fAg� � "p�D�� By the construction of "p� there

exists j � ����k� such that pej �a� b� � �"p�D � fAg� � fAg� � "p�D�� Then either pej �a� b� 	 A or� by

the induction hypothesis� pej �a� b� � "A���"p�D�jS�D��fAg�� Since pe�x� z� 
 pej �x� z� is a rule in "A�

pe�a� b� � "A���"p�D�jS�D��fAg� as desired�

Case � e 	 e� � � � ek� Suppose pe�a� b� is in "p�D � fAg� � "p�D�� Then there exist facts pe��a� c��� � � ��

pek�ck��� b� in D � fAg � "p�D � fAg�� Since the rule pe�x� z� 
 pe� �x�y��� � � � � pek�yk��� z� is in "p and

pe�a� b� is not in "p�D�� at least one of these facts is not in "p�D� �D� By the induction hypothesis� all
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these facts are in "A���"p�D�jS�D��fAg� �D � fAg� Let c� 	 a and ck 	 b� Consider the rule pe�x� z�


p��x�y��� � � � � pk�yk��� z� in "A� where pj is pej if pej �cj��� cj� is in �fAg�"p�D�fAg���"p�D�� and pj 	 poej
otherwise� Clearly� an application of the rule yields pe�a� b�� Thus pe�a� b� is in "A���"p�D�jS�D��fAg��

Case � e 	 e�� � Suppose pe�a� b� is in "p�D � fAg��"p�D�� By �z�� there is an L�e��path from a to b� By

Lemma ���� there exists an L�e��path P using A at most #q�e� times� Let P ��� � � � � P
�
n be L�e���paths such

that P 	 P �� � � �P
�
n� We combine the consecutive L�e���paths not using A to form L�e��paths� As a result� we

obtain L�e��paths not using A and L�e���paths that use A� Let P�� � � �� Pk be those L�e� or L�e�� paths such

that P 	 P� � � �Pk� Note that� for each i � k� if Pi does not use A then Pi�� uses A� �But Pi�� may use A if

Pi uses A�� Let c� 	 a� ck 	 b� and c�� � � � � ck�� be the constants such that Pi is from ci�� to ci� Let i be �xed�

If Pi does not use A� then it is an L�e��path in D� and thus pe�ci��� ci� is in "p�D�� Suppose Pi uses A� Then

it is an L�e���path in D�fAg� and thus pe��ci��� ci� is in �fAg�"p�D�fAg��"p�D� by �z�� By the induction

hypothesis� pe��ci��� ci� is in fAg �"A���"p�D�jS �D� � fAg�� Let pe�x� z�
 p��x�y��� � � � � pk�yk��� z� be

the rule in "A where pj 	 pe� if Pi uses A and pj 	 poe otherwise� Clearly an application of this rule yields

pe�a� b�� Thus pe�a� b� is in "A���"p�D�jS�D��fAg��

Observe that the program "A constructed by Algorithm ��� is irredundant with respect to the class of

databases that satisfy the forest property� It seems di�cult� if not impossible� to improve on this result� For

example� an old path may exist between a pair of nodes a and b� and a new edge from c to d may bridge the

only gap in a new path from a to b�

� Arbitrary Datalog programs

In the previous section we presented an algorithm to construct IES�s with nonrecursive incremental programs

for regular chain queries� We note that Algorithm ��� is only applicable to regular chain queries� However�

as illustrated in Example ���� other Datalog programs may have IESs�

In this section we present an algorithm to construct an IES for an arbitrary Datalog program� The algorithm

is as follows�

Algorithm 
�� Let Q 	 �"� p� be a Datalog query and A a �nite set of facts� Then h"� S�"Ai is an IES

for Q wrt A� where S is the set of IDB predicates of "� and "A is constructed as follows�

For each rule of the form q�
x� 
 q�� 
x��� � � � � qk� 
xk� in "� "A contains all rules of the form q�
x� 


p�� 
x��� � � � � pk� 
xk�� where �i� each pi is either qi or qoi � �ii� at least one pi is qi� and �iii� pi is qoi if qi is

a base predicate that does not occur in A� �

Essentially� for each rule in "A� the rule body contains at least one atom that can only be uni�ed with new

facts derived from A� Thus "A computes the new facts by using at least one new fact at each step �in a

bottom�up computation�� It is not di�cult to see that "A computes all facts in "�D�A� not in "�D�� and

that the algorithm is thus correct�
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We illustrate the behaviour of this algorithm with the following examples�

EXAMPLE 
�� Let Q 	 �"� path� be the query given in Example ��� and A an arbitrary �nite set of

facts� Applying the above algorithm we �nd S is fpathg and "A is the program

path�x� z�
 edge�x� z�

path�x� z�
 edge�x� y�� patho�y� z�

path�x� z�
 edgeo�x� y�� path�y� z�

Then h"� S�"Ai is an incremental evaluation system for Q wrt A� Note that the resulting incremental

program "A is recursive� �

EXAMPLE 
�� Consider the query Q 	 �"� p�� where " is the following program that represents the

propagation of signals through a network of AND gates� analogously to Example ����

p�x�
 s�x� y� z�� p�y�� p�z�

p�x�
 r�x�

Let A 	 fs�a� b� c�� r�d�g� Applying the above algorithm we �nd S is fpg and "A is the program

p�x�
 s�x� y� z�� po�y�� po�z�

p�x�
 so�x�y� z�� p�y�� po�z�

p�x�
 so�x�y� z�� po�y�� p�z�

p�x�
 s�x� y� z�� p�y�� po�z�

p�x�
 s�x� y� z�� po�y�� p�z�

p�x�
 so�x� y� z�� p�y�� p�z�

p�x�
 s�x� y� z�� p�y�� p�z�

p�x�
 r�x�

Then h"� fpg�"Ai is an IES for Q wrt A� Again� "A is recursive� �

EXAMPLE 
�	 Consider the standard same�generation query Q 	 �"� sg�� where " is the following

program�

sg�x� y�
 p�x� z�� q�z� y�

sg�x� y�
 p�x� z�� sg�z� v�� q�v� y�

If A 	 fp�a� b�g� the algorithm yields S 	 fsgg and the following incremental program "A�

sg�x�� y�
 p�x� z�� qo�z�y�

sg�x� y�
 p�x� z�� sgo�z� v�� qo�v� y�

sg�x� y�
 po�x� z�� sg�z� v�� qo�v� y�

sg�x� y�
 p�x� z�� sg�z� v�� qo�v� y�
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Super�cially� the incremental programs constructed by Algorithm ��� are similar to the �relational algebra�

programs used in the semi�naive method for evaluating Datalog queries �Ban���� However� it should be noted

that our method is a program transformation rather than an alternative evaluation procedure� and that our


new� facts are consequences of the inserted facts rather than facts computed in the previous �bottom�

up� iteration� In fact� semi�naive evaluation can be applied to speed up the evaluation of our incremental

programs�

� Conclusions and discussion

We have considered the incremental evaluation problem for Datalog queries� The main idea is to use the

tuples computed in one state to reduce the cost of computing the answer to the same query after the insertion

of a set of facts� Our main result is an algorithm to construct an IES with a nonrecursive incremental program

for each regular chain query and each insertion� For general queries� we proposed an alternative method to

construct IESs� though these are not as e�cient in general as IESs for regular chain queries�

We now brie!y compare our approach with other related work� Our incremental evaluation approach is

based on the ideas of �i� transforming the original program into a new program� and �ii� storing derived

relations for reuse after updates� Combining program transformation with storage of derived facts� our work

is similar to the following in aim and methodology�

Semi�naive evaluation �Ban���� The basic idea of semi�naive evaluation is in each �bottom�up� iteration to

compute only those facts that depend on at least one fact computed in the previous iteration� It is thus

similar to our approach in avoiding repeated computation� However� both Algorithms ��� and ��� are program

transformations rather than alternative evaluation procedures� and our 
new� facts are consequences of the

inserted facts rather than facts computed in the previous iteration�

Integrity constraint simpli�cation �BDM��� LST��� Nic���� The basic idea of integrity constraint simpli�ca�

tion is to use an update to determine a simpli�ed set of constraint instances that need to be checked after

the update� It is similar to our approach in using the information that the constraint was satis�ed in a

previous database state and propagating the e�ect of an update to transform �and simplify� the constraint

to be checked� Our approach di�ers� however� in storing previous derived relations and in transforming the

programs used in query evaluation�

E�cient maintenance of �strati�ed� databases �AP��� Kuc���� The goal of this approach is to e�ciently

compute the standard model of a strati�ed database after a database update� It is similar to our approach

in using the previous standard model �analogous to our stored relations� to simplify the task of computing

the standard model �query answer� after the update� Our approach di�ers by storing intermediate relations

rather than reasons �or 
supports�� for including computed facts �AP��� � by not using meta�programs to

compute the di�erence between successive models �Kuc���� and by transforming the programs used in query

evaluation� Our approach is� however� more restricted as it does not allow negation in rules and queries�
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Partial evaluation in logic programming �LS���� The idea of partial evaluation is to propagate given facts

into programs so that subsequent queries involving those facts can be evaluated more e�ciently� In this

sense� this approach is also similar to ours� though it does not involve database updates or storage of derived

relations� Our results may contribute to research on partial evaluation�

Our incremental approach di�ers considerably from approaches such as the magic set approach �BMSU� �

to query optimization� Indeed� incremental query evaluation is driven by anticipation� whereas magic set

evaluation is driven by need� Consequently� it is di�cult to combine the two approaches� To see this� consider

the path problem in Example ���� Suppose that we want to �nd all nodes reachable from a given node� say ��

Suppose further that our old set of facts contains two connected components such that � is in one component�

and suppose the inserted fact connects the two components in some way� Since the magic set approach is

driven by need� reachable nodes in the component not containing � must be computed from the beginning in

an unbounded number of iterations depending on the original facts� In the incremental approach only one

or two joins are necessary since the needed steps have previously been computed in anticipation�

Several problems for future research suggest themselves immediately� These include the following�

Incremental evaluation can compute more facts than computation using the original programs� Although

such increased computation is amortized or 
evenly distributed� over a number of queries� it would be of

interest to know when we should use incremental evaluation and when should we avoid using it�

Can IESs with nonrecursive incremental programs be constructed for classes of Datalog programs larger

than regular chain programs�

Can more e�cient IESs be constructed for arbitrary Datalog programs�

For which classes of programs can irredundancy of incremental evaluation be achieved for all extensional

databases�

Can e�cient �or any� IESs be constructed for strati�ed Datalog programs�

What are the exact relationships between incremental evaluation and �i� e�cient maintenance of strati�ed

databases and �ii� partial evaluation of logic programs�

We believe that the methods described in this chapter are valuable and deserve further study along these

and similar lines �
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ABSTRACT

To meet the stringent performance requirements of transaction recording systems� much of the recording and

query processing functionality� which should preferably be in the database� is actually implemented in the

procedural application code� with the attendant di�culties in development� modularization� maintenance�

and evolution� To combat this de�ciency� we propose a new data model� the chroniclemodel� which permits

the capture� within the data model� of many computations common to transactional data recording systems�

A central issue in our model is the incremental maintenance of materialized views in time independent of

the size of the recorded stream�

Within the chronicle model we study the type of summary queries that can be answered by using persistent

views� We measure the complexity of a chronicle model by the complexity of incrementally maintaining

its persistent views� and develop languages that ensure a low maintenance complexity independent of the

sequence sizes�

� Introduction

Motivation� Many database systems are used to record a stream of transactional information� such as

credit card transactions� telephone calls� stock trades� !ights taken� sensor outputs in a control system� etc�

Applications that deal primarily with transactional data have the following common characteristics

An incoming sequence of transaction records� each record having several attributes of the transaction

to be recorded� The sequence of records can be very large� and grows in an unbounded fashion� The

transaction records are stored in a database for some latest time window� as it is beyond the capacity

of any database system to store and provide access to this sequence for an inde�nite amount of time�

For example� a major telecommunications company is known to collect ��GB of sequence data every

day� or ��TB of sequence data every year� No current database system can even store so much data�

far less make it accessible in an interactive manner�

�	
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Queries over the stored sequence of transaction records� with stringent response time requirements� Of

particular interest are summary queries� that access summarization� or aggregation information of

past transactional activity�

For example� a cellular phone company may want to provide a facility for a summary query that

computes the total number of minutes of calls made in the current billing month from a phone number�

This query could be executed whenever a cellular phone is turned on� and the result could be displayed

on the customer�s phone instrument� Another example of a summary query that a customer care agent

in the cellular company may want to execute is What is the total number of minutes of calls made

from a given cellular number since the number was assigned to the current customer�

These applications can be �and are� implemented using commercially available relational databases� How�

ever� the relational model is not suitable to capture and exploit the peculiar characteristics of a transaction

recording system� For example� there is no support for answering a summary query over a sequence that is

not stored in the database in its entirety� Even if the sequence is stored� there is no support for answering a

summary query over a large sequence� with the speed needed to process a banking transaction� or to display

the answer on the customer�s phone at power�on time�

These summary queries are therefore supported in today�s systems by procedural application code� For

example� an application program may de�ne a few summary �elds �e�g�� minutes called � dollar balance� for

each customer� and update these �elds whenever a new transaction is processed for this purpose� Summary

queries are then answered by looking up the summary �elds� rather than going to the sequence of trans�

action records� This gives the applications a fast response time� as well as independence from the need

to lookup past transactional data� Some applications� such as ATM withdrawals� require that a summary

�eld �dollar balance� be updated as the transaction is executed� since the summary query needs to be made

before the next ATM withdrawal� Some applications may choose to use triggers to invoke the updating

code� others may update the summary �elds as they process transaction in batch� In all cases� the logic

to update the summary �elds due to a transaction is encoded procedurally� and the burden of writing this

code is with the application programmer� This updating code is known to be very tricky� and has been the

cause of well�publicized banking disasters �e�g�� Chemical bank ATM withdrawals caused incorrect updates

on February ��� ����� leading to several bounced checks and frustrated customers �Tim�����

The need to de�ne summary �elds and to write the update procedures within the application code is one of

the reasons for the complexity of banking� billing� and other similar systems� Would it not be much better if

these summary �elds could be de�ned declaratively� and then updated automatically by the system as each

transaction is processed� The chronicle data model� which we are advocating in this chapter� has this goal

in mind� In particular� we capture within the chronicle model the above needs of a transactional system�

and thereby enable inexpensive� bug�free� and fast development of enhanced transactional systems� As the

examples above illustrate� one feature that must be provided the chronicle model is support for summary

queries that are speci�ed declaratively �an SQL like language may be used�� so that these queries can be

answered without requiring the entire transactional history to be stored� and without accessing even the

portion of the transactional history that is actually stored� The chronicle data model was inspired by our

study of the complexities of a major transactional system within AT�T� However� our model is applicable to

numerous other application domains� including credit cards� cellular telephone calls� stock trading� consumer

banking� industrial control systems� retailing� frequent !yer programs� etc�
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Results� We refer to the growing sequence of transaction records a chronicle� Our major contributions

are

We present a new data model� called the chronicle data model�

The model enables computation of summary queries over the chronicle� without requiring that the

entire chronicle be stored in the database� and without requiring the application programmers to write

procedural code�

The model permits summary queries over arbitrarily large chronicles to be answered in subseconds�

without requiring the application programmers to write procedural code�

The chronicle model elevates persistent views to �rst class citizens in a database�

We derive languages 
Summarized Chronicle Algebra� and SCA�� such that views de�ned in these

language can be maintained incrementally without accessing any of the chronicles� Further� SCA� can

be maintained incrementally in almost constant time� modulo index look ups� We have found SCA� to

be very useful in our application of the chronicle model within AT�T�

We show that the language chronicle algebra� a component of the 
Summarized Chronicle Algebra��

and the language CA�� a component of SCA�� are the largest possible subsets of the relational algebra

operations that derive chronicles and are in their respective incremental maintenance complexity classes�

We list several research and systems issues that can add functionality� currently not available in da�

tabases� to a chronicle model and make the chronicle model even more appealing to the transactional

systems�

The chronicle data model� in e�ect� is both an enhancement and a restriction of the relational data model�

and can be built on top of the relational model� The manner of its realization is� however� orthogonal to the

central theme that� in either case� we can reduce the complexity of a large class of applications�

Chapter Outline The remainder of this extended abstract is organized as follows� In Section �� we de�ne

the chronicle model� Section � de�nes complexity of a chronicle model as the complexity of incrementally

maintaining its persistent views� We de�ne a summarized chronicle algebra in Section �� and derive several

interesting results about this language� such as a low incremental complexity independent of the chronicle

size� and maximal expressiveness while being limited to the relational algebra operations� We discuss some

of the other research issues in the chronicle model in Section �� Discussions concerning related work are

o�ered in Section  � which lead us to the conclusion in Section �� Proofs of selected theorems are presented

in the Appendix�

Preliminaries

We assume familiarity with relational algebra� and with grouping and aggregation operations of SQL� We

use the following syntax �MPR��� to express the grouping operation

GROUPBY�R� �G�� � � � �Gm�� �A�� � � � �An���

where R is the relation being grouped� �G�� � � � �Gm� is the list of grouping attributes� and �A�� � � � � An� is

the list of aggregation functions� This expression de�nes a result relation with attributes in GL and with




�� Chapter �	

one attribute for each aggregation function� We will consider only those aggregation functions Ai that are

incrementally computable� or are decomposable into incremental computation functions� For our complexity

analysis� we will assume that each aggregation function can be computed in time O�n� over a group of size

n� and can be computed incrementally in time O��� over an increment of size �� MIN� MAX� SUM� and COUNT

are examples of such functions�

� The Chronicle Data Model

We now de�ne the chronicle model� discuss how queries may be posed on a chronicle database� and describe

how updates to relations and chronicle must be handled in a chronicle database�

�
� Model De�nition

A chronicle database consists of relations� chronicles� and persistent views� Relations are standard� as in any

relational database� Each relation may have several temporal versions �at least conceptually��

A chronicle is similar to a relation� except that a chronicle is a sequence� rather than an unordered set� of

tuples� A chronicle can be represented by a relation with an extra sequencing attribute� whose values are

drawn from an in�nite ordered domain� The only update permissible to a chronicle is an insertion of tuples�

with the sequence number of the inserted tuples being greater than any existing sequence number in the

chronicle� There is no requirement that the sequence numbers be dense� Chronicles can be very large� and

the entire chronicle may not be stored in the system�

There is a temporal instant �or chronon� associated with each sequence number� All operations on a tuple

of a chronicle are with respect to the database as it was at that point in time� Thus� any join of a chronicle

C and a relation R is a union of the corresponding joins of each tuple in C with the version of R that existed

at the temporal instant of the tuple in C�

The database maintains a �xed number of persistent views� which are views that are materialized into

relations� and are always maintained current in response to changes to the underlying database� Each

persistent view is materialized when it is initially de�ned� and it is kept up�to�date� re!ecting all the changes

that occur in the database� as soon as these changes occur� Of particular concern is the maintenance of a

persistent view after every append to a chronicle�

Persistent views are de�ned in a view de�nition language L� and correspond to the procedurally computed

summary �elds in the current transaction systems� Each choice of L derives a particular instance of the

chronicle data model� Formally�

De�nition ���� �Chronicle database system� A chronicle database system is a quadruple

�C�R�L�V��

where C 	 fC�� C�� � � � � Cng is a set of chronicles� R 	 fR��R�� � � � �Rmg is a set of relations� and V 	
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fV�� V�� � � � � Vlg is a set of persistent views de�ned in a language L� �

Example ���� Consider an airline database for tracking frequent !yer miles� There is one chronicle � the

sequence of mileage transactions posted to the database� There is at least one relation containing information

about customers� including their account number� name� and address� There are at least three persistent

views to hold the mileage balance� the miles actually !own� and the premier status �bronze� silver� gold� of

each customer� In order to de�ne these persistent views� the language must allow for aggregation and joins

between the chronicle and the relation� �

�
� Queries

Queries that access the relations and persistent views can be written in any language & relational algebra�

SQL� Datalog� etc� The choice of this language is orthogonal to the chronicle model� The chronicle model

enables fast response to queries that access the persistent views� these queries may otherwise have been

de�ned as complex SQL queries over the relations and chronicles and thus would not likely have been

answerable with acceptable performance� Further� a system would typically provide detailed queries over

some latest window on the chronicle� again the choice of the window and the query language are orthogonal

to our discussion�

�
� Updates

There are two types of updates in our model those that modify the relations and those that append to

chronicles� An update to a relation R can be an insert� delete� or modi�cation of a tuple in R� An update

to a chronicle C can only be the insertion of a new tuple �or tuples� to C with a sequence number greater

than the sequence number of all existing tuples in C� We consider these updates in turn below�

Each relation conceptually has multiple temporal versions� one after every update� In any persistent view

de�ned in language L� any joins between the relations and chronicles have an implicit temporal join on the

sequencing attribute We can associate a temporal version of the relations with each sequence number in

the chronicles� Each tuple of a chronicle is then joined with the version of the relations associated with the

same sequence number�

If an update to a relation a�ects only the versions corresponding to sequence numbers not seen as yet� then

it is a proactive update� such an update does not a�ect the persistent views� Only subsequent chronicle

updates see the new relation values� Since maintainability of persistent views is critical in the chronicle

model� we have chosen to limit the language L so that only proactive updates to relations are allowed�

In contrast� a retroactive update to a relation would require older tuples in the chronicle to be re�processed�

Such updates� when necessary� are computationally expensive to maintain� may not be maintainable if the

entire past chronicle is unavailable� and are not included as part of the chronicle model�
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Example ���� Consider again the frequent !yer example� Suppose that each customer living in New Jersey

gets a bonus of ��� miles on each !ight� The customer relation is updated whenever a customer changes

his'her address� A !ight tuple in the chronicle quali�es for the bonus only if the !ight was made during

the period of residence in New Jersey� Thus� the join between the chronicle and the relation is based on the

temporal version of the relation associated with the sequence number in the chronicle� An update to the

relation is proactive if the address update occurs before the associated tuples are appended to the chronicle�

�

An update to a chronicle may cause a change in each persistent view� and we discuss maintenance of

persistent views in the next two sections�

� Complexity of a Chronicle Model

Each time a transaction completes� a record for the transaction is appended to the chronicle� and one or

more persistent views may have to be maintained� The transaction rate that can be supported by a chron�

icle system is determined by the complexity of incremental maintenance of its persistent views� Thus� it is

important to choose a language L that ensures that incremental view maintenance can be done e�ciently�

Moreover� since chronicles may not be stored in the system� the language L should allow incremental main�

tenance without having access to the entire chronicles� Ideally� the complexity of maintaining a view de�ned

in L should be low � independent of the size of the relations and the view itself� modulo the overhead of

index lookups�

We de�ne the complexity of a chronicle system as the complexity of incremental computation of the lan�

guage L used to express the persistent views� A class IM�T means that all persistent views de�ned in the

language can be maintained in time O�T � in response to a single append into a chronicle �IM for incremental

maintenance�� The incremental complexity classes are similar to the dynamic complexity classes of Patnaik

and Immerman �PI����

The following incremental complexity classes may be de�ned

IM�Constant� A language is in the class IM�Constant if any persistent view de�ned in the language can be

maintained incrementally in response to a single append into the chronicle in constant time�

IM�log�R�� A language is in the class IM�log�R� if any persistent view de�ned in the language can be

maintained incrementally in response to a single append into the chronicle in time logarithmic in the

size of the relations�

IM�Rk� A language is in the class IM�Rk if any persistent view de�ned in the language can be maintained

incrementally in response to a single append into the chronicle in time polynomial in the size of the

relations�

IM�Ck� A language is in the class IM�Ck if any persistent view de�ned in the language can be maintained

incrementally in response to a single append into the chronicle in time polynomial in the size of the

chronicle and the relations�
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It is easy to show that the following relationships hold between the sets of views that can be described by

languages in each class

IM�Constant � IM�log�R� � IM�Rk � IM�Ck

In a high throughput system� a complexity of IM�Constant is desired� which implies that even index lookups

are not permitted� and is thus di�cult to achieve� At the other end of the spectrum� a chronicle model with

complexity IM�Ck would permit arbitrary access to the chronicle� Such a complexity is totally impractical

for an operation to be executed after each append into each chronicle� The size of the relations� j R j� is

assumed to be much smaller than the size of the chronicle j C j� so complexity class IM�Rk is the largest

that has the possibility of being manageable�

The choice of language L for de�ning persistent views with a low IM complexity is crucial� One obvious

candidate is relational algebra with grouping and incrementally computable aggregate operators� However�

relational algebra is not an acceptable choice for L� as the following result indicates�

Proposition 	��� Relational algebra� extended with grouping and aggregation� applied to chronicles and

relations� is in the class IM�Ck� and is not in the class IM�Rk� �

� Summarized Chronicle Algebra

In this section� we derive the largest subsets of a set of relation algebra operators that de�ne languages in

the �rst three IM complexity classes� which are all independent of the size of the chronicle� We present

our development in two steps� First� we de�ne an intermediate chronicle algebra that maps chronicles and

relations into chronicles� Then� we add a summarization step that maps chronicle algebra expressions into

relations by projecting out the sequencing attribute� possibly doing a grouping and aggregation alongside�

All inserted tuples into a chronicle must have a sequence number greater than all existing sequence numbers�

but multiple tuples with the same sequence number can be inserted simultaneously� For instance� when a

tuple is inserted into a base chronicle� each of the two operands of a union may derive a distinct tuple with

the same sequence number� The union expression can then have two distinct tuples with the same sequence

number�

We de�ne a chronicle group as a collection of chronicles whose sequence numbers are drawn from the same

domain� along with the requirement that an insert into any chronicle in a chronicle group must have a

sequence number greater than the sequence number of any tuple in the chronicle group� Operations like

union� di�erence� and join are permitted amongst chronicles of the same chronicle group�

De�nition 
��� The chronicle algebra �CA� consists of the following operators �C is a chronicle or a chronicle

algebra expression� A�� � � � �An are attributes of the chronicle� and p is a predicate�

A selection on a chronicle� �p�C�� where p is a predicate of the form A��A�� or A��k� or a disjunction

of such terms� k is a constant� and � is one of f	� �	�������g� �p�C� selects chronicle tuples that

satisfy the predicate p� The resulting chronicle has the same type as the chronicle C�
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Projection of a chronicle on attributes that include the sequencing attribute� "A������An�C��

A natural equijoin between two chronicles on the sequencing attribute� C� �C��SN�C� �SN C�� where

SN is the sequencing attribute� C� and C� are chronicles in the same chronicle group� and one of the

sequencing attributes is projected out from the result�

Union of two chronicles� C��C�� where C� and C� are chronicles in the same chronicle group� and have

the same type�

Di�erence of two chronicles� C��C�� where C� and C� are chronicles in the same chronicle group� and

have the same type�

A groupby with aggregation� with the sequence number as one of the grouping attributes

GROUPBY�C�GL�AL�� where C is a chronicle being grouped� GL is the list of grouping attributes �which

must include the sequencing attribute�� and AL is the list of aggregation functions�

A cartesian product between a chronicle C� and any relation R� C � R� Though this operation is

written as a cross product� recall �from Sec� ��� and Example ���� that an implicit temporal join on

the sequencing attribute exists between C and R� �

Theorem 
��� A view de�ned by the chronicle algebra is monotonic with respect to insertions into the base

chronicles� Whenever tuples with sequence numbers greater than all existing sequence numbers are added

to the base chronicles� the e�ect is to add tuples with some of these new sequence numbers to the view� �

Lemma 
��� Each view de�ned using a chronicle algebra expression is a chronicle in the same chronicle

group as the operand chronicles� �

De�nition 
���

CA� is chronicle algebra� without the cross product operation between chronicles and relations�

CA� is chronicle algebra� where the cross product operation between chronicles and relations is replaced

by a join� with a guarantee �based on the schema and integrity constraints on the database� that at

most a constant number of relation tuples join with each chronicle tuple� A su�cient condition for the

guarantee is that the join be on a key of the relation R� �

Theorem 
��� The changes� due to insertions into the base chronicles� for a chronicle view de�ned by

CA can be computed in time and space independent of the size of the chronicles and independent of

the size of the view� Time 	 O��u j R j�j log�j R j��� and Space 	 O��u j R j�j�� where u is the number

of unions in the expression de�ning the view� j R j is the size of the relation R� and j is the number of

equijoins and cross products in the expression de�ning the view�

CA� can be computed in Time 	 O�uj log�j R j��� and Space 	 O�uj��

CA� can be computed in Time 	 O�uj�� and Space 	 O�uj� �

In all cases� neither the chronicle view nor the chronicles need to be stored or accessed for the view main�

tenance� and this is the reason for obtaining a complexity which is independent of both the sizes of the

chronicle and the sizes of the view�
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Theorem 
�	� An extension of the chronicle algebra with either of ��� projection without including the

sequencing attribute� or ��� a groupby operation without including the sequencing attribute as a grouping

attribute leads to an algebra that can de�ne an expression that is not a chronicle� Further� an extension

of the chronicle algebra with either of ��� cross product between chronicles� or ��� a non�equijoin between

two chronicles leads to an algebra that can de�ne an expression for which the time for incremental view

maintenance is dependent on the size of a chronicle� �

Note that this theorem implies that the chronicle algebra is the largest subset of relational algebra operations

that is in IM�Rk� and that CA� is the largest subset of relational algebra operations that is in IM�log�R�� It is

important to note that we can de�ne expressions using the cross product or non�equijoin between chronicles

that are in IM�Rk� Theorem ��� simply states that there also exist expressions one can de�ne using the cross

product or non�equijoins that are not in IM�Rk �

Next� we present a summarization step that maps chronicles produced by chronicle algebra into persistent

views� which are relations without the sequencing attributes� The persistent view is then stored� and it is

updated whenever an insert occurs into the chronicles on which the persistent view depends�

De�nition 
�	� The summarized chronicle algebra �SCA�� has the two basic operations that can eliminate

the sequence attribute and map a chronicle algebra expression � into a relation�

Projection� with the sequencing attribute projected out� that is� "A������An ���� where the attributes

A�� � � � �An do not include the sequencing attribute�

Grouping with aggregation� where the sequencing attribute is not included in the grouping list� and

where the aggregation functions are incrementally computable �or decomposable into incrementally

computable functions�� represented as GROUPBY���GL�AL� where the grouping list GL does not include

the sequencing attribute of ��

If the expression � is in CA�� then the resulting language is called SCA�� if the expression � is in CA�� then

the resulting language is called SCA�� �

From De�nition ���� it follows that every persistent view expressed in SCA produces a relation �not a

chronicle� that does not have the sequence number as an attribute� Once a relation is de�ned using SCA�

it could be further manipulated by using relational algebra and the other relations in the system� to de�ne

a persistent view� However� since incremental maintenance is the key� we have to be careful to store a

persistent view that can be maintained without accessing the full chronicles over which the summarization

step is de�ned�

Theorem 
�
� Given a set of changes to chronicle algebra expression� incremental maintenance of a per�

sistent view written in SCA in response to insertions to a chronicle can be done in

Space equal to the size of the view�

Time 	 O�t log�j V j��� where j V j is the size of the persistent view V � and t is the number of tuples

inserted into the chronicle algebra �or CA� or CA�� expression �� �
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Theorem 
��� SCA is contained in class IM�Rk� SCA� is contained in class IM�log�R�� and SCA� is contained

in class IM�Constant� �

Thus� though the result of a chronicle algebra expression contains sequence numbers� and therefore may

have a size that is polynomial in j C j� incremental maintenance of summarized chronicle algebra expressions

can be done in time independent of j C j� since the chronicle view is not accessed during maintenance�

� Issues in the Chronicle Model

We brie!y outline several additional research issues that need to be considered in designing a chronicle

system�

�
� Periodic Persistent Views

The applications targeted by the chronicle model require the de�nition of a view that is computed over

several� potentially overlapping� intervals on a chronicle� one view computation for each interval� To address

this need� we introduce a periodic summarized chronicle algebra by adding� to the chronicle algebra� features

in the spirit of �SS��� CSS��� to construct sets of time intervals over which the persistent views can be

computed� A mapping from sequence numbers in a chronicle to time intervals must be made for the periodic

summarized chronicle algebra to be de�ned�

Given a view V in summary algebra� and a calendar D �i�e�� a set of time intervals�� V � D � speci�es a

set of views V�� � � � � Vk � one for each interval in the calendar D� The view Vi for interval i is de�ned as in V �

but with a selection on the chronicle� which requires that all chronicle tuples be within the interval i� under

the mapping de�ned from sequence numbers to time intervals� If the calendar D has an in�nite number of

intervals� there will be an in�nite number of views Vi� The view expression V � D � is called a periodic

view� When the calendar D has only one interval� the periodic view corresponds to a single view de�ned

using an extra selection on the chronicle�

The periodic summarized chronicle algebra also provides for an expiration time for a view� after which the

view is not needed� Expiration dates allow the system to implement an in�nite number of periodic views�

provided only a �nite number of them are current at any one instant�

Many applications require periodic views over non�overlapping intervals� �For instance� a new billing state�

ment is generated each month� by banks� telephone companies� credit card companies� etc�� The evaluation

of these can be optimized by starting to maintain a view as soon as its time interval starts� and stopping

its maintenance as soon as its interval ends� Periodic views over overlapping intervals can be de�ned to

compute moving averages over the transactions in a chronicle� Optimization of such views is even more

challenging� For example� consider a periodic view for every day that computes the total number of shares

of a stock sold during the �� days preceding that day� The computation of these views can be optimized by

noticing that the sum of shares is an incrementally computable function� This suggests that we should keep

the total number of shares sold for each of the last �� days separately� and derive the view as the sum of
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these �� numbers� Moving from one periodic view to the next one involves shifting a cyclic bu�er of these ��

numbers� Further� if an expiration date is given� the space for the periodic view can be reused� How would

such a computation be derived automatically by the system for a generic periodic view expressed over any

given set of overlapping time intervals�

�
� Identifying a�ected persistent views

When multiple views are to be maintained over the same chronicle� each update to the chronicle would

require checking all the views to determine if they need to be updated� To do so� we must

Identify the persistent views V that will be a�ected� We need to �lter these out early so as not to

waste computation resources� This problem is similar to determining when a query is independent of

an update �LS���� The problem is similar to detecting the active rules that must be checked after a

database update�

For each persistent view V � identify the tuples that will be a�ected� Thus� the persistent views need

to have indices� What indices should be constructed�

When periodic views are used� we must be able to easily identify the persistent views that are active

� these are the views de�ned for the current time interval� and only these periodic views need to be

maintained upon insertions into the chronicle�

E�cient storage structures are needed for fast access to the updated persistent view tuples� We have

developed an e�cient storage structure in our implementation of the chronicle model at AT�T Bell Labs�

�
� Batch to Incremental Updates

Applications often de�ne computations applying to a batch of transactions� For example� a bank may charge

a fee based upon the total number of transactions within a period� a telephone company may o�er a discount

based upon the total calls within a period� an airline may give bonus miles based upon total activity within

a certain period� For instance� a popular telephone discounting plan in the USA gives a discount of ��( on

all calls made if the monthly undiscounted expenses exceed )��� a discount of ��( if the expenses exceed

)��� and so on� In such applications� a common assumption is that the computations are performed once at

the end of the period� This leads to two problems

The results of these computations are either out�of�date� or inaccurate before the end of the period over

which the discount applies�

The transactions need to be processed� for computing these attributes� in batch�

Converting computations on a batch of records to an equivalent incremental computation on individual

records is an exercise akin to devising algorithms for incremental view maintenance� For example� for the

telephone discount plan� there is a nontrivial mapping for incrementally computing a persistent view for

total expenses�
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� Related Work

The notion of incremental di�erences has been studied extensively� beginning with �SL� �� continuing with

work on delayed updates� and most recently with work on languages �e�g�� ����� Incremental di�erences have

been used e�ectively in the active database context �BW���� and in the constraint maintenance context

�Qia���� Incrementally computable aggregation functions are used in �DAJ��� GMS��� RRSS���� Our

work here deals with incremental view maintenance� However� we di�er from the past view maintenance

work �BLT� � CW��� GMS��� JMR��� JM��� in that ��� we assume that the modi�ed relation �the chronicle�

is not accessible during maintenance� ��� we require that all intermediate views de�ned in chronicle algebra

not be materialized� and ��� we make special use of the sequencing and temporal join properties of a chronicle�

The temporal data model �TCG���� builds in a model of time into the data� and allows complex queries

that relate data across time� Several versions of data are stored to support these queries� However� as in

the relational model� queries or persistent views over data that is not completely stored in the database are

not modeled� The concept of time in the chronicle model is much simpler � a sequence number for chronicle

records� and an implicit temporal join with the relations when de�ning views� The implicit temporal join

is always with the most current version of the relations� and versions of relations do not need to be stored�

Seshadri et al� �SLR��� look at optimizing queries over sequences� assuming the full sequence is stored�

Patnaik and Immerman �PI��� de�ne the dynamic complexity of a query as the complexity of maintaining

a materialized view against which the query can be answered with the same complexity� They focused on

a class of queries that can be incrementally maintained using a relational algebra expression �the Dyn�FO

class�� and show that several queries that cannot be expressed in relational algebra can be maintained using

a relational algebra expression� The notion of dynamic complexity is similar to the idea of incremental

complexity �Section �� of a persistent view� however� the later does not include the complexity of querying

the view� and is a computational measure� while the former is a descriptive measure� We focus on incremental

complexity classes that are more e�cient than Dyn�FO� and we exploit the special properties of a chronicle

to make the incremental complexity independent of the chronicle size�

Incarnations of the chronicle model may be applicable to domains other than transactional systems� For

example� in active databases� the recognition of complex events to be �red is done on a chronicle of events�

The notion of history�less evaluation �Cho��a� Cho��b� GJS��b� GJS��a� is simply the idea of incremental

maintenance of the persistent views de�ned by the event algebra� The language L in these cases is either a

variant of temporal logic �Cho��a� Cho��b�� or a variant of regular expressions �GJS��b� GJS��a��

� Conclusions

Transaction recording systems are an important class of database applications� To meet the stringent

performance requirements of these applications� much of the recording and query processing functionality�

which should preferably be in the database� is actually implemented in the procedural application code� with

the attendant di�culties in development� modularization� maintenance� and evolution�
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To combat this de�ciency� we proposed a new data model� the chronicle model� which permits the capture�

within the data model� of many computations common to transactional recording systems� The database

maintains a set of chronicles� each of which is a log of the transactions records of a particular type� A

chronicle� in contrast to a regular relation� need not be stored in its entirety in the system� To capture the

essential information about the records in the chronicles we allow one to de�ne a materialized �persistent�

view over a chronicle� The persistent views must be maintained in response to each new transaction�

One major concern is the e�cient and automatic maintenance of persistent views in order to meet the

performance requirements of transaction recording systems� With this in mind� we de�ned incremental

complexity classes� A language belongs to an incremental class if all views de�ned using the language can

be maintained incrementally in the time speci�ed by the class� The complexity of the chronicle model was

itself de�ned in terms of the incremental complexity of its language for de�ning persistent views�

We introduced a summarized chronicle algebra �SCA� that can be used to de�ne persistent views� Aggrega�

tion is permitted� and is an important operation for the applications� We showed that all SCA views can be

maintained incrementally without reference to the chronicle� in time polynomial in the size of the relations�

We further derived a condition under which the language SCA�� by restricting joins to be on a key� can

be incrementally maintained in time logarithmic in the size of the relations� We showed that our proposed

summarized chronicle algebra and its variants are in fact the largest fragments of relational algebra with

these incremental complexities�

The chronicle data model has been implemented for a large transactional system in AT�T� We believe

that our model is applicable to numerous other application domains� including credit cards� billing for

telephone calls� cellular phones� advanced telephone services� stock trading� consumer banking� industrial

control systems� retailing� and frequent !yer programs�
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ABSTRACT

A warehouse is a repository of integrated information drawn from remote data sources� Since a warehouse

e�ectively implements materialized views� we must maintain the views as the data sources are updated� This

view maintenance problem di�ers from the traditional one in that the view de�nition and the base data are

now decoupled� We show that this decoupling can result in anomalies if traditional algorithms are applied�

We introduce a new algorithm� ECA �for 
Eager Compensating Algorithm��� that eliminates the anomalies�

ECA is based on previous incremental view maintenance algorithms� but extra 
compensating� queries are

used to eliminate anomalies� We also introduce two streamlined versions of ECA for special cases of views

and updates� and we present an initial performance study that compares ECA to a view recomputation

algorithm in terms of messages transmitted� data transferred� and I'O costs�

� Introduction

Warehousing is an emerging technique for retrieval and integration of data from distributed� autonomous�

possibly heterogeneous� information sources� A data warehouse is a repository of integrated information�

available for queries and analysis �e�g�� decision support� or data mining� �IK���� As relevant information

becomes available from a source� or when relevant information is modi�ed� the information is extracted from

the source� translated into a common model �e�g�� the relational model�� and integrated with existing data

at the warehouse� Queries can be answered and analysis can be performed quickly and e�ciently since the

integrated information is directly available at the warehouse� with di�erences already resolved�

�
� The Problem

One can think of a data warehouse as de�ning and storing integrated materialized views over the data

from multiple� autonomous information sources� An important issue is the prompt and correct propagation

of updates at the sources to the views at the warehouse� Numerous methods have been developed for

materialized view maintenance in conventional database systems� these methods are discussed in Section ��

���
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Unfortunately� existing materialized view maintenance algorithms fail in a warehousing environment� Ex�

isting approaches assume that each source understands view management and knows the relevant view

de�nitions� Thus� when an update occurs at a source� the source knows exactly what data is needed for

updating the view�

However� in a warehousing environment� the sources can be legacy or unsophisticated systems that do not

understand views� Sources can inform the warehouse when an update occurs� e�g�� a new employee has

been hired� or a patient has paid her bill� However� they cannot determine what additional data may or

may not be necessary for incorporating the update into the warehouse views� When the simple update

information arrives at the warehouse� we may discover that some additional source data is necessary to

update the views� Thus� the warehouse may have to issue queries to some of the sources� as illustrated in

Figure ���� The queries are evaluated at the sources later than the corresponding updates� so the source

states may have changed� This decoupling between the base data on the one hand �at the sources�� and the

view de�nition and view maintenance machinery on the other �at the warehouse�� can lead the warehouse

to compute incorrect views�

Warehouse
Queries

Answers

Updates

Souce

Figure �� Update processing in a single source model

We illustrate the problems with three examples� For these examples� and for the rest of this chapter� we

use the relational model for data and relational algebra select�project�join queries for views� Although we

are using relational algebra� we assume that duplicates are retained in the materialized views� Duplicate

retention �or at least a replication count� is essential if deletions are to be handled incrementally �BLT� �

GMS���� Note that the type of solution we propose here can be extended to other data models and view

speci�cation languages�

Also� in the examples and in this chapter we focus on a single source� and a single view over several base

relations� Our methods extend to multiple views directly� Handling a view that spans several sources requires

the same type of solution� but introduces additional issues� see Section � for a brief discussion�

Example �� Correct View Maintenance

Suppose our source contains two base relations r� and r� as follows

r� 
W X

� �
r� 

X Y

� �

The view at the warehouse is de�ned by the expression V 	 "W �r� � r��� Initially the materialized view

at the warehouse� MV� contains the single tuple ���� Now suppose tuple ����� is inserted into r� at the source�
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For notation� we use insert�r� t� to denote the insertion of tuple t into relation r �similarly for delete�r� t���

and we use ��t��� �t��� � � � � �tn�� to denote a relation with tuples t�� t�� � � � � tn� The following events occur

�� Update U� 	 insert�r�� ��� ��� occurs at the source� Since the source does not know the details or

contents of the view managed by the warehouse� it simply sends a noti�cation to the warehouse that

update U� occurred�

�� The warehouse receives U�� Applying an incremental view maintenance algorithm� it sends query

Q� 	 "W �r� � ��� ��� to the source� �That is� the warehouse asks the source which r� tuples match

with the new ����� tuple in r���

�� The source receives Q� and evaluates it using the current base relations� It returns the answer relation

A� 	 ����� to the warehouse�

�� The warehouse receives answer A� and adds ����� to the materialized view� obtaining ����������

The �nal view at the warehouse is correct� i�e�� it is equivalent to what one would obtain using a conventional

view maintenance algorithm directly at the source�� The next two examples show how the �nal view can be

incorrect�

Example �� A View Maintenance Anomaly

Assume we have the same relations as in Example �� but initially r� is empty

r� 
W X

� �
r� 

X Y

� �

Consider the same view de�nition as in Example � V 	 "W �r� � r��� and now suppose there are two

consecutive updates U� 	 insert�r�� ��� ��� and U� 	 insert�r�� ��� ���� The following events occur� Note

that initially MV 	 ��

�� The source executes U� 	 insert�r�� ��� ��� and sends U� to the warehouse�

�� The warehouse receives U� and sends Q� 	 "W �r� � ��� ��� to the source�

�� The source executes U� 	 insert�r�� ��� ��� and sends U� to the warehouse�

�� The warehouse receives U� and sends Q� 	 "W ���� �� � r�� to the source�

�� The source receives Q� and evaluates it on the current base relations r� 	 ���� ��� ������ and r� 	 ���� ����

The resulting answer relation is A� 	 ����� ����� which is sent to the warehouse�

 � The warehouse receives A� and updates the view to MV �A� 	 ����� �����

�� The source receives Q� and evaluates it on the current base relations r� and r�� The resulting answer

relation is A� 	 ������ which is sent to the warehouse�

�� The warehouse receives answer A� and updates the view to MV �A� 	 ����� ���� �����

�As stated earlier	 for incremental handling of deletions we need to keep both �� tuples in the view� For instance	

if ��	� is later deleted from r�	 one �but not both� of the �� tuples should be deleted from the view�
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If the view had been maintained using a conventional algorithm directly at the source� then it would be �����

after U� and ��������� after U�� However� the warehouse �rst changes the view to ��������� �in step  � and to

������������� �in step ��� which is an incorrect �nal state� The problem is that the query Q� issued in step � is

evaluated using a state of the base relations that di�ers from the state at the time of the update �U�� that

caused Q� to be issued� �

We call the behavior exhibited by this example a distributed incremental view maintenance anomaly� or

anomaly for short� Anomalies occur when the warehouse attempts to update a view while base data at the

source is changing� Anomalies arise in a warehousing environment because of the decoupling between the

information sources� which are updating the base data� and the warehouse� which is performing the view

update�

Example 	� Deletion Anomaly

Our third example shows that deletions can also cause anomalies� Consider source relations

r� 
W X

� �
r� 

X Y

� �

Suppose that the view de�nition is V 	 "W�Y �r� � r��� The following events occur� Note that initially

MV 	 ���� ����

�� The source executes U� 	 delete�r�� ��� ��� and noti�es the warehouse�

�� The warehouse receives U� and emits Q� 	 "W�Y ���� �� � r���

�� The source executes U� 	 delete�r�� ��� ��� and noti�es the warehouse�

�� The warehouse receives U� and emits Q� 	 "W�Y �r� � ��� ����

�� The source receives Q�� The answer it returns is A� 	 � since both relations are now empty�

 � The warehouse receives A� and replaces the view by MV�A� 	 ���� ���� �Di�erence is used here since

the update to the base relation was a deletion �BLT� ���

�� Similarly� the source evaluates Q�� returns A� 	 �� and the warehouse replaces the view by MV�A� 	

���� ����

This �nal view is incorrect since r� and r� are empty� the view should be empty too� �

�
� Possible Solutions

There are a number of mechanisms for avoiding anomalies� As argued above� we are interested only in

mechanisms where the source� which may be a legacy or unsophisticated system� does not perform any


view management�� The source will only notify the warehouse of relevant updates� and answer queries

asked by the warehouse� We also are not interested in� for example� solutions where the source must lock

data while the warehouse updates its views� or in solutions where the source must maintain timestamps for

its data in order to detect 
stale� queries from the warehouse� In the following potential solutions� view

maintenance is autonomous from source updating
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Recompute the view �RV�� The warehouse can either recompute the full view whenever an update

occurs at the source� or it can recompute the view periodically� In Example �� if the warehouse sends a

query to the source to recompute the view after it receives U�� then the source will compute the answer

relation A 	 ����� ���� �assuming no further updates� and the warehouse will correctly setMV 	 ����� �����

Recomputing views is usually time and resource consuming� particularly in a distributed environment

where a large amount of data might need to be transferred from the source to the warehouse� In

Section  we compare the performance of our proposed solution to this one�

Store at the warehouse copies of all relations involved in views �SC�� In Example �� suppose that the

warehouse keeps up�to�date copies of r� and r�� When U� arrives� Q� can be evaluated 
locally�� and

no anomaly arises� The disadvantages of this approach are ��� the warehouse needs to store copies

of all base relations used in its views� and ��� copied relations at the warehouse need to be updated

whenever an update occurs at the source�

The Eager Compensating Algorithm �ECA�� The solution we advocate avoids the overhead of recom�

puting the view or of storing copies of base relations� The basic idea is to add to queries sent to the

source compensating queries to o�set the e�ect of concurrent updates� For instance� in Example ��

consider the receipt of U� 	 insert�r�� ��� ��� in step �� If we assume that messages are delivered in

order� and that the source handles requests atomically� then when the warehouse receives U� it can

deduce that its previous query Q� will be evaluated in an 
incorrect� state&Q� will see the ����� tuple

of the second insert� �Otherwise� the warehouse would have received the answer to Q� before it received

the noti�cation of U��� To compensate� the warehouse sends query

Q� 	 "W ���� �� � r���"W ���� �� � ��� ���

The �rst part of Q� is as before� the second part compensates for the extra tuple that Q� will see�

We call this an 
eager� algorithm because the warehouse is compensating �in step �� even before the

answer for Q� has arrived �in step  �� In Section ��� we brie!y discuss a 
lazy� version of this approach�

Continuing with the example� we see that indeed the answer received in step  � A� 	 ����� ����� contains

the extra tuple ���� But� because of the compensation� the A� answer received in step � is empty�

and the �nal view is correct� In Section ��� we present the Eager Compensating Algorithm in detail�

showing how the compensating queries are determined for an arbitrary view� and how query answers

are integrated into the view�

We also consider two improvements to the basic ECA algorithm

The ECA�Key Algorithm �ECAK�� If a view includes a key from every base relation involved in the

view� then we can streamline the ECA algorithm in two ways ��� Deletions can be handled at the

warehouse without issuing a query to the source� ��� Insertions require queries to the source� but

compensating queries are unnecessary� To illustrate point ���� consider Example �� and suppose W

and Y are keys for r� and r�� When the warehouse receives U� 	 delete�r�� ��� ��� �step ��� it can

immediately determine that all tuples of the form ���x� are deleted from the view �where x denotes any

value�&no query needs to be sent to the source� Similarly� U� 	 delete�r�� ��� ��� causes all �x��� tuples

to be deleted from the view� without querying the source� The �nal empty view is correct� Section ���

provides an example illustrating point ���� and a description of ECAK� Note that ECAK does have the

disadvantage that it can only be used for a subset of all possible views&those that contain keys for all

base relations�
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The ECA�Local Algorithm �ECAL�� In ECAK� the warehouse processes deletes locally� without sending

any queries to the source� but inserts still require queries to be sent to the source� Generalizing this

idea� for a given view de�nition and a given update� it is possible to determine whether or not the

update can be handled locally� see� e�g�� �GB��� BLT� �� We outline ECAL� which combines local

handling of updates with the compensation approach for maintenance of arbitrary views�

�
� Outline of Chapter

In the next section we brie!y review related research� Then� in Section �� we provide a formal de�nition

of correctness for view maintenance in a warehousing environment� As we will see� there are a variety of


levels� of correctness that may be of interest to di�erent applications� In Sections � and � we present our

new algorithms� along with a number of examples� In Section  we compare the performance of our ECA

algorithm to the view recomputation approach� In Section � we conclude and discuss future directions of

our work� Additional details&additional examples� proofs� analyses� etc�&that are too lengthy and intricate

to be included in the body of the chapter are presented in �ZGMHW��� �available via anonymous ftp from

host db�stanford�edu��

� Related Research

Many incremental view maintenance algorithms have been developed� Most of them are designed for a

traditional� centralized database environment� where it is assumed that view maintenance is performed by

a system that has full control and knowledge of the view de�nition� the base relations� the updated tuples�

and the view �HD��� QW��� SI���� These algorithms di�er somewhat in the view de�nitions they handle�

For example� �BLT� � considers select�project�join �SPJ� views only� while algorithms in �GMS��� handle

views de�ned by any SQL or Datalog expression� Some algorithms depend on key information to deal with

duplicate tuples �CW���� while others use a counting approach �GMS����

A series of papers by Segev et al� studies materialized views in distributed systems �SF��� SF��� SP��a�

SP��b�� All algorithms in these papers are based on timestamping the updated tuples� and the algorithms

assume there is only one base table� Other incremental algorithms� such as the 
snapshot� procedure in

�LHM�� �� also assume timestamping and a single base table� In contrast� our algorithms have no restrictions

on the number of base tables� and they require no additional information� Note that although we describe our

algorithms for SPJ views� our approach can be applied to adapt any existing centralized view maintenance

algorithm to the warehousing environment�

In both centralized and distributed systems� there are three general approaches to the timing of view main�

tenance immediate update �BLT� �� which updates the view after each base relation is updated� deferred

update �RK� a�� which updates the view only when a query is issued against the view� and periodic update

�LHM�� �� which updates the view at periodic intervals� Performance studies on these strategies have de�

termined that the e�ciency of an approach depends heavily on the structure of the base relations and on

update patterns �Han���� We assume immediate update in this chapter� but we observe that with little or

no modi�cation our algorithms can be applied to deferred and periodic update as well�
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The algorithms in this chapter could be viewed as a specialized concurrency control mechanism for a mul�

tidatabase system� Our algorithms exploit the semantics of the application �relational views� to provide a

certain type of consistency without traditional locking� Paper �BGMS��� provides a survey of related work�

� Correctness

Our �rst task is to de�ne what correctness means in an environment where activity at the source is decoupled

from the view at the warehouse� We start by de�ning the notion of events� In our context� an event

corresponds to a sequence of operations performed at the same site� There are two types of events at the

source

�� S up the source executes an update U � then sends an update noti�cation to the warehouse�

�� S qu the source evaluates a query Q using its current base relations� then sends the answer relation A

back to the warehouse�

There are two types of events at the warehouse

�� W up the warehouse receives an update U � generates a query Q� and sends Q to the source for

evaluation�

�� W ans the warehouse receives the answer relation A for a query Q and updates the view based on A�

We will assume that events are atomic� That is� we assume there is a local concurrency control mechanism

�or only a single user� at each site to ensure that con!icting operations do not overlap� With some extensions

to our algorithms� this assumption could be relaxed� We also assume that� within an event� actions always

follow the order described above� For example� within an event S up� the source always executes the update

operation �rst� then sends the update noti�cation to the warehouse�

We use e to denote an arbitrary event� se to denote a source event� and we to denote a warehouse event�

Event types are subscripted to indicate a speci�c event� e�g�� S upi� or W upj � For each event� relevant

information about the event is denoted using a functional notation For an event e� query�e�� update�e��

and answer�e� denote respectively the query� update� and answer associated with event e �when relevant��

If event e is caused �
triggered�� by another event� then trigger�e� denotes the event that triggered e� For

example� trigger�W upj� is an event of type S up� The state of the data after an event e is denoted by

state�e��

It is useful to immediately rule out algorithms that are trivially incorrect� for example� where the source does

not propagate updates to the warehouse� or refuses to execute queries� These two examples are captured

formally by the following rules

�U 	 update�S upi� � W upj such that update�W upj� 	 U �

�Q 	 query�W upi� � S quj such that query�S quj� 	 Q�

There are a number of other obvious rules such as these that we omit for brevity�
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Finally� we de�ne the binary event operator 
�� to mean 
occurs before�� We assume that messages are

delivered in order and are processed in order� In particular� let e�� e�� e�� e
 be four events� If trigger�e�� 	 e��

trigger�e
� 	 e�� and e� and e� occurred at the same site� then e� � e� i� e� � e
� We also use the �

relation to order states� That is� we say that si � sj if state�ei� 	 si� state�ej� 	 sj� and ei � ej�

�
� Levels of Correctness

During the execution of a view maintenance algorithm� the system will process a sequence of updates

U�� U�� � � � � Un� In doing so� the source executes events se�� se�� � � � sep with corresponding resulting states

ss�� ss�� � � � � ssp� At the warehouse the triggered events are we�� we�� � � � weq with corresponding resulting

states ws�� ws�� � � � � wsq� When we de�ne the notion of convergence �below�� we consider executions that

are �nite� i�e�� that have a last update Un and last events sep and wek� However� in general executions may

be �nite or in�nite�

At the warehouse� the state of materialized view V after event wei is given by V �wsi�� where V is the view

de�nition� Similarly� at the source� Q�ssi� is the result of evaluating query expression Q on the relations

existing after event sei� If we apply the view de�nition V to a source state� V �ssi�� we get the state of the

view had it been evaluated at the source after event sei�

An algorithm for warehouse view maintenance may exhibit the following properties

Convergence For all �nite executions� V �wsq� 	 V �ssp�� That is� after the last update and after all

activity has ceased� the view is consistent with the relations at the source�

Weak Consistency For all executions and for all wsi� there exists an ssj such that V �wsi� 	 V �ssj��

That is� every state of the view corresponds to some valid state of the relations at the source�

Consistency For all executions and for every pair wsi � wsj� there exist ssk � ssl such that V �wsi� 	

V �ssk� and V �wsj� 	 V �ssl�� That is� every state of the view corresponds to a valid source state� and

in a corresponding order�

Strong consistency Consistency and convergence�

Completeness Strong consistency� and for each ssi there exists a wsj such that V �wsj� 	 V �ssi�� That

is� there is a complete order�preserving mapping between the states of the view and the states of the

source�

Although completeness is a nice property since it states that the view 
tracks� the base data exactly� we

believe it is too strong a requirement and unnecessary in most practical warehousing scenarios� In some

cases� convergence may be su�cient� i�e�� knowing that 
eventually� the warehouse will have a valid state�

even if it passes through intermediate states that are invalid� In other cases� consistency �weak or not� may

be required� i�e�� knowing that every warehouse state is valid with respect to some source state� Examples �

and � showed that a straightforward incremental view maintenance algorithm is not even weakly consistent in

the environments we consider� We will show that our Eager Compensating Algorithm is strongly consistent�

and hence a satisfactory approach for most warehousing scenarios�
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� Views and Queries

Before presenting our algorithms� we must de�ne the warehouse views we handle and the types of queries

generated� In this chapter� we consider views de�ned as

V 	 "proj��cond�r� � r� � � � �� rn��

where proj is a set of attribute names� cond is a boolean expression� and r�� � � � � rn are base relations�

Note that any relational algebra expression constructed with select� project� and join operations can be

transformed into an equivalent expression of this form� For simplicity� we assume that r�� � � � � rn are distinct

relations� Our algorithms can be extended to allow multiple occurrences of the same relation �e�g�� by

handling updates to such relations once for each appearance of the relation��

�
� Signs

Our warehouse algorithms will handle two types of updates insertions and deletions� �Modi�cations must be

treated as deletions followed by insertions� although extensions to our approach could permit modi�cations

to be treated directly�� For convenience� we adopt an approach similar to �BLT� � and use signs on tuples

* to denote an inserted or an existing tuple� and � to denote a deleted tuple� Tuple signs are propagated

through relational operations� as we will illustrate�

Consider an update U� 	 delete�r�� ��� ���� which causes the warehouse to issue a query Q� 	 "W ���� �� � r���

Using signs� we instead issue the query Q� 	 "W ����� �� � r��� where 
�� attached to tuple ����� represents

that this is a deleted tuple� Suppose that at the source there is an r� tuple ����� �which by default has a *

sign�� The result of Q�� which we call A�� will contain the tuple ����� i�e�� the minus sign carries through�

Relation A� is then returned to the warehouse� where it is combined with the existing view by an operation

�explained below� MV
 MV*A�� Because of the minus sign� the ��� tuple in A� is removed from the view�

Note that if the original update U� had been an insert� the tuple ����� would have a plus sign� and tuple

��� would instead have been added to the view� Using tuple signs allows us to handle inserts and deletes

uniformly and compactly in our algorithms�

More formally� existing tuples and inserted tuples always have a plus sign� while deleted tuples always have

a minus sign� When a relational algebra expression operates on signed tuples� the sign of the result tuples

is given by the following tables� where t� t� and t� are signed tuples

t �cond�t� "proj�t�

* * *

� � �

t� t� t� � t�

* * *

* � �

� � *

� * �
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In addition� we de�ne two binary operators� also called * and �� which operate on relations with signed

tuples� For a relation r� let pos�r� denote the tuples in r with a plus sign and let neg�r� denote the tuples

with a minus sign� Then

r� * r� 	 �pos�r�� � pos�r���� �neg�r�� � neg�r���

r� � r� 	 r� * ��r��

Operators * and � are commutative and associative� and they generalize to relational expressions and to

single tuples in the obvious way� The cross product � is distributive over * and ��

Note that the use of signed tuples is a notational convenience only&it is not necessary for sources to handle

signed tuples in order to participate in our algorithms�

�
� Query Expressions

In maintaining a view over relations r�� � � � � rn� our algorithms will generate queries that contain a collection

of terms� Each term is of the form

T 	 "proj��cond�+r� � +r� � � � �� +rn�� �����

where each +ri is either a relation ri or an updated tuple ti of ri� A query is formed by a sum of terms

Q 	
X
i

Ti� �����

As an example� the following relational algebra expression is query we might generate

Q 	 "proj��cond�r� � ��� ��� r���

* "proj��cond����� ��� ������ r���

In our algorithms we often derive queries from earlier queries or from view de�nitions� For example� say we

are given a view de�nition V 	 "proj��cond�r� � r���� and we receive a deletion U 	 delete�r�� ��� ���� Then

the query we want to send to the source is V with r� substituted by ���� ��� i�e��Q 	 "proj��cond�r������ �����

We use V hUi to denote view expression V with the updated tuple of U substituted for U �s relation�

More formally� consider any query �or view de�nition� of the form Q 	
P

i
Ti �recall Equation ����� Let U

be an update involving relation rk� and let tuple�U� be the updated tuple� Then QhUi 	
P

i
TihUi� where

for each Ti �recall Equation ����

TihUi 	

��
�

� if +rkis an updated tuple

"proj��cond�+r� � � � �� +rk�� � tuple�U�

� +rk�� � � � �� +rn�� if +rkis relation rk



View Maintenance in a Warehousing Environment 
�	

We also recursively de�ne QhU�� U� � � � Uki to be �QhU�� U�� � � � Uk��i�hUki� That is� QhU�� U� � � � � Uki is the

query in which all updated relations have been replaced by the corresponding updated tuples� Note that� by

de�nition� if any two or more of the updates U�� U�� � � � Uk occur on the same relation� thenQhU�� U�� � � � Uki 	

��

� The ECA Algorithm

In this section we present the details of our Eager Compensating Algorithm �ECA�� introduced in Section �

as a solution to the anomaly problem� ECA is an incremental view maintenance algorithm based on the

centralized view maintenance algorithm described in �BLT� �� ECA anticipates the anomalies that arise

due to the decoupling between base relation updates and view modi�cation� and ECA compensates for the

anomalies as needed to ensure correct view maintenance� Before we present ECA and its extensions� we �rst

review the original incremental view maintenance algorithm�

�
� The Basic Algorithm

The view maintenance algorithm described in �BLT� � applies incremental changes to a view each time

changes are made to relevant base relations� We adapt this algorithm to the warehousing environment and

use our event�based notation

algorithm ��� �Basic Algorithm�

At the source

S upi execute Ui�

send Ui to the warehouse�

trigger event W upi at the warehouse

S qui receive query Qi�

let Ai 	 Qi�ssi�� �ssi is the current source state�

send Ai to the warehouse�

trigger event W ansi at the warehouse

At the warehouse

W upi receive update Ui�

let Qi 	 V hUii�

send Qi to the source�

trigger event S qui at the source

W ansi receive Ai�

update view MV 	 MV* Ai

�end algorithm�

Notice that each update at the source triggers an S up event� which then triggers a W up event at the

warehouse� triggering an S qu event back at the source� and �nally a W ans event at the warehouse �recall

Figure ����� As shown in Examples � and �� this algorithm may lead to anomalies� Consequently� using our
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de�nitions from Section �� this basic algorithm is neither convergent nor weakly consistent in a warehousing

environment�

�
� The Eager Compensating Algorithm

We start by de�ning the set of 
pending� queries at the warehouse

De�nition� Consider the processing of an event we at the warehouse� Let the unanswered query set for we�

UQS�we�� be the set of queries that were sent by the warehouse before we occurred� but whose answers have

not been received before we� We shorten UQS�we� to UQS when we refers to the event being processed�

�

When the warehouse receives an update Ui and UQS is not empty� then Ui may cause queries Qj in UQS

to be evaluated incorrectly� The incorrectness arises because the queries Qj are assumed to be computed

before Ui� but are actually computed after Ui� Thus� all queries in UQS will 
see� a source state that

already re!ects update Ui� �Recall our assumption that messages are processed and delivered in order� so if

a query�s answer has not yet been received� the query will be evaluated after Ui�� ECA takes this behavior

into account When ECA issues its query in response to update Ui� ECA incorporates one 
compensating

query� for each query in UQS� The compensating queries o�set the e�ects of Ui on the results of queries in

UQS�

algorithm ��� �Eager Compensating Algorithm�ECA��

The source events behave exactly as in Algorithm ����

At the warehouse�COLLECT 	 � initially�

W upi receive Ui�

let Qi 	 V hUii �
P

Qj�UQS
QjhUii

send Qi to the source�

trigger event S qui at the source

W ansi receive Ai�

let COLLECT 	 COLLECT * Ai�

if UQS 	 �

then f MV
 MV* COLLECT�

COLLECT
 � g

else do nothing

�end algorithm�

An important and subtle consequence of using compensating queries is that the results of queries should

be applied to the view only after the answer to this query and all related compensating queries have been

received� If instead we updated the view after the receipt of each answer� then the view might temporarily

assume an invalid state� �That is� in the terminology of Section ���� the algorithm would be convergent but

not consistent�� To avoid invalid view states� ECA collects all intermediate answers in a temporary relation
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called COLLECT� and only updates the view when all answers to pending queries have been received �i�e� when

UQS 	 ���

�
� Example

The following example illustrates ECA handling three insertions to three di�erent base relations� A number

of additional ECA examples are given in �ZGMHW����

Example 
� ECA

Consider source relations

r� 
W X

� �
r� 

X Y

� �
r� 

Y Z

� �

Let the view de�nition be V 	 "W �r� � r� � r��� and suppose the following events occur� Initially� the

materialized view at the warehouse is empty� and COLLECT is initialized to empty� For brevity� we omit the

source events� only listing events occurring at the warehouse� We assume that the three updates occur at

the source before any queries are answered�

�� Warehouse receives U� 	 insert�r�� ��� ���

Warehouse sends Q� 	 V hU�i 	 "W ���� �� � r� � r��

�� Warehouse receives U� 	 insert�r�� ��� ����

Currently� UQS 	 fQ�g� Warehouse sends

Q� 	 V hU�i �Q�hU�i

	 "W �r� � r� � ��� ����"W ���� �� � r� � ��� ���

�� Warehouse receives U� 	 insert�r�� ��� ���

UQS 	 fQ��Q�g� Warehouse sends

Q� 	 V hU�i �Q�hU�i �Q�hU�i

	 "W �r� � ����� � r���"W ���� �� � ��� �� � r��

� "W ��r� � ��� ��� � ��� �� � ��� ���

�� Warehouse receives A� 	 ���

COLLECT 	 � * ����� 	 ������ UQS 	 fQ��Q�g

�� Warehouse receives A� 	 ���

COLLECT 	 ����� * ����� 	 ���������� UQS 	 fQ�g

 � Warehouse receives A� 	 �

COLLECT 	 ���������* � 	 ���������� UQS 	 �

Warehouse updates MV 	 �* COLLECT	 ����� ����� which is correct� �
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A complete proof showing that the algorithm is strongly consistent is given in �ZGMHW���� Notice� however�

that ECA is not complete� Recalling Section ���� completeness requires that every source state be re!ected

in some view state� Clearly some source states may be 
missed� by the ECA algorithm while it collects

query answers� We can modify ECA to obtain a complete algorithm that we call the Lazy Compensating

Algorithm �LCA�� For each source update� LCA waits until it has received all query answers �including

compensation� for the update� then applies the changes for that update to the view� A detailed description

of LCA is beyond the scope of this chapter� LCA is less e�cient than ECA� and we believe that strong

consistency is su�cient for most environments and completeness is generally not needed� Hence� we expect

that ECA will be more useful than LCA in practice�

�
� The ECA�Key Algorithm

We can 
streamline� ECA in the case where the attributes in the projection list of the view de�nition

�recall Section �� contain key attributes for each of the base tables� �In fact� it could be advisable to design

warehouse view de�nitions with this property in mind� for more e�cient maintenance�� The ECA�Key

Algorithm �ECAK� proceeds as follows

�� COLLECT is initialized with the current materialized view �not the empty set�� Instead of storing modi�

�cations to MV� COLLECT is a 
working copy� of MV�

�� When a delete is received at the warehouse� no query is sent to the source� Instead� the delete is applied

to COLLECT immediately� using a special key�delete operation de�ned below� Also� if a pending query�in

UQS� is triggered by the insertion of the same tuple as the deleted tuple� then mark the answer of this

query 
ignore��

�� When an insert is received at the warehouse� a query is sent to the source� However� no compensating

queries are added� Thus� when an insert U is received� the query sent to the source is simply V hUi�

�� As answers are received� they are accumulated in the COLLECT set� as in the original ECA� However�

those answers that are marked 
ignore� are not added to COLLECT� Also� duplicate tuples are not added

to the COLLECT set� When the view contains keys for all base relations� there can be no duplicates in

the view� Thus� if a duplicate occurs� it is due to an anomaly and can be ignored�

�� When UQS is empty� the materialized view is updated� replacing it with the tuples in COLLECT�

Example �� ECAK

Consider the following source relations� where W and Y are key attributes�

r� 
W X

� �
r� 

X Y

� �

Suppose that the warehouse view de�nition is V 	 "W�Y �r� � r��� and the following events occur� Initially�

the materialized view at the warehouse is MV 	 �������� and COLLECT 	 MV�
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�� U� 	 insert�r�� ��� ���

Warehouse sends Q� 	 V hU�i 	 "W�Y �r� � ��� ���

�� U� 	 insert�r�� ��� ���

Warehouse sends Q� 	 V hU�i 	 "W�Y ���� �� � r��

�� U� 	 delete�r�� ��� ���

Operation key�delete�V� r�� ������ �see below� deletes tuples of the form ���x�� obtaining COLLECT 	

COLLECT � ������� 	 �� UQS 	 fQ��Q�g

�� Warehouse receives A� 	 ���� ���

COLLECT 	 COLLECT * ������� 	 �������� UQS 	 fQ�g

�� Warehouse receives A� 	 ���� ��� ��� ���

First� A� is added to COLLECT duplicate tuple ����� is not added� so COLLECT 	 �������������� Next� since

UQS 	 �� MV is set to COLLECT� so MV 	 �������������� Note that COLLECT is not reset to empty�

The special operation key�delete�MV� r�� ������ deletes from MV all tuples whose attribute corresponding to

r��s key �i�e�� attribute W � is equal to the key value in tuple ����� �i�e�� ���

Observe that if we had installed COLLECT into MV in steps � or �� without waiting for UQS 	 �� then the

view would have temporarily assumed an invalid state �resulting in convergence but not consistency��

It is the presence of keys in the view de�nition that makes it possible to perform deletes at the warehouse

without issuing queries to the source� and that eliminates the need for compensating queries in the case of

inserts� Consider deletions �rst� Since each view tuple contains key values for all base relations� when a base

relation tuple t is deleted� we can use the key values in t to identify which tuples in the view were derived

using t� These are the view tuples that must be deleted�

Now consider insertions� Since insertions cause queries to be sent to the source� anomalies can still arise�

However� all such anomalies result in either duplicate view tuples �which we can detect and ignore�� or

missing tuples that would have been deleted anyway� As illustration� suppose Q� of Example � had been

executed when U� occurred� it would have evaluated to �������� Instead� because of the delay� we have A� 	

�������� A� is incorrect in two ways ��� It contains an extra tuple ����� produced because Q� was evaluated

after insert U�� ��� It is missing tuple ����� because Q� was evaluated after delete U�� However� both of

these problems are resolved at the warehouse ��� The extra tuple ����� is identi�ed as a duplicate when A�

is received� ��� The missing tuple ����� would have been deleted by U�� Details and a sketch for the ECAK

correctness proof appear in �ZGMHW����

�
� The ECA�Local Algorithm

The original ECA uses compensating queries to avoid the anomalies that may occur when queries are sent

to the source� ECAK relies on key properties to avoid compensating queries� furthermore� ECAK introduces

the concept of local updates �deletions� in the case of ECAK�� which can be handled at the warehouse without

sending queries to the source� The last algorithm we discuss� the ECA�Local Algorithm �ECAL� combines
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the compensating queries of ECA with the local updates of ECAK to produce a streamlined algorithm that

applies to general views�

In ECAL� each update is handled either locally or non�locally� A number of papers� e�g�� �BLT� � GB���

TB���� describe conditions when� for a particular view de�nition and a particular base relation update� the

view can be updated without further access to base relations �i�e�� the view is autonomously computable�

using the terminology of �BLT� ��� These results can be used to identify which updates ECAL will process

locally� For updates that cannot be processed locally� ECA is used �assuming the key condition for ECAK

does not hold�� with compensating queries whenever necessary�

Unfortunately� maintaining the correct order of execution among local and non�local processing in ECAL is

not straightforward� Intuitively� we can process a local update as soon as all queries for previous updates

have been answered and applied to the view� However� consider three updates� U�� U�� and U�� where U�
is the only local update� Suppose we process U� as soon as the query Q� for U� is answered� Since ECAL

uses compensating queries� the 
true� view update corresponding to U� may include not only the answer

for Q�� but also compensations appearing in queries for later updates �such as U��� To correctly handle

this scenario� ECAL must bu�er updates and� in some cases� 
split� query results �separating compensation

from original�� in order to process local updates on a correct version of the view� The details of ECAL� and

determining whether the additional overhead is worthwhile� is left as future work�

�
� Properties of the ECA family

ECA� and its extensions ECAK and ECAL� have the following desirable properties

�� They are incremental� meaning that they update the warehouse based on updates to the source� rather

than recomputing the complete warehouse view from scratch�

�� They do not place any additional burden on the sources �e�g�� timestamps� locks� etc���

�� When the update frequency is low� i�e�� when the answer to a warehouse query comes back before the

next update occurs at the source� then the ECA algorithms behave exactly like the original incremental

view maintenance algorithm� �Compensating queries are used only when the answer to a query has not

been received before the next update occurs at the source��

� Performance Evaluation

In Section ��� we outlined several strategies for view maintenance in a warehousing environment recomput�

ing the view �RV�� storing copies of all base relations �SC�� our Eager Compensating Algorithm �ECA�� and

our extensions ECA�Key �ECAK� and ECA�Local �ECAL�� All of these approaches provide strong consis�

tency �recall Section ����� Thus� a natural issue to explore is the relative performance of these strategies�

In this chapter we evaluate only the basic algorithms� RV and ECA� From the performance perspective�

ECAK is simply an enhancement to ECA that eliminates querying the source in certain cases� Since there

is very little additional overhead in ECAK� ECAK should certainly be used when it is possible to arrange
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for warehouse views to include all base relation keys� Storing copies of base relations �SC� can be seen

as an enhancement to any of our algorithms� requiring an 
orthogonal� performance comparison �based

on warehouse storage costs� etc�� that is beyond the scope of this chapter� As discussed in Section ����

ECAL requires complex processing at the warehouse� the measurement of which falls outside the scope of

our performance evaluation� We plan to address performance issues for SC and ECAL� along with a more

extensive evaluation of ECA� as future work�

When we intuitively compare RV and ECA� it seems that ECA should certainly outperform RV� since

ECA is an incremental update algorithm while RV recomputes the view from scratch� However� ECA may

need to send many more queries to the source than RV� In addition� ECA�s queries grow in complexity as

compensations upon compensations are added� Hence� we seek to determine when it is more e�ective to

recompute the entire view� rather than maintaining it incrementally with the associated extra activity�

To answer this question� we provide an initial performance analysis of RV and ECA� We note that this is not

a comprehensive analysis� as there are a number of parameters we have not fully studied �ranging from the

number of relations� to the exact sequence and timing of the updates� to the way queries are optimized at

the source�� Rather� we have selected a 
representative� scenario that serves to illustrate the performance

tradeo�s�

For the analysis� we focus on three separate cost factors M� the number of messages sent between the source

and warehouse� B� the number of bytes transferred from the source to the warehouse� and IO� the number

of I'O�s performed at the source� In RV and ECA� identical update noti�cation messages are sent to the

warehouse� so these costs are not included in our calculations� Throughout this section� we use the variables

listed in Table �� shown with their default values� The RV algorithm is described informally in Section ����

a formal speci�cation is provided in �ZGMHW����

Variable Description Default

M Number of messages sent N'A

B Total number of bytes transferred N'A

IO Number of I'O�s N'A

C Cardinality of a relation ���

S Size of projected attributes � bytes

� Selection factor �'�

J Join factor �

k # of updates at the source N'A

Table � List of variables�

�
� Performance Based on Number of Messages

Assume there is a sequence of k updates� For RV� assume the warehouse sends a query message to the

source asking it to recompute the view after every s updates� s � k� Counting both the query and answer

messages� the total number of messages is M RV 	 d k
s
e � �� Thus� RV generates at least � messages �if

the view is only recomputed once� s 	 k� and at most �k messages �if the view is recomputed after every
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update� s 	 ��� For ECA� if there are k updates� we always have k queries and k answers� so there are �k

messages��

Thus� in the situation least favorable for ECA� ECA sends �k messages while RV sends � messages� Of

course� the price of the RV approach in this case is that the state of the warehouse view lags well behind the

state of the base relations� In the most favorable situation for ECA� ECA and RV both send �k messages�

�
� Performance Based on Data Transferred

To analyze the number of bytes transferred �and later on the number of I'O�s�� we introduce a sample

scenario consisting of a particular view and a particular sequence of update operations� As mentioned

earlier� we have chosen to focus on a sample scenario to illustrate the performance tradeo�s while keeping

the number of parameters manageable�

Example � Example warehouse scenario

Base relation schema r��W�X�� r��X�Y �� r��Y�Z�

View de�nition V 	 "W�Z��cond�r� � r� � r���

Updates U� 	 insert�r� � t��� U� 	 insert�r�� t��� U� 	 insert�r�� t�� �

The condition cond involves a comparison between attributes W and Z �e�g�� W � Z�� �This condition

has an impact on the derivation of the the number of I'O�s performed�� Later we extend this example to a

sequence of k updates�

We make the following assumptions in our analysis

�� The cardinality �number of tuples� of each relation is some constant C�

�� The size of the combined W � Z attributes is S bytes�

�� The join factor J�ri� a� is the expected number of tuples in ri that have a particular value for attribute

a� We assume that the join factor is a constant J in all cases� For example� if we join a ���tuple relation

with a second relation� we expect to get ��J tuples�

�� The selectivity for the condition cond is given by �� � � � � ��

�� We assume that C� J and our other parameters do not change as updates occur� This closely ap�

proximates their behavior in practice when the updates are single�tuple inserts and deletes �so the size

and selectivity do not change signi�cantly�� or when C and J are so large that the e�ect of updates is

insigni�cant�

�Because ECA uses signed queries �recall Section ����	 and some sources�such as an SQL server�may need to

handle the positive and negative parts of such queries separately	 we may need to send a pair of queries for some

updates instead of a single query� We assume the pair of queries is �packaged� as one message	 and the pair of answers

also is returned in a single message�
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Not surprisingly� for RV the fewest bytes are transferred �B RVBest� when the view is recomputed only once�

after U� has occurred� The worst case �B RVWorst� is when the view is recomputed after each update�

For ECA� the best case �B ECABest� is when no compensating queries are needed� i�e�� the updates are

su�ciently spaced so that each query is processed before the next update occurs at the source� Note that in

this case� ECA performs as e�ciently as the original incremental algorithm �Algorithm ����� The worst case

for ECA �B ECAWorst� is when all updates occur before the �rst query arrives at the source� Intuitively�

the di�erence between the best and worst cases of ECA represents the 
compensation cost��

The calculations for analyzing our algorithms are rather complex and therefore omitted here� the complete

derivations can be found in �ZGMHW���� In particular� the expressions derived in �ZGMHW��� for the

number of bytes transferred are

B RVBest 	 S�CJ�

B RVWorst 	 �S�CJ�

B ECABest 	 �S�J�

B ECAWorst 	 �S�J�J * ��

Figure  �� shows the number B of bytes transferred as a function of the cardinality C� �In all of our graphs�

parameters have the default values of Table � unless otherwise indicated�� Best and worst cases are shown

for both algorithms� Thus� for each algorithm� actual performance will be somewhere in between the best

and worst case curves� depending on the timing of update arrivals �for ECA� and the frequency of view

recomputation �for RV��
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Figure �� B versus C

,From Figure  �� we see that in spite of the compensating queries� ECA is much more e�cient than RV

�in terms of data transferred�� unless the relations involved are extremely small �less than approximately

� tuples each�� This result continues to hold over wide ranges of the join selectivity J � except if J is very

small �see equations above��
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One of the reasons ECA appears to perform so well is that we are considering only three updates� so the

amount of 
compensation work� is limited� In �ZGMHW��� we extend our analysis to an arbitrary number

k of updates and obtain the following equations

B RVBest 	 S�CJ�

B RVWorst 	 kS�CJ�

B ECABest 	 kS�J�

B ECAWorst 	 kS�J� * k�k � ��S�J��
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Figure �� B versus k

Figure  �� shows the number of bytes transferred as a function of k when C 	 ���� As expected� there is

a crossover point beyond which recomputing the view once �RV�s best case� is superior to even the best

case for ECA� For our example� this crossover is at ��� updates� In the ECA worst case� when all updates

occur at the source before any of the warehouse queries arrive� each warehouse query must compensate

every preceding update� This behavior results in ECA transmitting additional data that is quadratic on

the number of updates� Hence� in the situation least favorable for ECA� RV outperforms ECA when �� or

more updates are involved� Bear in mind that this situation occurs only if all updates precede all queries�

If updates and queries are interleaved at the source� then performance will be somewhere between the ECA

best and worst cases� and the crossover point will be somewhere between �� and ��� updates�

Also notice that Figure  �� is for relatively small relations �C 	 ����� for larger cardinalities the crossover

points will be at larger number of updates� Finally� note that the RV best case we have been comparing

against assumes the view is recomputed once� no matter how many updates occur� If RV recomputes the

view more frequently �such as once per some number of updates�� then its cost will be substantially higher�

In particular� B RVWorst is very expensive and always substantially worst than B ECAWorst�
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�
� Performance Based on I�O

Estimating the number of I'O�s performed at the source is similar to estimating the number of bytes

transferred� Details of the estimation are discussed in �ZGMHW���� We consider two extreme scenarios

there when indexing is used and ample memory is available� and when memory is very limited and there

are no indexes� Studying these extremes lets us discover the conditions that are most favorable for the

algorithms we consider� Due to the space limitations� we only present one graph to illustrate the type of

results obtained� Figure  �� gives the number of I'O�s as a function of the number of updates for the second

scenario studied �limited memory and no indexes��
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Figure �� IO versus k	 Scenario �

The shape of the curves in Figure  �� is similar to those in Figure  ��� and thus our conclusions for I'O costs

are similar to those for data transmission� The main di�erence is that the crossover points occur with smaller

update sequences � � k � � in this case� as opposed to a crossover between k 	 �� and k 	 ��� when data

transfer is the metric� Intuitively� this means that ECA is not as e�ective at reducing I'O costs as it is at

reducing data transfer� However� ECA can still reduce I'O costs over RV signi�cantly� especially if relations

are larger than the ��� tuples considered for these �gures� Also� we expect that the I'O performance of

ECA would improve if we incorporated multiple term optimization or caching into the analysis�

As a �nal note� we remind the reader that our results are for a particular three�relation view� In spite of this�

we believe that our results are indicative of the performance issues faced in choosing between RV and ECA�

Our results indicate that when the view involves more relations� ECA should still generally outperform RV�

� Conclusion

Data warehousing is an emerging �and already very popular� technique used in many applications for re�

trieval and integration of data from autonomous information sources� However� warehousing typically is
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implemented in an ad�hoc way� We have shown that standard algorithms for maintaining a materialized

view at a warehouse can lead to anomalies and inconsistent modi�cations to the view� The anomalies are

due to the fact that view maintenance at the warehouse is decoupled from updates at the data sources�

and we cannot expect the data sources to perform sophisticated functions in support of view management�

Consequently� previously proposed view maintenance algorithms cannot be used in this environment�

We have presented a new algorithm� and outlined two extensions� for correctly maintaining materialized views

in a warehousing environment� Our Eager Compensating Algorithm� ECA� and its streamlined versions�

ECAK and ECAL� are all strongly consistent� meaning that the warehouse data always corresponds to a

meaningful state of the source data� An initial performance study analyzing three di�erent cost factors

�messages� data tra�c� and I'O� suggests that� except for very small relations� ECA is consistently more

e�cient than periodically recomputing the warehouse view from scratch�

Although in this chapter we have addressed a restricted warehousing environment with only one source and

one view� ECA can readily be adapted to more general scenarios� For example� in a warehouse consisting

of multiple views where each view is over data from a single source� ECA is simply applied to each view

separately�

In the future we plan to address the following additional issues�

We will consider how ECA �and its extensions� can be adapted to views over multiple sources� Many

aspects of the anomaly problem remain the same� However� additional issues are raised because ware�

house queries �both regular queries and compensating queries� must be fragmented for execution at

multiple sources� While fragmenting itself does not pose a novel problem �at least in the straightforward

relational case�� coordinating the query results and the necessary compensations for anomaly�causing

updates may require some intricate algorithms�

We will consider how ECA can be extended to handle a set of updates at once� rather than one update

at a time� Since we expect that in practice many source updates will be 
batched�� this extension

should result in a very useful performance enhancement�

We will modify the algorithms to handle views de�ned by more complex relational algebra expressions

�e�g�� using union and'or di�erence� as well as other relational query languages �e�g�� SQL or Datalog��

We will explore how the algorithms can be adapted to other data models �e�g�� an object�based data

model��
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ABSTRACT

Integrating data and knowledge from multiple heterogeneous sources �like databases� knowledge bases or

speci�c software packages � is often required for answering certain queries� Recently� a powerful framework

for de�ning mediated views spanning multiple knowledge bases by a set of constrained rules was proposed

�Sub��a� AS��� Jam� �� We investigate the materialization of these views by unfolding the view de�nition

and the e�cient maintenance of the resulting materialized mediated view in case of updates� Thereby� we

consider two kinds of updates updates to the view and updates to the underlying sources� For each of these

two cases several e�cient algorithms maintaining materialized mediated views are given� We improve on

previous algorithms like the DRed algorithm �GMS��� and introduce a new �xpoint operator WP which &

opposed to the standard �xpoint operator TP �GL��� & allows us to correctly capture the update�s semantics

without any recomputation of the materialized view�

� Introduction

Integrating data and knowledge from multiple heterogeneous sources� each one possibly with a di�erent

underlying data model� is not only an important aspect of automated reasoning� but also of retrieval systems

& in the widest sense & whose queries can span multiple such sources� These sources can be as di�erent

as relational or deductive databases� object bases� �constraint� knowledge bases� or even �structured� �les

and arbitrary program packages encapsulating speci�c knowledge� often in a hard�wired form accessible only

through function calls� Many queries can only be answered if data and knowledge from these di�erent sources

are available� �For a motivating example see Sec� ����� In order to answer these queries� it is necessary to

de�ne a mediator �Wie��� integrating the di�erent sources on a semantic level by providing an integrated

view spanning these sources�

Traditional research on view or schema integration� and interoperability of databases concentrates on inte�

grating databases� possibly with di�erent underlying schemata or even data models� The basic idea often

is to aim for a global integrating schema or view whose de�nition mediates between di�erent databases�

Only lately� investigations started to integrate other sources of data available� The most prominent example

���
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of such a source is the �le� Recently� it was proposed to integrate �structured� �les and object bases by

providing an object base view on the �le and a �le view upon the object base �ACM��� GJR����

Another powerful technique for integrating multiple knowledge bases is introduced in �Sub��a� AS��� Jam� ��

While this work examines a framework for expressing mediated views� the paper �SAB���� describes a

concrete implementation of one such mediating system called HERMES �HEterogeneous Reasoning and

MEdiator System�� HERMES supports the integration of multiple databases and reasoning paradigms on

both the PC'Windows and the SUN'Unix platforms and provides an environment which allows !exibility in

adding new databases and software packages� In HERMES� mediators are expressed in a rule�based language

containing a special predicate in used to achieve logical integration at the semantic level� It enables access

to data contained in external databases� and gives HERMES the ability to execute functions in existing

software � the current implementation of HERMES integrates PARADOX� INGRES� DBASE with third�

party path planning packages� numerical computation packages� face recognition packages� and multimedia

application packages�

As in the case of traditional views� mediated views are materialized for e�ciency reasons� A materialized

view can be a�ected by two kinds of updates� namely updates to the materialized view� and updates to the

underlying sources�

If an update of the �rst kind occurs to a view� whether materialized or not� the problem of re!ecting the

update correctly by changing the base tables appropriately needs to be addressed� This problem is called

the view update problem and has been discussed extensively for relational� deductive� and object�oriented

databases� However� our objective is slightly di�erent� As motivated by an example in Section ���� we

do not necessarily assume that an update occurring to a view has to be re!ected within some underlying

source� Instead� we assume that the view itself & or� to be more precise� its de�nition & is a�ected by the

update� This kind of update a�ecting the view�s de�nition is typically not treated within the view update

literature� One exception are deductive databases� where the addition or deletion of rules to the de�nition

of an intensional predicate is discussed �Ern���� However� they neither materialize nor preprocess the view

for e�ciency reasons�

Within the traditional context� the second case occurs if an update to a base table occurs which possibly

a�ects a materialized view� The resulting problem & preserving the consistency of the view & is called

view maintenance and has been discussed for� e�g�� for �extended� relational �BCL��� Han��� SJGP���

and deductive databases �Kuc��� HD��� GKM��� UO��� SI���� The same problem occurs also for the

materialization of functions within object bases �KKM��� if the values of some object�s attributes change�

the materialized function value becomes invalid� However� since we do not necessarily materialize the view

upon the underlying sources of our mediated views but instead perform materialization by unfolding the

view de�nition as independent as possible from the underlying sources� the traditional view maintenance

problem occurs quite di�erently to us� Hence� the traditional view maintenance problem and our problem

do not intersect but complement each other�

Subsequently� we treat both kinds of updates to materialized mediated views and show how they can be

handled e�ciently� More speci�cally� the primary aim is to specify how to e�ciently maintain views of

mediated systems such as those that may be constructed in HERMES when insertion and deletion requests

of both of the above two kinds are made� As in the standard case� a materialized view in mediated systems
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may be thought of as a set of facts that can be concluded from the mediator rules� However� we show

that more generally� a materialized mediated view may be regarded as a set of constraint atoms that are

not necessarily ground� Taking materialized views to be sets of constrained atoms leads to a number of

advantages

�� First of all� it allows us to perform updates to constrained databases such as those described by Kanellakis

et� al� �KKR���� To our knowledge� there are currently no methods to incrementally maintain views in

constrained databases�

�� We show for updates of the second kind that even in the case of unconstrained databases� such as those

considered by Gupta� Mumick and Subrahmanian �GMS���� this approach leads to a simpler and more

e�cient deletion algorithm than the deletion algorithm� DRed presented in �GMS����

�� For updates of the �rst kind� we depart from using the standard �xpoint operation TP as de�ned

by Gabrielli and Levi �GL���� Instead� we introduce the �xpoint operator WP � WP is able to cap�

ture updates of the second kind without any recomputation of the materialized mediated view while

maintaining the semantics of TP and correctly capturing the update�

The rest of the chapter is organized as follows� Section ��� gives the preliminaries� including a motivating

example� Section ��� introduces the running example which also motivates the integration of multiple sources

for answering a single query as well as the two kinds of updates� Section ��� formally de�nes the notion of

materialized mediated view� Section � treats updates of the �rst kind whereas Section � treats updates of

the second kind� Section � discusses related work and Section  concludes the chapter�

� Preliminaries

�
� Syntax and Semantics

In this section� we will brie!y describe the basic theory behind mediated systems proposed in �Jam� �

Sub��a� AS� � AS��� AE���� Illustration is provided via the HERMES implementation�

A domain� D� is an abstraction of databases and software packages and consists of three components ���

a set� $ whose elements may be thought of as the data�objects that are being manipulated by the package

in question� ��� a set F of functions on $ � these functions take objects in $ as input� and return� as

output� objects from their range �which needs to be speci�ed�� The functions in F may be thought of as

the prede�ned functions that have been implemented in the software package being considered� ��� a set of

relations on the data�objects in $ � intuitively� these relations may be thought of as the prede�ned relations

in the domain� D�

A constraint - over D is a �rst order formula where the symbols are interpreted over D� - is either true or

false in D� in which case we say that - is solvable� or respectively unsolvable in D� where the reference to

D will be eliminated if it is clear from context� The key idea behind a mediated system is that constraints

provide the link to external sources� whether they be databases� object bases� or other knowledge sources�
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For example in HERMES� a domain call is a syntactic expression of the form

domainname  hdomainfunctioni�harg��� � � � argni�

where domainfunction is the name of the function� and harg�� � � � �argni are the arguments it takes� Intu�

itively� a domain call may be read as in the domain called domainname� execute the function domainfunction

de�ned therein on the arguments �arg�� � � � � argn�� The result of executing this domain call is coerced into a

set of entities that have the same type as the output type of the function domainfunction on the arguments

�arg�� � � � �argn�

A domain�call atom �DCA�atom� is of the form

in�X�domainname  domainfunction�harg��� � � � argni�

where in is a constraint that is satis�ed just in case the entity X is in the set returned by the domain call

in the second argument of in����	� In other words� in is the polymorphic set membership predicate� More

concretely�

in�A�paradoxselect eq��phone book���name���jo smith���

is a DCA�atom that is true just in case A is a tuple in the result of executing a selection operation ��nding

tuples where the name �eld is jo smith� on a relation called phonebook maintained in a PARADOX database

system�

A mediator�constrained database is a set of rules of the form

A
 D� � � � � � DmjjA�� � � � � An�

where A�A�� � � � �An are atoms� and D�� � � � �Dm are DCA�atoms� It can be shown �cf� Example ���� that all

the kinds of constraints considered by Kanellakis et� al� can be captured within this framework �Lu� Nerode�

Subrahmanian present further details �Jam� ���

�
� Motivating Example

We introduce a running example which also motivates our approach� This example has been addressed in

the existing HERMES implementation �Sub��b��

EXAMPLE ��� �Law�Enforcement Example� Consider the problem of identifying all people P who

have been recorded� by surveillance cameras� as having met with an individual X �for instance� X may be

a Ma�a chief like Don Corleone�� who live within a hundred mile radius of Washington DC� and who work

for a suspected front company 
ABC Corp�� Solving this problem may require access to a wide variety of

data structures� databases� and furthermore� require recourse to diverse reasoning paradigms as well� For

instance� it may be necessary to access

a background face database containing pictures �e�g� passport pictures� of individuals� In this face

database� the identity of the photographed individuals is known�

a database of surveillance photographs� These photographs may have been obtained by using

surveillance cameras�
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face�extraction algorithms that extract the 
prominent� faces from the images generated by the

surveillance camera�

methods of matching faces extracted from the surveillance data by the face�extraction algorithm� so

as to be able to �gure out who appears in which images�

a relational database �e�g� a phone and address book database� specifying the names� addresses� and

phone numbers of individuals� This database may be stored as a relation in a well known relational

DBMS� say PARADOX�

a spatial database in order to determine whether a given address lies within ��� miles of Washington

DC�

a relational database about the employees of ABC Corp� Note that this relational database may

be completely di�erent from the phone and address book relational database alluded to earlier in this

example� and may be stored as a DBASE relation�

In order to answer the above query� we must be able to integrate the above software packages at the software

level� as well as at the logical level� In this chapter� we will not go into the software integration scheme �

it is described in �SAB����� but we will go into some details about the mediator syntax itself in order to

de�ne what 
soundness and completeness� of view maintenance means� and in order to develop algorithms

for view maintenance that are sound and complete� For this example� the mediator may be expressed as

three clauses

seenwith�X�Y� 
 -

swlndc�X�Y� 
 -� jj seenwith�X�Y�

suspect�X�Y� 
 -�� jj swlndc�X�Y�

where the constraints have the form

- 	 in�P��facextract  segmentface��surveillancedata��� �

in�P��facextract  segmentface��surveillancedata��� �

	 �P��origin�P��origin�� P� �	 P� �

in�P
�facedb  findface�X���

in�true�facextract  matchface�P��P
���

in�Y�facedb  findname�P��� �����

-� 	 in�A�paradox  select eq��phonebook�� �name��Y�� �

in�Pt��spatialdb  locateaddress�A�streetnum�

A�streetname�A�cityname��

in�true�spatialdb  range��dcareamap��Pt��X�Pt��Y������ �����

-�� 	 in�Tuple�dbase  select eq��empl abc
�� �name��Y�� �����

The seenwith predicate access a domain called faceextract which is a pattern recognition package that

uses a function called segmentface to locate the faces in a set of photographs� and then extracts these
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faces �leading to 
mugshots�� which are then stored in �les� The extraction procedure returns a list of

pairs of the form �� resultfile�origin�� specifying which image in the surveillance data� a given face

was extracted from �the origin� and where the mugshot'face is now stored� The faceextract domain also

contains a function called matchface that takes as face �such as those extracted by the faceextractdomain�

and checks if this face is identical to another face in the mugshot library� Likewise� the seenwith predicate

access a domain called facedb containing a function called findface which determines� given a person�s

name� whether his face is in a mugshot library� The facedb domain also contains a function called findname

which� given a mugshot in the mugshot library� returns the name of the person involved�

Given that a person Y has been seenwith X� swlndc �for 
seen with and lives near DC��� accesses a relational

database to �nd the address of Y� and then accesses a spatial data management system to determine what

�x�y� coordinates� on a map of the DC area� this address corresponds to �using a function called locateaddr��

It then determines� using a function called range� whether this address lies within the speci�ed distance

from DC�

Finally� a person Y is a suspect just in case swlndc�
DonCorleone���Y� is true and if he is an employee of


ABC Corp�� For this� a DBASE relation called empl abc is accessed� The above three clauses express the

mediator for this example in its entirety�

EXAMPLE ��� �Constrained Databases� Kanellakis et� al� �KKR��� have introduced the concept of

constrained databases� which can be modeled within our framework �a formal proof is contained in �Jam� ���

For instance� if we wish to write constraints over the arithmetic domain� then we may have functions called

great�X	 that returns as output� the set of all integers greater than X� Note that this may be implementing

lazily� Hence the entire� in�nite set need not be computed all at once� Likewise� plus�X�Y� returns the

singleton set fX* Yg�

In the rest of this chapter� we will use these examples to motivate various kinds of updates that may occur

and that bear an important relationship to view maintenance in such mediated systems�

�
� Non�Ground Materialized Mediated Views

In this section� the concept of a materialized mediated view is given� Typically� a materialized view is a set

of ground atoms� corresponding to a set of relations whose �elds are �lled in with �ground� values� In this

case� a materialized view will generalize this notion� allowing non�ground atoms to occur in it� as long as

the variables in the atom satisfy certain constraints which are de�ned as follows

Any DCA�atom is a constraint�

If X is a variable symbol and T is either a variable symbol or a constant� then X 	 T and X �	 T are

constraints�

Any conjunction of constraints is a constraint�

Thus� for example� X 	 � � Y �	 X� in�Y�arith  greater�X�� is a constraint in the domain arith described

earlier� A more common way of writing this constraint is X 	 � � Y �	 X � Y  X� We shall use this notation

when referring to the numeric domain�
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A constrained atom is an expression of the form A� 
X�
 - where 
X denotes a tuple of variables and - is a

constraint�

Given a constrained atom A� 
X�
 -� �A� 
X�
 -� denotes the set of instances of X that are solutions of -�

viz�

fA� 
X�� j � is a solution of -g

For example� taking the same constraint - 	 �X 	 � � Y �	 X � Y  X� as above� �p�X�Y�
 �� is the set

fp���
��p�����p������ � � �g� If C is a set of constrained atoms� �C� is de�ned to be
S
A�X���C

�A�X�
 -��

An interpretation for a mediated system P is any set of constrained atoms� A constrained atom A� 
X�
 -

is said to be true in an interpretation I i� �A� 
X�
 -� � �I�� Given a constrained database P it is possible

to de�ne an operator� TP that maps interpretations to interpretations in the following way

TP �I� 	 fA� 
X�
 - j

There is a clause A�t��
 -�jjA��t��� � � � �An�tn� in P

�� � i � n  �Ai�Xi�
 -i � I�

which share no variable and the constraint

- 	 -� � -� � � � � � -n �

f 
X� 	 
t�g � � � � � f 
Xn 	 
tng � f 
X 	 
t�g is solvableg

Note that each 
ti is assumed to be a tuple of terms of the same length as Xi� This operator was originally

de�ned by Gabbrielli and Levi �GL��� who used it to de�ne a non�ground representation of the ground least

Herbrand model of a constrained database'logic program� For the types of updates that are considered in

the subsequent sections� this non�ground set of constrained atoms constitutes the materialized view of the

constrained database which is of interest for being maintained� The iteration of TP is de�ned in the usual

way and TP � � 	 lfp�TP � gives us the materialized view� For instance� the materialized view from example

� has the form

seenwith�X�Y� 
 -

swlndc�X�Y� 
 -� � -

suspect�X�Y� 
 -�� � -� � -

It must be stressed that due to the representation of a view by means of non�ground constraint facts� the

materialization and in particular the update of a materialized view does not spawn queries of the remote

knowledge sources� Another important point to note is that TP may often yield a set containing multiple

atoms of the form A� 
X� 
 -�� � � � �A� 
X� 
 -m where the constraints� -�� � � � �-m are not necessarily

incompatible� This corresponds to an extension� to the case of constrained databases� of the duplicate

semantics proposed by Mumick �Mum��� in the context of ordinary deductive databases�

� Updating Views

In our context� view updating deals with the following problem given a constrained database P � a materi�

alized view MMV� and an update u� compute a new materialized view that accurately re!ects this update�

Note that we adapt the view and not modify the underlying sources� Remember that a materialized view is

a set of constrained atoms� An update may take one of the following three forms
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AtomAddition� A constrained atom �involving predicates de�ned in the mediator� is added to the ma�

terialized view� For instance� in the Law Enforcement example� the atom seenwith�
DonCorleone��� 
Jane Doe���

may be inserted into the materialized view even though this fact is not be derivable from the mediator�

This may be due to the fact that some external reasons �e�g� a policeman saw them together and duly

reported it� may justify its truth�

Atom Deletion� Suppose the atom

suspect�
DonCorleone��� 
Jo Smith��� was in the materialized view �e�g� it may been derivable from the

original constrained database�� but we may wish to delete this fact because there is external evidence

that Jo Smith has no connection with Don Corleone �e�g� he may have been derived as a suspect

because he was in a large crowd of people one of whom was Don Corleone��

External Data Changes and Function Modi�cation� In a mediated system� the mediator ac�

cesses �potentially� many di�erent databases and'or data structures� The data contained in those

databases'data structures may be updated� triggering changes to the data in the materialized view�

For instance� in the Law Enforcement Example� it may turn out that the surveillance data has been

extended �through the addition of new photographs� say� and hence� the domain call

facextract�segmentface��surveillance�db�	

returns a set of objects that are di�erent from what was returned by this function prior to the update�

This change in the domain is modeled as a change in the function which� in this example� happens to

be segmentface� Changes of this kind may trigger new changes to the materialized view �for instance�

adding new pictures will� presumably� enlarge the pool of suspects�� We will show how this intuition

of modeling changes in local databases as function updates leads to simple algorithms for updating a

mediated materialized view�

Note that we do not consider the problem of adding or deleting a rule from the mediator�

�
� Deletion of Constrained Atoms

In this section� we will present two algorithms that will compute a materialized view obtained by deleting

an existing atom from the mediated materialized view� Both algorithms apply to non�recursive� as well as

recursive views� Details and examples may be found in �Sch����

Delection Semantics� Let A� 
X� 
 . be a constrained atom whose instances are to be deleted from the

materialized view M � Let Del be the set fA�
Y � 
 . � � 
X 	 
Y � � / j where A�
Y � 
 / is a constrained

atom in the materialized view� MMV and - 	 . � � 
X 	 
Y � � / is satis�ableg� Del is the initial input

to our deletion algorithm below� Observe that the construction of Del ensures that only those constrained

atoms that are actually in the existing materialized view will be deleted� We now show how to construct a

new constrained database P � which accomplishes the deletion of these atoms as well as the deletion of their

consequences� The least model of this constrained database will be the desired materialized view after the

deletions are performed� Hence� P � provides the declarative semantics of the deletion operation� and we will

later show in Algorithm �� how this declarative semantics can be computed�

Rewrite the Constrained Database P resulting in a new constrained database P �� as follows�

�� If A� 
X�
 - jj Body is in P and A�
Y �
 -� is in Del� then A� 
X�
 -�not�-��� � 
X 	 
Y � jj Body is

in P ��
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�� Any clause in P with a head di�erent from A� 
X� is in P ��

We present two algorithms for accomplishing the above deletion� The �rst algorithm extends the DRed

algorithm of Gupta� Mumick and Subrahmanian �GMS��� to the mediated case� It is e�cient when the

mediated view is duplicate�free� i�e� when� for all distinct constrained atoms A� 
X� 
 -� and A�
Y � 
 -�

in the materialized view� �A� 
X�
 -�� 	 �A�
Y �
 -�� 	 �� The second algorithm shows how to completely

eliminate the expensive rederivation step in this algorithm� thus improving the DRed algorithm� Furthermore�

the second algorithm uses the least �xpoint of the Gabbrielli�Levi operator with no changes �in particular�

duplicate checking and elimination� required in Algorithm �� are not required either��

The First Deletion Algorithm

Algorithm � �Extended DRed Algorithm�

�� Unfold the constrained atoms to be deleted with respect to the original constrained database P � so as

to compute a set of constraint base facts� that are to be 
possibly deleted��

P OUT� 	 Del

P OUTk�� 	 fB� 
X�
 - j There is a clause

B� 
X�
 -� jj B�� 
X
�
��� � � � �Bn� 
X

�
n� in P

and for at least one j � f�� � � � � ng 

Bj� 
Xj�
 -j � P OUTk 

�i �	 j � f�� � � � � ng  Bi� 
Xi�
 -i is a constraint

atom from the materialized view M 	 TP � �����

and - 	 -� � � � � � -n �

f 
X� 	 
X �
�g � � � � � f 
Xn 	 
X �

ng

is satis�ableg

P OUT 	
�
k��

P OUTk

Note that the members of P OUT are candidates for deletion from the materialized view� but not all

of them will necessarily be deleted�

�� Compute an overestimate� M �� of necessary deletions with �M �� 	 �M � n �P OUT� as follows

�a� For every B�X��
 - in M for which there exists a B� 
X��
 0 in P OUT�

B� 
X��
 ��0� � - � � 
X� 	 
X�� is in M � �����

�b� For each remaining constraint fact B� 
X�
 - in M � B� 
X�
 - is in M ��

�� Rederive the new view by computing TP � � ��M
���

Return this as output�
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The �xpoint computation of TP � � ��M
�� can be speeded up by transforming each clause C � A� 
X�


-kB��
Y�� � � � �Bn�
Yn� of the program P �� It is important to note that we assume only one constrained

atom in M � with a possibly disjunctive constraint�

�a� If �A
 -� � �A
 -i� where A
 -i �M �� then delete C from P �� Note that the empty constraint

subsumes every other constraint� For instance a clause A�X� 
 B�X� gets only deleted in this

step i� A�X�
 is in M ��

�b� Otherwise� unfold all constraint atoms Bi 
 .i which are true in M � into the body of this clause�

�c� If all rules involving a predicate A have been eliminated by Step �a� then eliminate all clauses

with that predicate in the body� This process should be repeated until no more rules can be

eliminated�

The above algorithm is incremental because Step � eliminates a large part of the constrained database from

consideration by either eliminating rules� or eliminating various preconditions in the bodies of rules� The

proof of the following theorem can be found in �Sch����

Theorem 	�� Let X 	 TP � � ��M �� be the output of Algorithm �� Then �X� 	 �TP � � �����	 i�e� the

algorithm is correct�

Note that there are multiple ways of representing equivalent constraint atoms �e�g� p�X�Y �
 X 	 Y *� and

p�X�Y �
 Y 	 X � � are syntactically di�erent� but semantically equivalent�� The above result says that

the set of solutions of the constraint atoms returned by the algorithm coincide with the intended declarative

semantics�

EXAMPLE 	�� Suppose the materialized mediated view associated with the Law Enforcement example

contains

�� seenwith�
DonCorleone��� 
Jo���

�� seenwith�
DonCorleone��� 
Ed���

�� swlndc�
DonCorleone��� 
Jo���

�� swlndc�
DonCorleone��� 
Ed���

Suppose we are interested in deleting seenwith�
Don Corleone��� 
Jo���� this may be due to external infor�

mation �e�g� that the photograph was a forgery intended to frame Jo� then the materialized view will be

updated by the deletion of the �rst and the third atoms� These two atoms constitute the set P OUT � In

this example� all atoms in P OUT are in fact deleted�

EXAMPLE 	�� Suppose there is constrained database containing

A�X� 
 X � �

B�X� 
 X � �

A�X� 
 B�X�

C�X� 
 A�X�
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the duplicate�freematerialized view associated with this is

A�X� 
 X � �

B�X� 
 X � �

C�X� 
 X � �

Suppose now one would like to delete B�X�
 X 	 �� Then

Del 	 fB�X�
 X 	 �g

and

P OUT 	 fB�X� 
 X 	 ��

A�X� 
 X 	 ��

C�X� 
 X 	 �g

�actually in this example� we are showing a simpli�ed version of the constraints�� Note that in this case�

A�X� 
 X 	 � and C�X� 
 X 	 � should not be eliminated from the view because A�X� 
 X 	 � has

a proof independently of the proof that depends upon B�X� 
 X 	 �� M �� as presented in the Extended

DRed algorithm now becomes

A�X� 
 X � � �X �	 �

B�X� 
 X � � �X �	 �

C�X� 
 X � � �X �	 �

The constrained database P � used in the de�nition of the view is identical to P except that B�X�
 X � �

is replaced by B�X�
 X � ��X �	 �� P � is then the constrained database that contains just the following

rules since B�X�
 X � � �X �	 � in P � is subsumed by B�X�
 X � � �X �	 � in M ��

A�X� 
 X � �

C�X� 
 A�X�

A�X� 
 B�X�

TP � � ��M
�� quickly evaluates to the materialized view�

A�X� 
 X � �

B�X� 
 X � �

C�X� 
 X � �

which is the correct� �nal materialized view�

The Second Deletion Algorithm

We now present a second algorithm to accomplish the deletion of constrained atoms from materialized

mediated views in which duplicates are retained� The important advantage of the new algorithm is the
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elimination of the rederivation step �Step �� of the �rst algorithm� To achieve this� we assume that each

constraint atom in the materialized view is 
indexed� by a sequence of clauses representing the derivation

of the constraint atom in TP � For simplicity we may assume that clauses are numbered in the constrained

database and we use Cn�C� to denote the clause number of the clause C�

For each constraint atom A� 
X�
 - in the materialized view TP � ����� we associate an 
index� sequence�

called the support of A� 
X�
 - and denoted spt�A� 
X�
 -�� as follows

�� If A� 
X� 
 - � TP � �� then spt�A� 
X�
 -� 	 hCn�C�i where C is the clause from which A� 
X�
 -

is derived in TP �

�� Suppose A� 
X� 
 - � TP � n� By de�nition there is a clause C � P of the form A�
Y � 


-�jjB�� 
X��� ����Bk� 
Xk� such that Bi�
Yi�
 -i � TP � �n��� and - 	 -��
k
i�� -i� � 
X 	 
Y ��ki�� � 
Xi 	


Yi� is solvable� Then spt�A� 
X�
 -� 	 hCn�C�� spt�B��
Y��
 -��� � � � � spt�Bk�
Yk�
 -k�i�

Observe that the support of any constraint atom is always �nite� Moreover� each constraint atom in TP � ����

possesses a unique support�

Lemma 	�� Suppose spt�F�� 	 spt�F��� Then F� and F� are the same constraint atom in TP � �����

The input to the algorithm is the same set Del given to Algorithm �� The intuitive idea behind the algorithm

is that the support of a constraint atom F is used for determining whether an earlier deletion a�ects the

deletion of F � We present the algorithm �rst followed by several examples�

Algorithm � �The Straight Delete �StDel� Algorithm�

�� Let M be the materialized view given by TP � ���� and mark each constraint atom in M �

�� For each constraint atom F 	 A� 
X� 
 - in M where there exists A�
Y � 
 0 � Del� such that

- � � 
X 	 
Y � � 0 is solvable� replace F with the new constraint atom A� 
X� 
 - � � 
X 	 
Y � � not�0��

In addition� put the pair �A�
Y �
 - � � 
X 	 
Y � � 0� spt�F �� into P OUT �

�� repeat

For each constraint atom F 	 A� 
X� 
 - in M that is marked� Suppose spt�F � 	 hCn�C�� s�� ���� sni

for some constrained clause C having the form

A�
Y �
 -�kB��
t��� ����Bj�
tj�� ���B�
t�m� and
�a� The constraint atom �Bj�
Yj�
 -j� sj�� for some � � j � n� is in P OUT �

�b� For each � � i � n such that i �	 j� the constraint fact Fi 	 Bi�
Yi� 
 -i with si 	 spt�Fi� is in

M �

�c� The constraint -� � - � � 
X 	 
Y � � �ni���
Yi 	 
ti � -i� is solvable�

Then replace F with A� 
X� 
 -� � - � � 
X 	 
Y � � �ni���
Yi 	 
ti� � -� � ��� � not�-j� � � � � � -n� In

addition� put the pair �A� 
X�
 - � � 
X 	 
Y � � �ni���
Yi 	 
ti � -i�� spt�F �� into P OUT �

Until no remaining marked elements can be replaced�

�� Remove any constraint atom from M whose constraint is not solvable�

Note that the constraints that are created in step � of the algorithm will often contain redundancy� But

as the next example illustrates� in many cases the redundancy can be removed by simpli�cation of the

constraints�
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EXAMPLE 	�	 Suppose P is the constrained database of example ���

The materialized view �containing duplicates� of P is shown below on the left� where the corresponding

support for each constraint atom is shown to the right�

A�X�
 X � � h�i

A�X�
 X � � h�� h�ii

B�X�
 X � � h�i

C�X�
 X � � h�� h�ii

C�X�
 X � � h�� h�� h�iii

In the example every instance of �A�X� 
 X � �� occurs twice in the materialized view� For certain

constraint domains the elimination of duplicates may become a tedious task� if possible at all� In our

case when the underlying constraint domains are external knowledge sources� duplicate elimination in the

mediatory knowledge base is not required� In the mediatory knowledge base we explicitly specify in a

declarative manner the equality of objects from di�erent knowledge sources� Elimination of duplicates

emerging from a single knowledge source depends on whether two objects of the same type can be tested for

equality� This is possible if the underlying constraint domain itself provides an equality test predicate or if

an object from an external knowledge source can be converted into a common exchange format�

Suppose the constraint atom B�X� 
 X 	 � is speci�ed for deletion� The declarative semantics of this

deletion is given by the least �xpoint of the constrained database P �

A�X� 
 X � �

A�X� 
 B�X�

B�X� 
 X � � �X �	 �

C�X� 
 A�X�

The corresponding materialized view TP � � ���� contains the constraint atoms

A�X� 
 X � �

A�X� 
 X � � �X �	 �

B�X� 
 X � � �X �	 �

C�X� 
 X � �

C�X� 
 X � � �X �	 �

The StDel algorithm achieves the equivalent view working as follows� Initially� each of the �ve constraint

atoms in M is marked� In the second step� we replace B�X� 
 X � � by the new constraint atom

B�X� 
 X � ��X �	 �� and put �B�X� 
 X � � �X 	 �� h�i� into P OUT where h�i is the support of

the replaced constraint atom�

Next according to step � of the algorithm� we search for marked constraint atoms in M whose support

contains h�i� The only constraint atom that satis�es this condition is A�X� 
 X � �� whose support is

h�� h�ii� We construct from constrained clause � the new constraint atom A�X�
 �X � �����X � ��X 	
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�� that replaces A�X�
 X � �� Simpli�cation of the constraint yields A�X�
 X � � �X �	 �� The pair

�A�X�
 X � � �X 	 �� h�� h�ii� is then placed in P OUT�

The next iteration of the algorithm �nds that the support for the marked constraint atom C�X�
 X � �

contains the support h�� h�ii� Hence by a similar analysis as the previous paragraph� a replacement of this

constraint atom by C�X�
 X � � �X 	 � is made� The pair �C�X�
 X � � �X 	 �� h�� h�� h�iii� is put

into P OUT�

The �nal iteration of step � does not produce any new replacement since the only remaining marked constraint

atoms are A�X� 
 X � � and C�X� 
 X � �� Neither of these possesses a support that contains a sub�

support in P OUT� Hence the algorithm terminates�

Several observations are in order here� First� the supports that we use are similar to justi�cations used

in reason�maintenance systems �Doy��� in that they provide a 
history� of the derivation of constraint

atoms� Our algorithm can be seen as a variant of justi�cation�based reason maintenance tailored to updates

in mediatory knowledge bases� The main di�erence is that usually the reason maintenance component is

separated from the actual problem solver �which in this case is the inference engine of the mediator� and

that there is no support due to the absence of an atom� Another di�erence between reason maintenance

systems �RMSs� and view maintenance systems �VMSs� is that in RMSs� one attempts to delete an atom A

by making it unprovable� in contrast� in view maintenance� one tries to determine what atoms need to be

deleted based on deleting A� For instance� let P 	 fa
 b� a
 c� b� c�d
 ag and suppose a is to be deleted

from the original materialized view fa� b� c� dg� Then view maintenance simply says that the new materialized

view is fb� dg� in contrast� RMSs would �nd three 
extensions� for this problem based on di�erent ways of

eliminating the derivability of a� these extensions lead to the multiple materialized views fb� cg obtained

by eliminating the �rst two formulas in P � fbg obtained by eliminating the �rst and fourth formulas in P �

and fbg again obtained by eliminating the second and fourth formulas in P � Since in a mediated system

one would rather have a unique answer to a query �as opposed to agent�oriented systems� we have chosen

an appropriate update semantics which keeps the unique�answer property instead of dealing with multiple

extensions�

Secondly� the algorithm di�ers from the counting algorithm of �GKM��� since here� each constraint atom

in the materialized view corresponds to a single proof� The counting algorithm maintains a count of the

number of proofs of an atom� but does not distinguish between di�erent derivations� In contrast� in this

algorithm� given any constrained atom A�X� 
 -� we maintain a list of supports� This reveals another

di�erence with respect reason maintenance systems where cycles of support are disallowed while in view

maintenance those atoms are made explicit �for instance an in�nite count may be attached to an atom��

EXAMPLE 	�
 �Recursive Views� Suppose we consider the constrained database

�� P �X�Y �
 X 	 a � Y 	 b

�� P �X�Y �
 X 	 a � Y 	 c

�� P �X�Y �
 X 	 c � Y 	 d

�� A�X�Y �
 P �X�Y �

�� A�X�Y �
 P �X�Z��A�Z�Y �
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The materialized view M is displayed below�

�� P �X�Y �
 X 	 a � Y 	 b h�i

�� P �X�Y �
 X 	 a � Y 	 c h�i

�� P �X�Y �
 X 	 c � Y 	 d h�i

�� A�X�Y �
 X 	 a � Y 	 b h�� h�ii

�� A�X�Y �
 X 	 a � Y 	 c h�� h�ii

 � A�X�Y �
 X 	 c � Y 	 d h�� h�ii

�� A�X�Y �
 X 	 X � � Z 	 Y � �X � 	 a�

Y � 	 c � Z 	 X �� � Y 	 Y ���

X �� 	 c � Y �� 	 d h�� h�i� h�� h�iii

Suppose Del 	 fP �X�Y � 
 X 	 c � Y 	 dg� The view of the modi�ed program P �� when materialized�

yields the set M �

P �X�Y �
 X 	 a � Y 	 b h�i

P �X�Y �
 X 	 a � Y 	 c h�i

A�X�Y �
 X 	 a � Y 	 b h�� h�ii

A�X�Y �
 X 	 c � Y 	 d h�� h�ii

Note that constraint atoms ��  � and � are no longer derivable since the constraint part of clause � in the

modi�ed program� X 	 c � Y 	 d � ��X 	 c � Y 	 d� is not solvable�

The computation of Algorithm � proceeds as follows� First constraint atom � in M is replaced by

P �X�Y �
 X 	 c � Y 	 d � ��X 	 c � Y 	 d�

and the pair �P �X�Y �
 X 	 c � Y 	 d� h�i� is placed in P OUT�

Next constraint atom  in M � due to the match within its support with the support h�i from the above pair�

is replaced by

A�X�Y �
 X 	 c � Y 	 d � ��X 	 c � Y 	 d�

while simultaneously� the pair �A�X�Y �
 X 	 c � Y 	 d� h�� h�ii� is added to P OUT�

Finally� standardizing variables apart� constraint atom � in M is replaced by

A�X�Y � 
 X 	 X � � Z 	 Y � �X � 	 a � Y � 	 c �

Z 	 X �� � Y 	 Y �� �X �� 	 c � Y �� 	 d �

Z 	 X ��� � Y 	 Y ��� � ��X ��� 	 c � Y ��� 	 d�

Though a new pair is added to the set P OUT� no more replacement is made to M and hence the �nal

view is

�� P �X�Y �
 X 	 a � Y 	 b h�i
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�� P �X�Y �
 X 	 a � Y 	 c h�i

�� P �X�Y �
 X 	 c � Y 	 d � ��X 	 c � Y 	 d� h�i

�� A�X�Y �
 X 	 a � Y 	 b h�� h�ii

�� A�X�Y �
 X 	 a � Y 	 c h�� h�ii

 � A�X�Y �
 X 	 c � Y 	 d � ��X 	 c � Y 	 d� h�� h�ii

�� A�X�Y �
 X 	 X � � Z 	 Y � �X � 	 a�

Y � 	 c � Z 	 X �� � Y 	 Y ���

X �� 	 c � Y �� 	 d � Z 	 X ����

Y 	 Y ��� � ��X ��� 	 c � Y ��� 	 d� h�� h�i� h�� h�iii

The constraints of each of constraint atoms ��  � and � are not solvable� Hence these atoms may be removed�

This produces the same materialized view as M ��

Suppose in the program above� that instead of the constraint atom �� there is a constraint atom P �X�Y �


X 	 c� Y 	 d� Consequently atom � would be A�X�Y �
 X 	 a � Y 	 a with support h�� h�i� h�� h�iii� In

the subsequent step an atom P �X�Y �
 X 	 c � Y 	 a with support h�� h�i�� h�i� h�� h�iii is derived�

Theorem 	�� The Straight Deletion Algorithm is correct	 i�e� the output M of the algorithm satis�es

�M � 	 �TP � � ������

The theorem has been proven in �Sch����

�
� Insertion of Constrained Atoms

To insert the constrained atom A� 
X�
 . into the mediated materialized view� we �rst construct the input

Add� which is the set fA� 
X�
 not�/��. such that A�X�
 / is in M and not�/��. is solvable g� The

set Add consists of all constrained atoms whose solutions correspond to the instances to be inserted into the

materialized view�

Declarative Semantics� We now specify the meaning of an insertion of A� 
X� 
 . into a mediated

materialized view� M � w�r�t� constrained database P � this meaning is the meaning of a constrained database

P � constructed as follows�

Rewrite the Constrained Database P into a new constrained database P � as follows

P � 	 P � Add

� fA� 
X�
 ��/� �. jj B��
t��� � � � �Bn�
tn� j

A� 
X�
 0 jjB��
t��� � � � �Bn�
tn� � P�n � ��

A� 
X�
 / �Mg

Note that in the third component of the above union� for every constrained atom A�X�
 / in M � and for

every clause C in P with A in the head� we are replacing C�s constraint part �which may have been� say� 0�

by the constraint ��/� �.�
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The least model of the above constrained database P � speci�es the desired semantics after the insertion is

accomplished� The reader may speci�cally note that even though negation occurs in the body of clauses in

P �� this negation occurs in the constraint part of the clause� and hence� the resulting constrained database

still has a least �xpoint �JL���� We now present an algorithm that incrementally inserts a constrained atom

into a materialized view�

Algorithm 	 �Constrained Atom Insertion�

�� Unfold the constraint base fact to be inserted with respect to the original constrained database P �

P ADD� 	 Add

P ADDk�� 	 P ADDk � fB� 
X�
 - j

There is a clause

B� 
X�
 -� jj B��
t��� � � � �Bn�
t
�
n� in P

where for at least one j � f�� � � � � ng 

There is a Bj� 
Xj�
 -j � P ADDk�

and for each i � f�� � � � � ng where

Bi� 
Xi�
 -i �� P ADDk

Bi� 
Xi�
 -i is a constraint atom

in the materialized view M 	 TP � ����� and

- 	 -� � � � � � -n � � 
X� 	 
t�� � � � � � � 
Xn 	 
tn�

is satis�ableg

P ADD 	 P ADD�

�� Set M � 	 M �P ADD� which is then the new view�

Observe that an important di�erence between the deletion and the insertion algorithms is that in the

condition de�ning P Addk��� the number of body literals Bi that are contained in P ADDk is one or more�

Recall that in the construction of P OUTk��� we require the number of body literals contained in P OUTk

to be exactly one�

The next theorem establishes the correctness of this algorithm� i�e� the incrementally computed view� M ��

is the same as the least �xpoint of TP � where P � is the rewritten constraint database�

Theorem 	�	 The insertion algorithm is correct� i�e� �TP � � ����� 	 �M ���

� Maintaining Views when External Changes Occur

Suppose we consider a mediator that integrates information in domains $i� i 	 � � � � n� For instance� these

domains may be relational database systems like PARADOX or DBASE� or non�traditional systems like the

facedb and spatialdb domains speci�ed in the law enforcement example� When an update occurs within

one or more of the domains being integrated �e�g� a PARADOX table gets updated�� this could be viewed as a
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modi�cation of the behavior of the functions that access these domains� For instance� the select function

in the PARADOX domain may return a new set of tuples �after the update of the PARADOX tables�� Another

possibility is that the code implementing functions may also have been updated �e�g� to remove bugs in

older versions of the software package�� In this section� we analyze how updates to the integrated domains

may a�ect the materialized mediated view and how they can be handled e�ciently� For this� it is important

to always remember that we do not materialize the functions occurring within the in predicate but instead

materialize the mediated view by unfolding its de�ning rules�

As the behavior of functions is changing over time� we will use d  ft to denote the behavior of the function

f of domain d at time t� In order to capture the behavioral di�erence of f between two successive time

points� we de�ne

�f
�

t�t���� args�� 	 ft���� args ��� ft�� args ��

�f
�

t�t���� args�� 	 ft�� args ��� ft���� args ��

Thus� �f�t�t���� args �� is the set of values returned by executing function f at time t * � that were

not returned when f was executed at time t� Likewise� �f�t�t���� args �� is the set of objects returned

by executing function f at time t that are not returned when f is executed at time t * �� Note that the

e�cient computation of the di�erence between two successive database states has been extensively studied

�BCL��� KKM��� Kuc��� Han��� SJGP���� However� as we will see� we do not need the di�erence explicitly

for our view maintenance mechanism� We only use it to investigate the e�ects of an update to an external

function onto a materialized mediated view if TP is used�

For a constraint atom to be introduced into the materialized mediated view de�ned by TP � we require that

the constraint be be satis�able� hence� we should not be surprised that the materialized mediated view

changes if the functions invoked within in change� Let

REM 	 fin�a�d  f�b�� j a � �f�t�t��g and

ADD 	 fin�a�d  f�b�� j a � �f�t�t��g�

Then� intuitively� we may regard the problem of function updates as being equivalent to the insertion and the

deletion of the ground instance that correspond to the DCA�atoms in the sets ADD and REM � respectively�

However� as we are working with non�ground constrained atoms� the situation is less straightforward�

The set ADD does not introduce any technical complications� In contrast� the set REM needs to be treated

with care� The following example provides an illustration�

EXAMPLE 
�� Suppose we have a constrained database that contains the single clause B�X�
 in�X�d 

g�b��� The function g is a call in the domain d� Assuming the initial set of values returned by g for the

argument b is the singleton fag� then according to the de�nition of TP � we would have the constraint atom

B�X�
 in�X�d  g�b�� in the original materialized view� Now suppose at time t*�� the result a is removed

from the output of g� So g�b� 	 �� According to TP � the materialized view at t * � would be empty since

the constraint in�X�d  g�b�� is unsolvable�

This example illustrates that the set REM may cause subsequent modi�cations in the materialized view�

However� the requirement that changes in functions of constraint domains be re!ected in the materialized

view appears to only incur computational overhead with little theoretical bene�ts� A better approach is to
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regard the materialized view as a syntactic construct where each constraint atom A�X�
 - de�nes an access

into the set of solutions represented by -� In particular� if f occurs in the constraint -� then at time t� f will

be interpreted as if it denotes the function ft� at time �t*�� it will denote the function ft��� Then� we may

eliminate� from the de�nition of TP � the condition that constraints be satis�able� and instead� may defer the

satis�ability test to query�evaluation time� As we demonstrate shortly� the elimination of the requirement

that the constraint - is satis�able will simplify immensely the updating process� Indeed	 maintaining a

materialized view requires no action whatsoever when this point of view is adopted	 even if external changes

occur� We �rst adapt the operator TP to the following simpler version� called WP �

WP �I� 	 fA� 
X�
 - j There is a clause A�t��
 -�jjA��t��� � � � �An�tn� in P and �� � i � n  �Ai�Xi�


-i � I which share no variables and the constraint - is -� � -� � � � � � -n � f 
X� 	 
t�g � � � � � f 
Xn 	

tng � f 
X 	 
t�gg�

Observe that the only di�erence between WP and TP is that the constraint - is not required to be solvable�

The materialized view of a constrained database is de�ned to beWP � ����� Given now that the materialized

view is only a syntactic construction where constraints that appear in constraint atoms are not necessarily

solvable� it is clear to see that no changes to the solution sets of functions in any constraint domain will

a�ect the syntactic form of the materialized view� as proved in the next theorem�

Theorem 
�� Suppose Mt is the materialized view of the constrained database P at time point t� Then

Mt��� the materialized view of the constrained database P at time point t* �� is syntactically identical to

Mt�

The reason for this is that when we construct our materialized mediated views	 we are storing atoms in the

form A 
 - where - may contain some external function calls �let�s say f is one such external call�� At

time t	 the syntactic symbol f occurring in - denotes the function ft	 i�e� it denotes the behavior of function

f at time t� At time t* �	 the syntactically identical constraint - is evaluated with the syntactic entity f

interpreted as the function ft��� The reason this approach works with WP and not with TP is that TP
determines solvability of constraints at time t� which means that the meaning� ft of functions at time t may

be used to 
eliminate� constrained atoms from the materialized view� In contrast� when no such eliminations

are performed� as in the case of WP � we can use the same syntactic form because evaluation of solvability of

constraints is done using the 
current meaning� of f � i�e� the meaning of f at time t* ��

Hence no action is required in view maintenance as the result of changes to domain functions� More important

than the fact that the syntactic form of the materialized view remains static is that semantically� the instances

represented by this single view accurately re!ects the instances that should be true for the given constrained

database at any time point� More speci�cally� the instances of the view that is constructed using WP will

coincide with the instances of the view constructed using TP �

Corollary � LetM 	 WP � ����� Suppose Mt represents the materialized view of the constrained database

constructed using TP and where the function calls to domains are evaluated at time point t� for any t� Then

�M � 	 �Mt��

EXAMPLE 
�� Let P contain the single rule

A�X�
 in�X�$�  f�X�� jj B�X�Y �
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and the two facts fB�a� b��B�b� b�g� Suppose the function f evaluated at time t behaves as ft�b� 	 fbg and

ft�X� 	 � for X �	 b� The materialized view M constructed under WP is

f B�a� b�� B�b� b��

A�X�
 in�X�$�  f�X���X 	 a � Y 	 b

A�X�
 in�X�$�  f�X���X 	 b � Y 	 bg

and its instances �M � is the set fB�a� b�� B�b� b�� A�b�g� Using TP � Mt is identical to M with the exception

that it does not contain the third constraint atom as listed above for M � Clearly� �M � 	 �Mt��

Now suppose the behavior of f at time t*� is ft���a� 	 a and ft���X� 	 � forX �	 a� M remains unchanged

while the new materialized view according to TP will be M � fA�X�
 in�X�$�  f�X���X 	 b � Y 	 bg�

Again� we have �M � 	 �Mt��� which is now the set fB�a� b�� B�b� b��A�a�g�

� Discussion

Materialization of mediated views is performed by unfolding the rules de�ning the view� An update of type

one� that is an update to the view� invalidates the materialized mediated view but & in our case & is

not propagated to the integrated domains as incorporated by the in predicate� This makes our approach

di�erent from work on view updates on relational� deductive and object�oriented databases as partially cited

and discussed in the introduction of this chapter� Note that none of this work is based on a language

as powerful as constrained logic� However� considering the orthogonality of the approaches� it might be

worthwhile to investigate an integration of this work with our approach� To some extent� this has already

been done in this chapter � for instance� the DRed algorithm presented in �GMS��� has been extended to

handle deletions in constrained and mediated databases� The relationship between the DRed algorithm and

algorithms in �CW��� CW��a� UO��� Kuc��� has been discussed in detail in �GMS��� � however� none of

these algorithms deal with constraints� and they all assume that a materialized view contains only ground	

fully instantiated tuples � assumptions that are removed in this chapter�

As we have seen� an update of the second kind & a change to one of the integrated domains & a�ects the

materialized mediated view if the TP �xpoint operator is used� By replacing it with WP � we eliminate the

implied recomputation� Again� this di�ers from the traditional approach to view maintenance� since only

the unfolding process of the rules which is independent of the actual evaluation of the in predicate might

be a�ected� However� the work on view maintenance which was partially cited in the introduction �e�g�

�KKM���� of this chapter becomes relevant as soon as we want to guarantee an e�cient evaluation of the in

predicate by materializing the external function calls�

� Conclusion and Future Work

The HERMES system at the University of Maryland is based on the intuition that constraints can be used

to integrate multiple databases� multiple data structures� and multiple reasoning paradigms� In its current

form� HERMES integrates INGRES� PARADOX� path planning packages developed by the US Army� Face

Recognition packages� spatial data structures� a text database� and a pictorial database� Descriptions of
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the theory of HERMES may be found in �Sub��b� AS� � AS��� Sub��a� Sub��b� SAB���� � in particular�

�Jam� � shows that HERMES generalizes constrained databases as proposed by Kanellakis et� al� �KKR����

In this chapter� we have dealt with the problem of e�ciently maintaining materialized mediated views such

as those that may occur when any constrained database system is updated� To our knowledge� this is the

�rst work that addresses the view maintenance problem for constrained databases and'or for heterogeneous�

mediated systems� The main contributions we have made are the following

We have shown how the DRed deletion algorithm of Gupta et� al� �GMS��� may be extended to handle

constraints�

We have developed a unique straight delete algorithm for deletion that uses supports to accomplish

deletions of constrained atoms� this algorithm is brand new� and� even when constraints are absent� it

improves upon the counting method �that can lead to in�nite counts� �GKM��� and also improves upon

the re�derivation algorithm �as it requires no re�derivations� In addition� as shown in this chapter� it

also applies to databases with constraints in it� including mediated systems�

We have developed algorithms for inserting constrained atoms into an existing materialized view�

We have shown that when we eliminate the constraint�satis�ability check from the Gabbrielli�Levi

operator� then the problem of maintaining views in mediated systems �when changes occur in di�erent

programs'databases participating in the mediated framework� can be handled very easily indeed � no

change to the mediated view� whatsoever� is needed� when the notion of mediated view de�ned by WP

is adopted � This makes our approach eminently suitable for mediated systems�
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UPDATING DERIVED RELATIONS�

DETECTING IRRELEVANT AND

AUTONOMOUSLY COMPUTABLE UPDATES
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Neil Coburn� Per��Ake Larson

ABSTRACT

Consider a database containing not only base relations but also stored derived relations �also called mate�

rialized or concrete views�� When a base relation is updated� it may also be necessary to update some of

the derived relations� This chapter gives su�cient and necessary conditions for detecting when an update

of a base relation cannot a�ect a derived relation �an irrelevant update�� and for detecting when a derived

relation can be correctly updated using no data other than the derived relation itself and the given update

operation �an autonomously computable update�� The class of derived relations considered is restricted to

those de�ned by PSJ�expressions� that is� any relational algebra expression constructed from an arbitrary

number of project� select and join operations �but containing no self�joins�� The class of update operations

consists of insertions� deletions� and modi�cations� where the set of tuples to be deleted or modi�ed is

speci�ed by a selection condition on attributes of the relation being updated�

� Introduction

In a relational database system� the database may contain derived relations in addition to base relations�

A derived relation is de�ned by a relational expression �query� over the base relations� A derived relation

may be virtual� which corresponds to the traditional concept of a view� or materialized� meaning that the

relation resulting from evaluating the expression over the current database instance is actually stored� In

the sequel all derived relations are assumed to be materialized� As base relations are modi�ed by update

operations� the derived relations may also have to be changed� A derived relation can always be brought up

to date by re�evaluating the relational expression de�ning it� provided that the necessary base relations are

available� However� complete re�evaluation of the expression is often wasteful� and the cost involved may be

unacceptable�

Consider a database scheme D 	 �D�S� consisting of a set of base relation schemes D 	 fR��R�� � � � �Rmg

and a set of derived relation de�nitions S 	 fE�� E�� � � � � Eng� where each Ei � S is a relational algebra

expression over some subset of D� Suppose that an update operation U is posed against the database d on

D specifying an update of base relation ru on Ru � D� To keep the derived relations consistent with the

��
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base relations� those derived relations whose de�nition involve Ru may have to be updated as well� The

general maintenance problem for derived relations consists of ��� determining which derived relations may

be a�ected by the update U � and ��� performing the necessary updates to the a�ected derived relations

e�ciently�

As a �rst step towards the solution of this problem� we consider the following two important subproblems

Given an update operation U and a potentially a�ected derived relation Ei�

� determine the conditions under which the update U cannot have any e�ect on the derived relation Ei�

regardless of the database instance� In this case� the update U is said to be irrelevant to Ei�

� if the update U is not irrelevant to Ei� then determine the conditions under which Ei can be correctly

updated using only U and the current instance of Ei� for every instance of the database� That is� no

additional data from the base relations D is required� In this case� the e�ect of U on Ei is said to be

autonomously computable�

In this chapter we give necessary and su�cient conditions for detecting irrelevant and autonomously com�

putable updates� � The class of derived relations is restricted to those de�ned by PSJ�expressions� that

is� any relational algebra expression constructed from an arbitrary number of project� select� and join op�

erations� However� multiple occurrences of the same relation in the expression are not allowed �self�joins��

The class of update operations consists of insertions� deletions� and modi�cations where the set of tuples to

be deleted or modi�ed is speci�ed by a selection condition on the attributes of the relation being updated�

We have implemented a simple prototype capable of detecting irrelevant and autonomously computable up�

dates �see �BCL����� Testing the conditions eventually requires testing the satis�ability of certain Boolean

expressions� which� in general� is an NP�complete problem� Even though we impose some restrictions on the

atomic conditions from which the Boolean expressions are built� we cannot avoid the exponential growth

characteristic of NP�complete problems� However� the exponential growth depends on the number of at�

tributes and atomic conditions in the selection conditions of the update operation and the derived relation�

Experimental results indicate that� normally� this is not a severe problem�

The maintenance problem for derived relations is part of an ongoing project at the University of Waterloo

on the use of derived relations� The project is investigating a new approach to structuring the database in a

relational system at the internal level� In current systems there is� typically� a one�to�one correspondence� in

terms of data contents� between conceptual relations and stored relations� �However� an implementation may

map stored relations into physical �les in various ways� see �Bat����� This is a simple and straightforward

solution� but its drawback is that the processing of a query often requires data to be collected from several

stored relations� Instead of directly storing each conceptual relation� we propose structuring the stored

database as a set of derived relations� The choice of stored relations should be guided by the actual or

anticipated query load so that frequently occurring queries can be processed rapidly� To speed up query

processing� some data may be redundantly stored in several derived relations�

The structure of the stored database should be completely transparent at the user level� This requires a

system capable of automatically transforming any user update against a conceptual relation� into equivalent

�Reference �BCL�� is an early and incomplete version of this chapter� Reference �BCL�� contains some imple�

mentation details and experimental results not reported here�
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updates against all stored relations a�ected� The same type of transformation is necessary to process user

queries� That is� any query posed against the conceptual relations must be transformed into an equivalent

query against the stored relations� The query transformation problem has been addressed in papers by

Larson and Yang �LY��� Tra��� YL����

Although our main motivation for studying the problem stems from the above project� its solution also has

applications in other areas of relational databases� Buneman and Clemons �BC��� proposed using views

�that is� virtual derived relations� for the support of alerters� An alerter monitors the database and reports

when a certain state �de�ned by the view associated with the alerter� has been reached� Hammer and

Sarin �HS��� proposed a method for detecting violations of integrity constraints� Certain types of integrity

constraints can be seen as de�ning a view� If we can show that an update operation has no e�ect on the

view associated with an alerter or integrity constraint� then the update cannot possibly trigger the alerter or

result in a database instance violating the integrity constraint� The use of derived relations for the support

of real�time queries was suggested by Gardarin et al� �GSV��� and by Dayal et al� �DBB����� Stonebraker

et al� �SAH��� suggest that the results of database procedures be stored for future use� updating the stored

results is similar to updating a derived relation� Our results have direct application in each these areas�

The detection of irrelevant or autonomously computable updates also has applications in distributed data�

bases� Suppose that a derived relation is stored at some site and that an update request� possible a�ecting

the derived relation� is submitted at the same site� If the update is autonomously computable� then the

derived relation can be correctly updated locally without requiring data from remote sites� If the request is

submitted at a remote site� then we need to send only the update request itself to the site of the derived

relation� As well� the results presented here provide a starting point for devising a general mechanism for

database snapshot refresh �AL��� BLT� � LHM�� ��

In the next section we outline the assumptions and notation used in this chapter� In Section � we de�ne

when an update is irrelevant to a derived relation� and then give necessary and su�cient conditions for each

type of update&insert� delete� modify� In a similar fashion� we deal with autonomously computable updates

in Section �� We conclude the chapter with a discussion in Section �� The satis�ability algorithm we use is

given as an Appendix�

� Notation and Basic Assumptions

A database scheme D 	 �D�S� consists of a set of �base� relation schemes D 	 fR��R�� � � � �Rmg� and a set

of derived relation de�nitions S 	 fE�� E�� � � � � Eng� where each Ei � S is a relational algebra expression

over some subset of D� A database instance d� consists of a set of relation instances r�� r�� � � � � rm� one for

each Ri � D� We impose no constraints �e�g�� keys or functional dependencies� on the relation instances

allowed� A derived relation v�Ei� d� is a relation instance resulting from the evaluation of a relational algebra

expression Ei against the database d� We consider a restricted but important class of derived relations�

namely those de�ned by a relational algebra expression constructed from any combination of project� select

and join operations� called a PSJ�expression� In addition� we impose the restriction that no relation occurs

as an operand more than once in the expression� In other words� a relation cannot be joined with itself �a
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self�join�� We often identify a derived relation with its de�ning expression even though� strictly speaking�

the derived relation is the result of evaluating that expression�

We state the following without proof every valid PSJ�expression without self�joins can be transformed

into an equivalent expression in a standard form consisting of a Cartesian product� followed by a selection�

followed by a projection� It is easy to see this by considering the operator tree corresponding to a PSJ�

expression� The standard form is obtained by �rst pushing all projections to the root of the tree and thereafter

all selection and join conditions� ,From this it follows that any PSJ�expression can be written in the form

E 	 �A�C�Ri��Ri��� � ��Rik�� where Ri� �Ri� � � � � �Rik are relation schemes� C is a selection condition� and

A 	 fA��A�� � � � �Alg are the attributes of the projection� We can therefore represent any PSJ�expression

by a triple E 	 �A�R�C�� where A 	 fA��A�� � � � �Alg is called the attribute set� R 	 fRi� �Ri� � � � � �Rikg

is the relation set or base� and C is a selection condition composed from the conditions of all the select and

join operations of the relational algebra expression de�ning E� The attributes in A will often be referred to

as the visible attributes of the derived relation� A selection condition is a Boolean combination of atomic

�selection� conditions� We also use the notation

��C� the set of all attributes appearing in condition C

��R� the set of all attributes of relation R

��R� the set of all attributes mentioned in the set of relation schemes R �i�e��
S
Ri�R ��Ri��

t�X� the projection of the tuple t onto the attributes in set X�

For simplicity� all attribute names are taken to be unique �over the set of base relations�� Current systems

are capable of handling only discrete and �nite domains� Any such domain can be mapped onto an interval

of integers� and therefore we will in the sequel treat all attributes as being de�ned over some interval of

integers� It will often be necessary to identify exactly from which set of attributes a tuple may take its

value� Let A 	 fA�� � � � �Akg be a set of attributes� We will use the phrase� tuple t is de�ned over set A� to

describe a situation where t is a tuple de�ned over the attributes A�� � � � �Ak� or more simply t is over A� if

no confusion will arise�

The update operations considered are insertions� deletions� and modi�cations� Each update operation a�ects

only one �conceptual� relation� The following notation will be used for update operations

INSERT�Ru� T �� Insert into relation ru the set of tuples T � where each t � T is de�ned over ��Ru��

DELETE�Ru�CD�� Delete from relation ru all tuples satisfying condition CD� where CD is a selection

condition over ��Ru��

MODIFY�Ru� CM �FM �� Modify all tuples in ru that satisfy the condition CM � where CM is a selection

condition over ��Ru�� FM is a set of expressions� each expression specifying how an attribute of ru is

to be modi�ed�

Note that we make the assumption that all the attributes involved in the update expressions are from relation

Ru� That is� both the attributes modi�ed and the attributes from which the new values are computed� are

from relation Ru� The set of expressions FM of a MODIFY operation is assumed to contain an update
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expression for each attribute in Ru� An update expression is of the form Ai 	 gi�Ai� �Ai� � � � � �Aik� where

Ai� �Ai� � � � � �Aik are attributes in Ru and gi is a function over Ai� �Ai� � � � � �Aik � This function� gi� is called

the update function of attribute Ai� Again� the theory developed makes no other assumptions about update

functions than that they are �computable� functions on the attributes in Ru� However� in practice� additional

restrictions must be placed on them in order to be able to actually test the conditions�

Note that in �BCL� � we considered a more general class of update operations where the selection condition

of DELETE and MODIFY operations may involve attributes in relations other than Ru� �Autonomously

computable modi�cations were not considered in detail in �BCL� ��� Further work revealed that the results

presented in �BCL� � do not always hold for this more general class� However� the results are valid if the

selection condition involves only attributes from Ru� This is the class of update operations considered in

this chapter�

Conditions are Boolean expressions built from atomic conditions and logical connectives� An atomic con�

dition is a function from the Cartesian product of the domains of a set of attributes �variables� to the set

ftrue� falseg� However� to be able to actually test the conditions stated in the theorems� further restrictions

must be imposed on the atomic conditions allowed� this is discussed further below� The logical connectives

will be denoted by 
�� for OR� juxtaposition or 
�� for AND� 
�� for NOT� 
�� for implication� and 
��

for equivalence� To indicate that all variables of a condition C are universally quanti�ed we write �C� and

similarly for existential quanti�cation �C� If we need to explicitly identify which variables are quanti�ed� we

write � X �C� or � X �C� where X is a set of variables�

An evaluation of a condition is obtained by replacing all the variable names �attribute names� by values

from the appropriate domains� The result is either true or false� A partial evaluation �or substitution� of a

condition is obtained by replacing some of its variables by values from the appropriate domains� Let C be a

condition and t a tuple over some set of attributes� The partial evaluation of C with respect to t is denoted

by C�t�� The result is a new condition with fewer variables�

Detecting whether an update operation is irrelevant or autonomously computable involves testing whether

certain Boolean expressions are valid� or equivalently� whether related Boolean expressions are unsatis�able�

A Boolean expression is valid if it always evaluates to true� unsatis�able if it never evaluates to true� and

satis�able if it evaluates to true for some values of its variables� Proving the validity of a Boolean expression

is equivalent to disproving the satis�ability of its complement�

Proving the satis�ability of Boolean expressions is� in general� NP�complete� The theory presented in this

chapter requires the ability to test the satis�ability of Boolean expressions� Therefore� we assume that

an algorithm for testing satis�ability� for the class of Boolean expressions of interest� is available� We

also assume the algorithm returns a set of values and if the given expression is satis�able then the values

satisfy the expression� Since we have imposed the restriction that attributes have �nite domains and we

assume that any functions used are computable we are guaranteed the existence of a satis�ability testing

algorithm&though it may not be e�cient�

For a restricted class of Boolean expressions� polynomial algorithms exist� Rosenkrantz and Hunt �RH���

developed such an algorithm for conjunctive Boolean expressions� Each expression B must be of the form
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B 	 B� � B� � � � � � Bm where each Bi is an atomic condition� An atomic condition must be of the form

�x � y * c� or �x � c�� where � � f	�������g� x and y are variables representing attributes� and c

is a �positive or negative� constant� Variables and constants are assumed to range over the integers� The

algorithm runs in O�n�� time where n is the number of distinct variables in B�

In this chapter� we are interested in the case when each variable ranges over a �nite interval of integers� We

have developed a modi�ed version of the algorithm by Rosenkrantz and Hunt for this case� Details of the

modi�ed algorithm are given in the Appendix� however� we wish to stress that this algorithm is applicable

only when the atomic conditions are of the form �x � y * c� or �x � c��

An expression not in conjunctive form can be handled by �rst converting it into disjunctive normal form and

then testing each disjunct separately� In the worst case� this may cause the number of atomic conditions to

grow exponentially� Several of the theorems in Sections � and � will require testing the validity of expressions

of the form C� � C�� The implication can be eliminated by converting to the form ��C�� � C�� Similarly�

expressions of the form C� � C� can be converted to C�C� � ��C����C��� Atomic conditions of the form

�x �	 y * c� must be converted to �x � y * c� � �x � y * c� to satisfy the input requirements of the

Rosenkrantz and Hunt algorithm� similarly� for �x �	 c��

� Irrelevant Updates

In certain cases� an update operation applied to a relation has no e�ect on the state of a derived relation�

When this occurs independently of the database state� we call the update operation irrelevant to the derived

relation� This section presents necessary and su�cient conditions for the detection of irrelevant updates�

The conditions are given for insert� delete� and modify operations as introduced in the previous section�

First we de�ne what it means for an update to be irrelevant�

De�nition 	�� Let d be an instance on the set of relation schemes D� and let d� be the resulting instance

after applying the update operation U to d� Let E 	 �A�R�C� be a derived relation de�nition� The update

operation U is irrelevant to E if v�E� d�� 	 v�E� d� for all instances d� �

If the update U does not modify any relations over which the derived relation is de�ned then U cannot have

any e�ect on the derived relation� In this case U is said to be trivially irrelevant to the derived relation�

The fact that an update is not irrelevant does not imply that the update will� in fact� a�ect the current

instance of the derived relation� However� determining whether it does� requires accessing the data in the

database�

�
� Irrelevant insertions

An insert operation into a base relation is irrelevant to a derived relation if it causes no tuple to be inserted

into the derived relation�
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Theorem 	�� The operation INSERT�Ru� T � is irrelevant to the derived relation de�ned by E 	 �A�R�C�	

Ru � R	 if and only if C�t� is unsatis�able for every tuple t � T �

Proof� �Su�ciency� Consider an arbitrary tuple t � T � If C�t� is unsatis�able� then C�t� will evaluate to false

regardless of the assignment of values to the variables remaining in C�t�� Therefore� there cannot exist any

tuple de�ned over the Cartesian product of the relations in R� fRug that would combine with t to satisfy

C and hence cause an insertion into v�E� d��

�Necessity� Consider a tuple t � T � and assume that C�t� is satis�able� C�t� being satis�able means that there

exists a tuple s de�ned over ��R� such that s���Ru�� 	 t� s�A� 	 �A for every attribute A �� ��Ru� � ��C��

where �A is the lowest value in the domain of A� and the rest of the values s�A�� A � ��C� � ��Ru� are

assigned in such a way that C�s� 	 true� The fact that C�t� is satis�able guarantees the existence of such

values for attributes in ��C�� ��Ru�� We can then construct a database instance d using s� such that the

insertion of t into ru will cause a new tuple to be inserted into the derived relation v�E� d��

To construct d� we build a relation instance ri for each relation scheme Ri � R � fRug� Each relation ri
contains a single tuple ti� where ti 	 s���Ri��� The database instance d consists of the relation ru 	 �

and relations ri 	 ftig for each Ri � R � fRug� Clearly� v�E� d� 	 �� However� if we obtain d� from d

by inserting tuple t into ru� then v�E� d�� will contain one tuple� Therefore� the INSERT operation is not

irrelevant to the derived relation� �

�
� Irrelevant deletions

A delete operation on a base relation is irrelevant to a derived relation if none of the tuples in the derived

relation will be deleted as a result of the operation�

Theorem 	�� The operation DELETE�Ru�CD� is irrelevant to the derived relation de�ned by E 	

�A�R� C�	 Ru � R	 if and only if the condition CD � C is unsatis�able�

Proof� �Su�ciency� If CD � C is unsatis�able� then no tuple t de�ned over ��R� can have values such that

CD�t� and C�t� are simultaneously true� Assume that t contains values such that CD�t� is true� meaning that

the delete operation causes the deletion of the tuple t���Ru�� from ru� Since t cannot at the same time

satisfy C� then t could not have contributed to a tuple in the derived relation� Thus the deletion of t���Ru��

from ru will not cause any data to be deleted from the derived relation de�ned by E� Therefore� the delete

operation is irrelevant�

�Necessity� Assume that CD �C is satis�able� Thus� there exists a tuple s over ��R� such that CD�s��C�s� is

true� As in the proof of the previous theorem we can construct a database instance� d� for relations in R such

that deleting one tuple from ru will indeed change the derived relation� Of course� in this case ru initially

contains the single tuple s���Ru��� Hence� v�E� d� will contain one tuple� Applying the delete operation to d

then gives an instance d� where the tuple in relation ru has been deleted� Clearly� v�E� d�� 	 �� This proves

that the deletion is not irrelevant� �
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Example 	�� Consider two relation schemes R��H�I� J� and R��K�L�� and the following derived relation

and delete operation

E 	 �fH�Lg� fR��R�g� �I � J��J 	 K��K � ����

DELETE �R�� �I � ����

To show that the deletion is irrelevant to the derived relation we must prove that the following condition

holds

� � H� I�J�K�L ��I � J��J 	 K��K � ��� � �I � ����

Clearly� the condition holds because the condition �I � J��J 	 K��K � ��� implies that �I � ���� which

contradicts �I � ��� Hence� the delete operation is irrelevant to the derived relation� �

�
� Irrelevant modi�cations

The detection of irrelevant modi�cations is somewhat more complicated than insertions or deletions� Con�

sider a tuple that is to be modi�ed� It will not a�ect the derived relation if one of the following conditions

applies

it does not qualify for the derived relation� neither before nor after the modi�cation�

it does qualify for the derived relation both before and after the modi�cation� but all the attributes

visible in the derived relation remain unchanged�

Theorem ��� introduced in this section covers the two cases mentioned above� but before we state the

theorem� we need some additional notation�

Consider a modify operation MODIFY�Ru�CM �FM� and a derived relation de�ned by E 	 �A�R�C�� Let

��Ru� 	 fA��A�� � � � �Alg� As mentioned in Section �� we will associate an update expression with every

attribute in Ru� that is� FM 	 ffA� � fA� � � � � � fAlg� Each update expression is of the form fAi � �Ai 	

gi�Ai� �Ai� � � � � �Aik��� If an attribute Ai is not to be modi�ed� we associate with it a trivial update expression

of the form fAi � �Ai 	 Ai�� If the attribute is assigned a �xed value c� then the corresponding update

expression is fAi � �Ai 	 c�� The notation 	�fAi� will be used to denote the right hand side of the

update expression fAi � that is� the function after the assignment operator� The notation ��	�fAi�� denotes

the variables mentioned in 	�fAi�� For example� if fAi � �Ai 	 Aj * c� then 	�fAi� 	 Aj * c and

��	�fAi�� 	 fAjg�

By substituting every occurrence of an attribute Ai in C by 	�fAi� a new condition is obtained� We will

use the notation C�FM � to denote the condition obtained by performing this substitution for every variable

Ai � ��Ru� 	 ��C��

An update expression 	�fAi� may produce a value outside the domain of Ai� We make the assumption that

such a modi�cation will not be performed� that is� the entire tuple will remain unchanged� Each attribute

Ai of Ru must satisfy a condition of the form �Ai � UAi��Ai  LAi � where LAi and UAi are the lower and

upper bound� respectively� of its domain� Consequently� the updated value of Ai must satisfy the condition

�	�fAi� � UAi��	�fAi�  LAi � and this must hold for every Ai � ��Ru�� The conjunction of all these
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conditions will be denoted by CB�FM�� that is�

CB�FM� �
�

Ai���Ru

�	�fAi� � UAi��	�fAi�  LAi��

Therefore� to be chosen for modi�cation a tuple must satisfy both CM and CB�FM�� Thus� the selection

condition for a modi�cation is e�ectively CM � CB�FM ��

Example 	�� Consider a relation schema R�H�I� J� and the following modify operation

MODIFY�R� �H � �� � �I  J��fH 	 H * ��� I 	 ��� J 	 Jg��

For this modify operation we have

fH � �H 	 H * ��� 	�fH� � H * �� ��	�fH�� 	 fHg

fI � �I 	 ��� 	�fI� � �� ��	�fI�� 	 �

fJ � �J 	 J� 	�fJ� � J ��	�fJ�� 	 fJg

CM � �H � �� � �I  J��

If the selection condition C of a derived relation is C � �H � ��� � �I 	 J�� then

C�FM � � �H * �� � ��� � ��� 	 J��

Assuming that the domains of the variables H� I� and J are given by the ranges ��� ���� ���� ����� and ���� �����

respectively� we obtain

CB�FM� � �H * ��  �� � �H * �� � ��� � ���  ���

���� � ���� � �J  ��� � �J � �����

�

We make no assumptions about the types of update functions allowed� Hence� the conditions C�FM � and

CB�FM� may not be in the class of Boolean expressions of interest to us� Therefore� the satis�ability

algorithm we wish to use may not be able to handle these conditions�

Theorem 	�	 The operation MODIFY�Ru�CM �FM� is irrelevant to the derived relation de�ned by E 	

�A�R� C��Ru � R	 if and only if

� �CM � CB�FM� � ��C � �C�FM�� � �C � C�FM� � �
�

Ai�A���Ru

�Ai 	 	�fAi������ �����

Proof� �Su�ciency� Consider a tuple t over ��R� such that t satis�es CM and CB�FM �� Denoted the

corresponding modi�ed tuple by t�� Because condition ����� holds for every tuple� it must also hold for t�

Hence� either the �rst or the second disjunct of the consequent must evaluate to true� �They cannot both

be true simultaneously��
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If the �rst disjunct is true� both C�t� and C�t�� must be false� �Note that� C�t�� � C�FM ��t��� This means that

neither the original tuple t� nor the modi�ed tuple t�� will contribute to the derived relation� Hence changing

t to t� will not a�ect the derived relation�

If the second disjunct is true� both C�t� and C�t�� must be true� In other words� the tuple t contributed to

the derived relation and after being modi�ed to t�� it still remains in the derived relation� The last conjunct

must also be satis�ed� which ensures that all attributes of Ru visible in the derived relation have the same

values in t and t�� Hence the derived relation will not be a�ected�

�Necessity� Assume that condition ����� does not hold� That means that there exists at least one assignment

of values to the attributes� i�e�� a tuple t� such that the antecedent is true but the consequent is false� Denote

the corresponding modi�ed tuple by t�� Since the consequent of condition ����� is false� C�t� and C�t�� cannot

both be false� thus there are three cases to consider�

Case � C�t� 	 false and C�t�� 	 true� In the same way as in the proof of Theorem ���� we can then construct

a database instance d from t� where each relation in R contains a single tuple and such that the resulting

derived relation is empty� For this database instance� the modi�cation operation will produce a new

instance d� where the only change is to the tuple in relation ru� The Cartesian product of the relations

in R then contains exactly one tuple� which agrees with t on all attributes except on the attributes

changed by the update� Hence� the derived relation v�E� d�� will contain one tuple since C�t�� 	 true�

This proves that the modify operation is not irrelevant to the derived relation�

Case � C�t� 	 true and C�t�� 	 false� Can be proven in the same way as Case �� with the di�erence that the

derived relation contains originally one tuple and the modi�cation results in a deletion of that tuple

from the derived relation�

Case � C�t� 	 true� C�t�� 	 true but
V
Ai�A���Ru

�Ai 	 	�fAi�� is false� that is� t�Ai� �	 t��Ai� for some

Ai � A 	 ��Ru�� We can construct an instance where each relation in R contains only a single tuple�

and where the derived relation also contains a single tuple� both before and after the modi�cation�

However� in this case the value of attribute Ai will change as a result of performing the MODIFY

operation� Since Ai � A� this change will be visible in the derived relation� This proves that the

update is not irrelevant to the derived relation� �

Example 	�	 Suppose the database consists of the two relations R��H� I� and R��J�K� where H�I� J and

K all have the domain ��� ���� Let the derived relation and modify operation be de�ned as

E 	 �fI� Jg� fR��R�g� �H � ����I 	 K��

MODIFY �R�� �H � ���� f�H 	 H * ��� �I 	 I�g��

Thus the condition given in Theorem ��� becomes

� H� I� J�K ��H � ��� � �H * �  ���H * � � ����I  ���I � ���

� ����H � ����I 	 K��� � ����H * � � ����I 	 K���

� �H � ����I 	 K��H * � � ����I 	 K��I 	 I��
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which can be simpli�ed to

� H� I�K ��H � ����H � ����I  ���I � ���

� ����H � ����I 	 K���� ����H � ���I 	 K���

� �H � ����I 	 K���

If I 	 K� then the second term of the consequent will be satis�ed whenever the antecedent is satis�ed� If

I �	 K� the �rst term of the consequent is always satis�ed� Hence� the implication is valid and we conclude

that the update is irrelevant to the derived relation� �

The idea of detecting irrelevant updates is not new� In the work by Buneman and Clemons �BC���� on the

support of triggers and alerters� they are called readily ignorable updates and in the work by Bernstein and

Blaustein �BB���� on the support of integrity constraints� they are called trivial tests�

Maier and Ullman �MU��� study updates to relation fragments� In their work a fragment may be a physical

or virtual relation over a single relation scheme� de�ned by selection and union operators on physical or

other virtual relations� A fragment f� is related to fragment f� through a transfer predicate ���� a Boolean

expression de�ning which tuples from f� also belong to f�� When a set of tuples is �say� inserted into f�
only those tuples which satisfy ��� will be transferred to f�� Tuples not satisfying ��� are irrelevant to f��

Our work improves upon previous work in several respects ��� the update operations we support are more

general than the ones supported in any of the above related papers� ��� we provide necessary and su�cient

conditions for the detection of irrelevant updates� and ��� we provide an algorithm� for actually testing these

conditions� which handles a large and commonly occurring class of atomic conditions�

� Autonomously Computable Updates

Throughout this section we assume that for a given update operation and derived relation the update is not

irrelevant to the derived relation� We formalize this with the following statement

Property � Given an update operation U and the derived relation de�ned by E 	 �A�R�C� then U is not

irrelevant with respect to E�

If an update operation is not irrelevant to a derived relation� then some data from the base relations may

be needed to update the derived relation� An important case to consider is one in which all the data

needed is contained in the derived relation itself� In other words� the new state of the derived relation

can be computed solely from the derived relation de�nition� the current state of the derived relation� and

the information contained in the update operation� We call updates of this type autonomously computable

updates� Within this case� two subcases can be further distinguished depending on whether the decision is

unconditional �scheme�based� or conditional �instance�based��

When the decision is unconditional� the new state of the derived relation can be computed using the de�nition

and the current instance of the derived relation� and the information contained in the update operation�
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for every database instance� When the decision is conditional� the new state of the derived relation can be

computed using the de�nition and the current instance of the derived relation� and the information contained

in the update operation� for the current database instance but not necessarily for other instances� In this

chapter we concentrate only on the study of unconditionally autonomously computable updates� hence� we

will often omit the word 
unconditionally�� For results on conditionally autonomously computable updates

the reader is referred to �Bla����

De�nition 
�� Consider a derived relation de�nition E and an update operation U � both de�ned over the

database scheme D� Let d denote an instance of D before applying U and d� the corresponding instance

after applying U �

The e�ect of the operation U on E is said to be unconditionally autonomously computable if there exists a

function FU �E such that v�E� d�� 	 FU �E�v�E� d�� for every database instance d� �

The important aspect of this de�nition is the requirement that FU �E be a function of the instance v�E� d��

In other words� if d� and d� are database instances where v�E� d�� 	 v�E� d�� then it must follow that

FU �E�v�E� d��� 	 FU �E�v�E� d���� The following simple but important lemma will be used in several proofs

in this section�

Lemma 
�� Consider a derived relation de�nition E and an update operation U � both de�ned over the

database scheme D� Let d� and d� be database instances and d�� and d��� respectively� be the corresponding

instances after applying U � If v�E� d�� 	 v�E� d�� and v�E� d��� �	 v�E� d��� then U is not autonomously

computable on E�

Proof� Assume that there exists a function FU �E � as in De�nition ���� such that v�E� d�� 	 FU �E�v�E� d�� for

every database instance d� Now consider the instances d� and d�� It follows that FU �E�v�E� d��� 	 v�E� d���

and FU �E�v�E� d��� 	 v�E� d���� Since FU �E is a function and v�E� d�� 	 v�E� d��� it follows �from the

de�nition of a function� that FU �E�v�E� d��� 	 FU �E�v�E� d���� that is� v�E� d
�
�� 	 v�E� d���� This contradicts

the conditions given and proves the lemma� �

�
� Basic concepts

The concepts covered by the following de�nitions are required in the rest of this section� They were originally

introduced by Larson and Yang �LY����

De�nition 
�� Let C� and C� be Boolean expressions over the variables x�� x�� � � � � xn� The variables

x�� x�� � � � � xk� k � n� are said to be computationally nonessential in C� with respect to C� if

�x�� � � � � xk� xk��� � � � � xn� x
�
�� � � � � x

�
k

�C��x�� � � � � xk� xk��� � � � � xn� � C��x
�
�� � � � � x

�
k� xk��� � � � � xn�

� �C��x�� � � � � xk� xk��� � � � � xn�� C��x
�
�� � � � � x

�
k� xk��� � � � � xn����
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Otherwise� x�� x�� � � � � xk are computationally essential in C� with respect to C�� �

The idea behind this de�nition is that if a set of variables x�� x�� � � � � xk are computationally nonessential in

C� with respect to C�� then given any tuple de�ned over the variables x�� x�� � � � � xn satisfying the condition

C�� where the variables x�� x�� � � � � xk have been projected out� we can still correctly evaluate whether the

tuple satis�es the condition C� without knowing the exact values for the missing variables x�� x�� � � � � xk� This

is done by assigning surrogate values to the variables x�� x�� � � � � xk as explained by Larson and Yang �LY����

Example 
�� Let C� � �H � �� and C� � �H � ���I 	 ���J � ���� It is easy to see that if we are given a

tuple hi� ji for which it is known that the full tuple hh� i� ji satis�es C�� then we can correctly evaluate C��

If hh� i� ji satis�es C� then the value h must be greater than �� and consequently it also satis�es �H � ���

Hence� we can correctly evaluate C� for the tuple hi� ji by assigning to H any �surrogate� value greater than

�� �

Here is a brief description of the procedure for determining surrogate values� Consider a derived relation

de�ned by E 	 �A�R�C��� and suppose that we want to �nd which tuples in v�E� d� satisfy some condition C��

For example� C� may be the selection condition of a DELETE operation� Since every tuple in the derived

relation satis�es C� we are interested in the case where all variables in the set S 	 ���C�� � ��C��� � A

are computationally nonessential in C� with respect to C�� Let S 	 fx�� x�� � � � � xkg and ��C�� � ��C�� 	

fx�� x�� � � � � xng� n  k� For each t � v�E� d� surrogate values for x�� x�� � � � � xk can be computed by invoking

an appropriate satis�ability testing algorithm with input C��t�� For each tuple t the algorithm returns a

set of values x��� x
�
�� � � � � x

�
n where x�i 	 t�xi�� for k * � � i � n� The values x��� x

�
�� � � � � x

�
k are the required

surrogate values needed to evaluate C� on tuple t� We are guaranteed that surrogate values for the variables

x�� � � � � xk exist� since t � v�E� d� implies that C��t� is satis�able�

De�nition 
�	 Let C be a Boolean expression over variables x�� x�� � � � � xn� y�� y�� � � � � ym� The variable yi�

� � i � m� is said to be uniquely determined by x�� x�� � � � � xn and C if

�x�� � � � � xn� y�� � � � � ym� y
�
�� � � � � y

�
m

�C�x�� � � � � xn� y�� � � � � ym� � C�x�� � � � � xn� y
�
�� � � � � y

�
m� � �yi 	 y�i���

�

If a variable yi �or a subset of the variables y�� y�� � � � � ym� is uniquely determined by a condition C and the

variables x�� � � � � xn� then given any tuple t 	 �x�� � � � � xn�� such that the full tuple �x�� � � � � xn� y�� � � � � ym�

is known to satisfy C� the missing value of the variable yi can be correctly reconstructed� A procedure for

computing uniquely determined values can be found in �LY��� and in more detail in �Tra���� It is similar

to the way surrogate values are derived for computationally nonessential variables� If the variable yi is not

uniquely determined� then we cannot guarantee that its value is reconstructible for every tuple� However� it

may still be reconstructible for some tuples�

Example 
�� Let C � �I 	 H��H � ���K 	 ��� It is easy to prove that I and K are uniquely determined

by H and the condition C� Suppose that we are given a tuple that satis�es C but only the value of H is
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known� Assume that H 	 ��� Then we can immediately determine that the values of I and K must be ��

and �� respectively� �

De�nition 
�
 Let E 	 �A�R� C� be a derived relation and let AE be the set of all attributes in ��R�

that are uniquely determined by the attributes in A and the condition C� Then A� 	 A �AE is called the

extended attribute set of E� �

Larson and Yang �LY��� proved thatA� is the maximal set of attributes for which values can be reconstructed

for every tuple of E� A� can easily be computed by testing� one by one� which of the attributes in ��C��A

are uniquely determined by C and the attributes in A� An attribute not mentioned in C cannot be uniquely

determined and� thus� cannot be in AE �

�
� Insertions

It should be stressed that if the update U on a derived relation de�ned by E is autonomously computable�

then the update can be performed for every derived relation instance v�E� d�� This characterization is

important primarily because of the potential cost savings realized by updating the derived relation using

only the information in its current instance�

Consider an operation INSERT �Ru� T � where T is a set of tuples to be inserted into ru� Let a derived

relation be de�ned by E 	 �A�R� C��Ru � R� The e�ect of the INSERT operation� on the derived relation

is autonomously computable if

A� for each tuple t � T we can correctly decide whether t will �regardless of the database instance� satisfy

the selection condition C and hence should be inserted into the derived relation� and

B� the values for all attributes visible in the derived relation can be obtained from t only�

Theorem 
�� Consider a derived relation de�ned by E 	 �A�R� C�	 R 	 fR�� � � � �Rmg	 and the update

INSERT�Ru� ftg� where E and the update operation satisfy Property �� The e�ect of the insert operation on

the derived relation E is autonomously computable if and only if R 	 fRug�

Proof� �Su�ciency� If R 	 fRug� then all attributes required to compute the selection condition C as

well as all the visible attributes A are contained in the new tuple t� Hence� the function FU �E required by

De�nition ��� trivially exists and we conclude that the e�ect of the insertion is autonomously computable�

�Necessity� If R includes other base relation schemes in addition to Ru� then the insertion of tuple t into ru
may a�ect the derived relation de�ned by E� Whether it does depends on the existence of tuples in relations

whose schemes are in R� fRug� We can easily construct database instances where it is necessary to access

the database to verify the existence of such tuples� even for the case when ��C� � ��Ru� and A � ��Ru��

�Recall that if Ru �� R	 then the update cannot have any e�ect on the derived relation�
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A database instance d� 	 fr�� r�� � � � � rmg is constructed as follows� Each relation ri� � � i � m� i �� fu� jg�

contains a single tuple ti� and relations ru and rj are empty� Similarly� construct another instance d� in the

same manner with the one exception that rj now contains a single tuple tj� Clearly v�E� d�� 	 v�E� d�� 	 ��

Now suppose that tuple t is inserted into ru and furthermore� assume that C�t� 	 true� The existence

of such a tuple is guaranteed by the fact that the INSERT is not irrelevant� Even though t satis�es the

selection condition of the derived relation and contains all visible attributes� it will not create an insertion

into the derived relation in instance d� �because relation rj is empty� whereas it will create an insertion in

d�� Therefore� by Lemma ���� the update is not autonomously computable� �

�
� Deletions

To handle deletions autonomously� we must be able to determine� for every tuple in the derived relation�

whether it satis�es the delete condition� This is covered by the following theorem�

Theorem 
�� The e�ect of the operation DELETE�Ru�CD� on the derived relation E 	 �A�R�C�	 where

E and the update operation satisfy Property �	 is autonomously computable if and only if the attributes in

���CD� � ��C���A�

are computationally nonessential in CD with respect to C�

Proof� �Su�ciency� If the attributes in ���CD� � ��C���A� are computationally nonessential in CD with

respect to C� then we can correctly evaluate the condition CD on every tuple in the derived relation v�E� d�

by assigning surrogate values to the attributes in ��CD� � A�� Hence� the function FU �E required by

De�nition ��� exists�

�Necessity� Assume that ���CD����C���A
� contains an attribute x� and assume that x is computationally

essential in CD with respect to C� We can construct two tuples t� and t� over ��R� such that they both

satisfy C� t� satis�es CD but t� does not� and t� and t� agree on all attributes except attribute x� The

existence of two such tuples follows from the fact that the update is not irrelevant and from the de�nition

of computationally nonessential attributes� By projection� we can create two instances of D� d� and d��

from t� and t� respectively� In both instances� each relation contains a single tuple� Both instances will give

the same instance of the derived relation� consisting of a single tuple t��A� 	 t��A�� In one instance� the

tuple should be deleted from the derived relation� in the other one it should not� resulting in two di�erent

�updated� instances� Hence� by Lemma ���� the DELETE is not autonomously computable� �

Example 
�	 Consider two relation schemes R��H�I� and R��J�K�� Let the derived relation and the delete

operation be de�ned as
E 	 �fJ�Kg�fR��R�g� �I 	 J��H � ����

DELETE�R�� �I 	 ����H � ����

For every tuple t in E we have A� 	 fI� J�Kg hence the attributes in ���CD� � ��C�� � A� 	

fH� I� Jg � fI� J�Kg 	 fHg� In order for the e�ect of the deletion to be autonomously computable H
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must be computationally nonessential in CD with respect to C� That is� the following condition must hold

� H�I� J�K�H � ��I 	 J��H � ��� � �I 	 J��H � � ���

� ��I 	 ����H � ���� �I 	 ����H � � ������

The conditions �H � ��� and �H � � ��� will both be true whenever �H � ��� and �H � � ��� are true� For

any choice of values that make the antecedent true� we must have J 	 I� Any value taken on by the variable

I will make the condition I 	 �� either true or false� and hence the consequent will always be satis�ed�

Therefore� the variable H is computationally nonessential in CD with respect to C� This guarantees that for

any tuple in the derived relation we can always correctly evaluate the delete condition by assigning surrogate

values to the variable H� Note that� since I � ��CD� we must reconstruct each tuple�s value for I� This is

possible because I is uniquely determined by C and A�

To further clarify these concepts� consider the following instance of the derived relation E�

v�E� d�  J K

�� ��

�� ��

We now have to determine on a tuple by tuple basis which tuples in the derived relation should be deleted�

Consider tuple t� 	 h��� ��i and the condition C � �I 	 J��H � ���� We substitute for the variables J

and K in C the values �� and ��� respectively� to obtain C�t�� � �I 	 ����H � ���� Any values for H

and I that make C�t�� 	true� are valid �surrogate� values� For I the only value that can be assigned is ��

and for H we can assign� for example� the value ��� We can then evaluate CD using these values� and �nd

that ��� 	 ������ � ��� 	 false� Therefore� tuple t� should not be deleted from v�E� d�� Similarly� for

t� 	 h��� ��i we obtain C�t�� � �I 	 ����H � ���� Values for H and I that make C�t�� 	 true are I 	 ��

and H 	 ��� We then evaluate CD using these values and �nd that ��� 	 ������ � ��� 	 true� Therefore�

tuple t� should be deleted from v�E� d�� �

�
� Modi�cations

Deciding whether modi�cations can be performed autonomously is more complicated than deciding whether

insertions or deletions can� In general� a modify operation may generate insertions into� deletions from� and

modi�cations of existing tuples in the derived relation� In the next three sections we will state necessary

and su�cient conditions for determining when a MODIFY update is autonomously computable� In Sec�

tion ��� we characterize what may happen to tuples which are not in the current instance of a given derived

relation� in Section � to tuples which are in the current instance� These two sections present conditions

which are necessary for a MODIFY to be autonomously computable� in Section � we show that those same

conditions are� collectively� also su�cient� Intuitively� the procedure required to decide whether a MODIFY

is autonomously computable consists of the following steps

A� Prove that every tuple selected for modi�cation which does not satisfy C before modi�cation� will not

satisfy C after modi�cation� This means that no new tuples will be inserted into the derived relation�
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B� Prove that we can correctly select which tuples in the derived relation are to be modi�ed� Call this the

modify set �to be formally de�ned in De�nition �� ��

C� Prove that we can correctly select which tuples in the modify set will not satisfy C after modi�cation and

hence can be deleted from the derived relation�

D� Prove that� for every tuple in the modify set which will not be deleted� we can �autonomously� compute

the new values for all attributes in A�

The subsequent discussion is easier to follow if the reader keeps these steps in mind�

Tuples Outside the Derived Relation

In this section we investigate the possible outcomes for a tuple which is not in the current instance of a

given derived relation� Let the derived relation of interest be de�ned by E 	 �A�R�C� and the update by

U 	 MODIFY�Ru�CM �FM �� We consider the possible outcomes of evaluating the conditions CM � CB�FM�

and C�FM� for a tuple t� de�ned over set ��R�� The outcomes are given in Table �� for completeness we

include C�t� even though it is never satis�ed� Recall the assumption that a tuple must satisfy both CM and

CB�FM� in order to be modi�ed� Let us consider each line of the table� If CM �t� � CB�FM��t� is false then�

C�t� CM �t� � CB�FM��t� C�FM ��t� Comments

false false false No change

false false true No change

false true false No change

false true true Insert t

Table � Possible results for tuples not in v�E� d��

t is not modi�ed and obviously cannot cause any change in the instance of E� Note that� in this case� the

value of C�FM� is immaterial� This explains the �rst and second lines� If CM �t� � CB�FM ��t� is true then�

since C�t� is false� whether t requires a change in the instance of E depends on whether C�FM ��t� is satis�ed�

That is� on whether t satis�es C after it is modi�ed� Intuitively� if a new tuple should enter v�E� d� we may

not be able to determine the appropriate values for that tuple from v�E� d�� That is� we may need to obtain

values from elsewhere in the database� Hence� to guarantee that U is autonomously computable we must

guarantee that no tuples will be inserted into v�E� d�� This is the intention of the following property and

subsequent theorem�

Property � Given the update operation MODIFY�Ru�CM �FM� and the derived relation de�ned by E 	

�A�R� C�� Ru � R� the following implication is valid�

� ��C � CM � CB�FM �� �C�FM ���
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Example 
�
 Suppose a database consists of the relation scheme R�H� I� where H and I each have the

domain ��� ���� Let the derived relation and modify operation be de�ned as

E 	 �fH�Ig� fRg� �H 	 ����I � ����

MODIFY�R� �I � ���� f�H 	 H�� �I 	 I * ��g��

The condition stated in Property � is then

� H� I

����H 	 ����I � ����� � �I � ���

��H  ���H � ����I * �  ���I * � � ���

� ���H 	 ����I * � � ����

which can be written as
� H� I

��H �	 ��� � �I  ���� � �I � ��� � �H  ���H � ����I  ����I � ���

� ��H �	 ��� � �I  ����

The �rst two atomic conditions in the antecedent are su�cient to guarantee that the consequent will evaluate

to true� Hence� the property is satis�ed for this update and derived relation and we are guaranteed that a

tuple outside E will not enter E due to this update� To see why� consider the condition �H 	 ����I � ���

used to select tuples for the derived relation� A tuple which does not satisfy H 	 �� before U is applied will

still not satisfy it after� since the value of H is not modi�ed by U � Similarly� since U increases the value of

I� a tuple which does not satisfy I � �� originally will not satisfy it after modi�cation� �

Theorem 
�	 If the operation MODIFY�Ru�CM �FM� is autonomously computable with respect to the de�

rived relation de�ned by E 	 �A�R�C�	 where E and the update operation satisfy Property �	 then Property �

must be satis�ed�

Proof� Assume that Property � is not valid� Therefore� there exists a tuple s over ��R� such that �C�s��

CM �s� � CB�FM��s� � C�FM ��s� is true� By projection we can create a database instance� d�� from tuple s�

Thus� initially each relation instance contains a single tuple and since �C�s� is true we know that v�E� d��

is empty� Applying the modify operation to d� then gives an instance d�� where the tuple in relation ru has

been modi�ed� since CM �s� � CB�FM��s� is true� However� v�E� d��� will contain one tuple since C�FM ��s�

is true� We construct a second database instance d� from d� where all relation instances are the same�

except instance ru which is empty� Now� v�E� d�� is empty and v�E� d��� is empty� Hence� by Lemma ��� the

MODIFY cannot be autonomously computable� �

Tuples Inside the Derived Relation

In this section we investigate the possible outcomes� under a MODIFY operation� for a tuple which is in

the current instance of a given derived relation� We again consider the possible outcomes of evaluating the

conditions CM � CB�FM� and C�FM � for tuple t� de�ned over ��R�� for completeness we include C�t� in

Table �� Again we consider each line of the table� If CM �t� � CB�FM��t� is false then t is not modi�ed and
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C�t� CM �t�� CB�FM��t� C�FM ��t� Comments

true false false No change

true false true No change

true true false Delete t

true true true Modify t

Table � Possible results for tuples in v�E�d��

obviously cannot cause any change in the instance of E� This situation is depicted by the �rst two lines of

the table� Note that� in this case� the value of C�FM � is immaterial� Since t is already visible in v�E� d�

we need to be able to identify it as a tuple which will be una�ected by the update� Hence� it appears that

we only need to distinguish� within v�E� d�� those tuples which are characterized by line one or two� and

those characterized by line three or four� That is� it seems we need to evaluate CM � CB�FM � for each tuple

in v�E� d�� This requires that all the attributes in ���C� � ��CM� � ��CB�FM����A� be computationally

nonessential in CM � CB�FM � with respect to C� However� as the following example illustrates� this is a

slightly stronger condition than is necessary�

Example 
�� Suppose a database consists of the relation scheme R�H� I� J� where H� I� and J each have

the domain ��� ���� Let the derived relation and modify operation be de�ned as

E 	 �fHg� fRg� ��H 	 I��H � ����J � ���� � �H � ����

MODIFY�R� �I � ���� f�H 	 H�� �I 	 I�� �J 	 J * ��g��

Therefore� the set ���C� ���CM� ���CB�FM����A� is fI� Jg� The test to determine if fI� Jg is computa�

tionally nonessential in CM � CB�FM� with respect to C is

� H� I�J� I �� J �

����H 	 I��H � ����J � ���� � �H � ����

����H 	 I ���H � ����J � � ���� � �H � �����

� ���I � ��� � �H  ���H � ����I  ���I � ����J * �  ���J * � � ����

� ��I � � ��� � �H  ���H � ����I �  ���I � � ���

�J � * �  ���J � * � � ������

The assignment H 	 ��� I 	 ��� I � 	 ��� and J 	 J � 	 � satis�es the antecedent but not the consequent

of this implication� Therefore� the implications in not valid and we conclude that fI� Jg is computationally

essential in CM � CB�FM� with respect to C�

Consider a particular tuple s over ��R� where s�H� 	 t for some t in E� Since H � A then we know the

value of s�H�� If s�H� � �� then we know that s�I� 	 s�H� and s�J � � �� and therefore we can evaluate

CM � CB�FM� for tuple s and hence for t� The reason I is computationally essential in CM is because for

s�H� � �� we do not know the value of s�I� and hence cannot evaluate CM � However� consider what would

happen even if s were modi�ed� say to s�� The value of J would change� that is s�J � �	 s��J �� but this value
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is neither visible in E nor used in the term �H � ���� As this term would still be satis�ed then s� would

remain in the new instance of E and s�H� 	 s��H� 	 t� In other words� for tuples which satisfy �H � ���� it

does not matter whether or not they are modi�ed� in either case they will remain in the instance with no

visible changes� Hence� the fact that we cannot evaluate CM for these tuples does not impair our ability to

determine the new instance from the current one� �

In terms of Table � the tuples which create this situation are some of those characterized by the fourth line�

Simply because t is chosen for modi�cation does not mean it will be visibly changed� In other words� if we

can prove that even if t is modi�ed it will remain in v�E� d�� with all the same attribute values as it had

in v�E� d� then it does not matter whether CM �t� � CB�FM ��t� is satis�ed� Hence� we only need to evaluate

CM � CB�FM � for those tuples which may be visibly modi�ed� Property � and the theorem which follows it

are intended to provide a procedure which will enable us to do this�

Property 	 Given the update operation MODIFY�Ru�CM �FM� and the derived relation de�ned by E 	

�A�R� C�� Ru � R� the following condition holds

� t�� t�

���C�t�� � CM �t�� � CB�FM��t���

� �C�FM ��t�� � �
�

Ai����Ru�A

�Ai 	 	�fAi���t�����

���C�t�� � C�t���� ��CM �t�� � CB�FM��t���� �CM �t�� � CB�FM ��t�������

for t�� t� over ��R� and t��A�� 	 t��A���

Theorem 
�
 If the operation MODIFY�Ru�CM �FM� is autonomously computable with respect to the de�

rived relation de�ned by E 	 �A�R�C�	 where E and the update operation satisfy Property �	 then Property 


must be satis�ed�

Proof� Assume that neither term of the condition in Property � is satis�ed� This means that for some tuple

s� we cannot guarantee that if s� is in E and is modi�ed then it will have no visible changes nor can we

guarantee that s��A
�� will contain all the attribute values required to evaluate CM � CB�FM �� Hence� there

exist two tuples s� and s� over the attributes in ��R� such that they both satisfy C� s� satis�es CM �CB�FM�

but s� does not� s� satis�es �C�FM� or ��
V
Ai����Ru�A�Ai 	 	�fAi���� and s� and s� agree on all attributes

in A�� By projection we can create two database instances d� and d�� from s� and s� respectively� where

each relation contains a single tuple� Both instances will give the same instance of the derived relation�

consisting of the single tuple s��A� 	 s��A�� In d� the tuple in the derived relation will be modi�ed� Hence�

the tuple s��A� will either be deleted or a change will be made to some visible attribute� depending on

whether s� satis�es �C�FM� or ��
V
Ai����Ru�A

�Ai 	 	�fAi���� In either case v�E� d�� �	 v�E� d���� On

the other hand� in the instance obtained from s� the tuple in the derived relation will not be modi�ed� so

v�E� d�� 	 v�E� d���� Therefore� by Lemma ���� U is not autonomously computable� �

Returning to Table �� the previous property and theorem give us a necessary condition for determining which

tuples in v�E� d� are placed in the modify set and which are not� That is� for distinguishing tuples which will



Updating Derived Relations ���

not be visibly changed� and hence remain in v�E� d��� from those that should be placed in the modify set�

The next property and theorem give a necessary condition for distinguishing between those tuples in the

modify set which satisfy line three and those which satisfy line four� That is� we need to determine which

tuples will not still satisfy the selection condition of the derived relation after modi�cation and should be

deleted�

Property 
 Given the update operation MODIFY�Ru�CM �FM� and the derived relation de�ned by E 	

�A�R� C�� Ru � R� the attributes in the set� ���C� � ��CM � � ��CB�FM��� � A� are computationally

nonessential in C�FM� with respect to the condition C � CM � CB�FM �� ���C�FM �� �
V
Ai����Ru�A

�Ai 	

	�fAi������

Before we state the corresponding theorem we give a lemma that will simplify the proof of the theorem�

Lemma 
�� Consider an update operation MODIFY�Ru�CM �FM� and a derived relation de�ned by E 	

�A�R� C� where Ru � R� Given two tuples� t� and t�� over ��C� � ��CM � � ��CB�FM�� then there are only

four assignments of truth values to the expressions in

� � �C�FM��t�� � �
�

Ai����Ru�A

�Ai 	 	�fAi���t�����

� ���C�FM��t�� � �
�

Ai����Ru�A

�Ai 	 	�fAi���t�����

� ���C�FM��t��� C�FM��t���� �����

which will make this statement evaluate to true�

Proof� There are four component expressions in Expression ���� each representing a column of Ta�

ble �� Since each may take a truth value from the set ftrue� falseg this yields sixteen possible as�

signments� Since ���C�FM ��t�� � C�FM ��t���� must be true then the values given to C�FM ��t�� and

C�FM ��t�� must be di�erent� This eliminates eight of the sixteen assignments� Also� both factors of

the conjunction in ���C�FM ��t�� � �
V
Ai����Ru�A�Ai 	 	�fAi���t����� cannot be true if this condition

is to be satis�ed� this eliminates two more of the remaining eight assignments� Similarly� the condition

���C�FM��t�� � �
V
Ai����Ru�A

�Ai 	 	�fAi���t����� eliminates a further two assignments� Hence� the only

assignments that will satisfy Expression ��� are the four given in Table �� �

Theorem 
�� If the operation MODIFY�Ru�CM �FM� is autonomously computable with respect to the de�

rived relation de�ned by E 	 �A�R�C�	 where E and the update operation satisfy Properties � and 
	 then

Property � must be satis�ed�

Proof� Assume that the update is autonomously computable� that Property � is satis�ed but that Property �

is not� This means that ���C�� ��CM� � ��CB�FM����A� contains an attribute x that is computationally

essential in C�FM � with respect to the condition C � CM � CB�FM� � ���C�FM� � �
V
Ai����Ru�A

�Ai 	

�We do not need to include the attributes in ��C�FM�� in the set as they are all contained in ��C�	��CB�FM���



��� Chapter ��

C�FM ��t�� �
V
Ai����Ru�A

C�FM ��t�� �
V
Ai����Ru�A

�Ai 	 	�fAi����t�� �Ai 	 	�fAi����t��

true false false false

true false false true

false false true false

false true true false

Table � Assignments which satisfy Expression ���

	�fAi������ We construct two tuples t� and t� over the attributes in A� ���C� ���CM� ���CB�FM ��� This

is done in such a way that t��x� �	 t��x� but they agree on the values of all other attributes� We require both

t� and t� to satisfy the conditions C�CM �CB�FM�� and ���C�FM� � �
V
Ai����Ru�A

�Ai 	 	�fAi������ Since

we wish x to be computationally essential we would also like ���C�FM��t�� � C�FM��t���� to be satis�ed�

Therefore� by Lemma ��� there are four possible assignments to consider� Due to the symmetry of the truth

values in these four assignments �see Table �� we can� without loss of generality� require that t� satisfy

C�FM �� and t� not satisfy C�FM �� Thus �
V
Ai����Ru�A

�Ai 	 	�fAi����t�� may be either true or false� it

will not a�ect the rest of the proof� The fact that x is computationally essential in C�FM � with respect to

the condition C � CM � CB�FM�� ���C�FM �� �
V
Ai����Ru�A�Ai 	 	�fAi����� guarantees that such values

exist� We can now extend t� and t� to obtain two di�erent database instances where each relation contains

only one tuple� In both cases the derived relation contains the same tuple and the tuple is selected for

modi�cation� In one case �for the instance obtained from t�� the single tuple in the derived relation will be

deleted after the modi�cation� while in the other case it will not� Hence� by Lemma ���� the update U is not

autonomously computable� �

The only tuples still of interest are those that satisfy the conditions characterized by line four of Table � and

are in the modify set� These tuples are visibly modi�ed and remain in the updated instance so we need to

be able to determine the updated values of all visible attributes� The next property and theorem establish

the necessary conditions under which the modi�ed values for the attributes in A can be correctly computed�

But� before we state them we need a new de�nition which extends the concept of uniquely determined to

apply to functions�

De�nition 
�� Consider a set of variables fx�� � � � � xj� xj��� � � � � xkg� Let C be a Boolean expression over

some of the variables in this set� that is� ��C� � fx�� � � � � xkg� As well� let f represent a function over

variables in the set fx�� � � � � xkg� The value of the function f is said to be uniquely determined by condition

C and the set of variables fx�� � � � � xjg if

�x�� � � � � xj� xj��� � � � � xk� x
�
j��� � � � � x

�
k

�C�x�� � � � � xj� xj��� � � � � xk� � C�x�� � � � � xj� x
�
j��� � � � � x

�
k�

� �f�x�� � � � � xj� xj��� � � � � xk� 	 f�x�� � � � � xj� x
�
j��� � � � � x

�
k����

�
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Example 
� Let C � �H 	 ���I 	 ��� J� and f�I�J� 	 �I* J�� For any values of I and J that satisfy C

we are guaranteed that the value of I *J � and hence f � is ��� In other words the condition of De�nition ���

becomes
� H�I� J� I �� J �

��H 	 ���I 	 ��� J� � �H 	 ���I � 	 �� � J ��

� ��I * J� 	 �I � * J �����

As this is a valid implication we conclude that f is uniquely determined by C� Note� that we can state this

in spite of the fact that we do not know the value of either I or J � �

Property � Given the update operation MODIFY�Ru�CM �FM� and the derived relation de�ned by E 	

�A�R� C�� Ru � R� the value of the function 	�fAi� is uniquely determined by the condition C � CM �

CB�FM��C�FM �� ���
V
Ai����Ru�A�Ai 	 	�fAi���� and the attributes in A�� for each Ai � ���Ru�	A��

Theorem 
� If the operation MODIFY�Ru� CM �FM� is autonomously computable with respect to the de�

rived relation de�ned by E 	 �A�R�C�	 where E and the update operation satisfy Properties �	 
	 and �	

then Property � must be satis�ed�

Proof� Assume that U is autonomously computable� that A 	 ��Ru� contains a single attribute Aj

with a non�trivial fAj � and that 	�fAj � is not uniquely determined by the condition C � CM � CB�FM� �

C�FM � � ���
V
Ai����Ru�A

�Ai 	 	�fAi���� and the attributes in A�� We can then construct two tuples

t� and t� over the attributes in ��Ru� � ��C� such that t� and t� both satisfy C�CM �CB�FM��C�FM �� and

���
V
Ai����Ru�A�Ai 	 	�fAi����� We also require that t� and t� agree on the values of all attributes in A�

but have some values that make �	�fAj ���t�� �	 �	�fAj ���t��� That such a set of values exists is guaranteed

by the fact that Property � is not satis�ed� To �nd such values one can use the set of values returned by

an appropriate satis�ability algorithm used to test the validity of the implication in De�nition ���� Since

	�fAj � is not uniquely determined then the implication is false when tested for this function� Therefore� the

set of values returned by the algorithm will satisfy the antecedent but not the consequent� This is exactly

what is required of the values in the tuples t� and t��

Each of t� and t� can now be extended into an instance ofD� where each relation contains a single tuple� Both

instances will give the same instance of the derived relation� consisting of a single tuple t��A� 	 t��A�� In both

instances the tuple in the derived relation will be modi�ed� as both tuples satisfy ���
V
Ai����Ru�A�Ai 	

	�fAi���� the modi�cations will be visible in both cases� However� the value of the modi�ed attribute� Aj�

will be di�erent depending on whether we use t� or t�� Hence� by Lemma ���� U is not autonomously

computable� �

Updating the Instance

In the previous two sections we gave a number of necessary conditions for an update to be autonomously

computable� We will now prove that taken together those conditions are su�cient to guarantee that the

update is autonomously computable� However� we �rst present some notation and then a lemma that will

aid in the part of the proof of su�ciency which deals with Property ��
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Recall that the �rst part of the condition in Property � is of the form

�C � CM � CB�FM��� �C�FM� � �
�

Ai����Ru�A

�Ai 	 	�fAi�����

Let Cms represent the negation of this expression� that is�

Cms � C � CM � CB�FM � � ���C�FM� � �
�

Ai����Ru�A

�Ai 	 	�fAi������

We will use the condition Cms to determine whether a tuple should be placed in the modify set�

First� we give a formal de�nition of the modify set then we state and prove a lemma which justi�es our use

of condition Cms�

De�nition 
� Let d be an instance of the database D� U 	 MODIFY�Ru�CM �FM� be an update oper�

ation� and E 	 �A�R�C� be a derived relation de�nition� Those tuples� t� in v�E� d� for which Cms�t� is

satis�able form the modify set� �

Lemma 
�	 Consider a modify operation U 	 MODIFY�Ru�CM �FM �� and a derived relation E 	

�A�R� C� where U and E satisfy Properties � and �� Let t be a tuple in the current instance of E� Tuple t

is guaranteed to be una�ected by update U if and only if Cms�t� is unsatis�able�

Proof� Note that� in order for a tuple to be una�ected by a MODIFY operation it must be neither deleted

nor visibly changed by the operation�

�Su�ciency� Assume that Cms�t� is unsatis�able� Hence� for every tuple s over ��R� such that s�A� 	 t

we have Cms�s� 	 false� This means that at least one of the conjuncts is false when evaluated on s� If C�s�

is false then t is not in the current instance of E� a contradiction� If CM �s� � CB�FM��s� is false then t is

not chosen for modi�cation� Finally� if ���C�FM��s�� �
V
Ai����Ru�A�Ai 	 	�fAi���s���� is false then both

C�FM ��s� and �
V
Ai����Ru�A

�Ai 	 	�fAi���s�� must be true� In this case� t is guaranteed to be in the new

instance of E and also to not have any visible modi�cations� Therefore� in each of these three possibilities

we conclude that t should be placed in the new instance of E without any modi�cations�

�Necessity� Assume that t is not deleted or visibly modi�ed but that Cms�t� is satis�able� For this to be the

case each of the expressions used to form Cms must be satis�able� Hence� there exists a tuple s over ��R� such

that s�A� 	 t and s satis�es each expression in Cms� Since C�s��CM �s��CB�FM��s� is satis�ed then t is in the

current instance of E and is chosen for modi�cation� In addition� since ���C�FM ��s�� �
V
Ai����Ru�A

�Ai 	

	�fAi���s���� is satis�ed then at least one of C�FM��s� or �
V
Ai����Ru�A�Ai 	 	�fAi���s�� is false� Hence�

either t will be deleted from the instance after it is modi�ed or it will appear in the new instance but

with visible modi�cations� In either case we reach a contradiction� Hence� it is necessary that Cms�t� be

unsatis�able� �

Theorem 
�� Consider a modify operation U 	 MODIFY�Ru�CM �FM� and a derived relation E 	

�A�R� C� where U and E satisfy Property �� If Properties �	 
	 �	 and � are satis�ed then the e�ect of

U is autonomously computable on E�
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Proof� We prove the su�ciency of Properties �� �� �� and � by demonstrating how v�E� d�� can be determined

from U and v�E� d��

Assume that Property � is satis�ed� Consider a tuple t in the Cartesian product of the relations in the base

R� and assume that t is selected for modi�cation� Let t� denote the corresponding tuple after modi�cation�

Assume that t does not satisfy C and hence will not have created any tuple in the derived relation� Because

Property � is satis�ed for every tuple� it must also hold for t and hence t� cannot satisfy C� Consequently�

modifying t to t� does not cause any new tuple to appear in the derived relation� Therefore� the only tuples

in v�E� d�� are those whose unmodi�ed versions are in v�E� d�� In other words� we are assured that v�E� d�

contains all the tuples needed to compute v�E� d���

Now consider Property �� If t is a tuple in v�E� d� then� by Lemma ���� testing Cms�t� will determine whether

t should be placed in the modify set� Since this is true for each t in v�E� d�� we can decide� for each tuple

whether it is in the modify set�

For Property �� if every attribute x � ���C����CM����CB�FM����A� is computationally nonessential in

C�FM � with respect to C � CM � CB�FM � � ���C�FM� � �
V
Ai����Ru�A

�Ai 	 	�fAi����� we can correctly

evaluate the condition C�FM� on every tuple of the modify set by assigning surrogate values to the attributes

in ��C�FM ���A�� This means that� for those tuples in the modify set we can determine which tuples will

remain in the new instance of v�E� d� and which must be deleted�

Finally� assume that Property � is satis�ed� Hence� for each t� in v�E� d� which is visibly modi�ed and will

remain in the new instance� and for each Ai � A 	 ��Ru�� the value of the expression 	�fAi� is uniquely

determined by the condition C�CM�CB�FM��C�FM�����
V
Ai����Ru�A�Ai 	 	�fAi���� and the attributes

in A�� As 	�fAi� gives the new value for attribute Ai� this means that the given condition and the visible

attributes contain su�cient information to determine the updated values of Ai� We have assumed this for

each Ai � A 	 ��Ru�� therefore� the value of every modi�ed attribute in A is autonomously computable�

Hence� for every tuple in v�E� d� which is visibly modi�ed and remains in the updated instance we can

calculate the new values of all visible attributes�

The entries in Tables � and � completely characterize all the possible cases for a tuple t� To distinguish

between these cases we have de�ned four properties� We have shown that these four properties are su�cient

to allow us to compute the updated instance from v�E� d�� the de�nition E� and U � The procedure described

above de�nes the function FU �E � Hence� the MODIFY is autonomously computable on E� �

We give an example which proceeds through the four steps associated with Theorems ��� through ���� at

each step testing the appropriate condition�

Example 
�� Suppose a database consists of the two relation schemes R��H� I� and R��J�K�L� where

H� I�J�K and L each have the domain ��� ���� Let the derived relation and modify operation be de�ned as

E 	 �fI�Jg� fR��R�g� �H � ����I 	 K��L 	 ����

MODIFY�R�� �K � ���K � ���� f�J 	 L* ��� �K 	 K�� �L 	 L�g�
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and note that Property � is satis�ed since the value of J � which is visible in E� may be modi�ed� ,From the

de�nition of the derived relation we can see that A 	 fI� Jg and A� 	 fI� J�K�Lg�

Test of Property �

� H� I�K�L �����H � ����I 	 K��L 	 ����� � �K � ���K � ���

� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� ����H � ����I 	 K��L 	 ������

Note that� the consequent ���H � ����I 	 K��L 	 ���� appears as a condition in the antecedent as well�

Therefore� the given implication is valid� and we can conclude that the modify operation will not introduce

new tuples into v�E� d��

Test of Property �

� hH�I� J�K�Li� hH �� I� J�K�Li

���H � ����I 	 K��L 	 ��� � �K � ���K � ���

��L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� ����H � ����I 	 K��L 	 ��� � �J 	 L* �����

�

��H � ����I 	 K��L 	 ��� � �H � � ����I 	 K��L 	 ���

� ��K � ���K � ��� � �L* �  ���L* � � ����K  ���K � ���

�L  ���L � ���

� �K � ���K � ��� � �L* �  ���L* � � ����K  ���K � ���

�L  ���L � ������

Consider the implication which is after the disjunction� comprising the last three lines� The right�hand�side

of this implication contains an equivalence� Since the two conditions in the equivalence are identical� then

clearly� the implication is valid� Thus we can correctly select the tuples in the derived relation that satisfy

CM � CB�FM � and will be visibly modi�ed�

Test of Property �

We are now interested in the set� ���C� � ��CM � � ��CB�FM����A� 	 fH� I�K�Lg � fI� J�K�Lg

	 fHg�

� H� I� J�K�L�H � ��H � ����I 	 K��L	 ��� � �K � ���K � ���

� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� �����H � ����I 	 K��L 	 ��� � �J 	 L * ����

� �H � � ����I 	 K��L	 ��� � �K � ���K � ���

� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� �����H � � ����I 	 K��L 	 ��� � �J 	 L* ����

� ��H � ����I 	 K��L 	 ���� �H � � ����I 	 K��L 	 �����

The conditions �H � ��� and �H � � ��� in the antecedent guarantee that the expressions in the consequent

will be equivalent� Therefore� H is computationally nonessential in C�FM � with respect to C�CM�CB�FM ��

���C�FM���
V
Ai����Ru�A�Ai 	 	�fAi������ Thus� determining the tuples� in the modify set of the current

instance� which satisfy C�FM � can be computed autonomously�
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Test of Property �

� H� I�K�L�H � ��H � ����I 	 K��L 	 ��� � �K � ���K � ���

� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� �H � ����I 	 K��L 	 ��� � ���J 	 L* ���

� �H � � ����I 	 K��L	 ��� � �K � ���K � ���

� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� �H � � ����I 	 K��L	 ��� � ���J 	 L* ���

� ��L* �� 	 �L* ����

By considering the right�hand�side of this implication we see that it is obviously valid� Hence� the above

condition veri�es that the expression fJ is uniquely determined by the condition C�CM �CB�FM ��C�FM��

���
V
Ai����Ru�A

�Ai 	 	�fAi���� and the variables A�� Therefore� the new attribute values for the visibly

modi�ed tuples that will remain in v�E� d� are autonomously computable�

To summarize� let us consider a numeric example for the given database scheme�

Before

r� H I r� J K L v�E� d� I J

� � �� � �� � ��

� �� �� �� �� �� � 

� �� � �� ��

� �� �� �� ��

After

r� H I r� J K L v�E� d�� I J

� � �� � �� � ��

� �� �� �� �� �� ��

� �� �� �� ��

� �� �� �� ��

Note that the second and fourth tuples do not get modi�ed as they do not satisfy CB�FM�� Property �

provides assurance that the tuples in the Cartesian product of r� and r�� which do not satisfy C before

modi�cation� will not satisfy C after� For example� consider the last tuple in each of r� and r�� In the

Cartesian product these will form h�� ��� ��� ��� ��i� Although this does satisfy �I 	 K� it does not satisfy

�L 	 ��� and hence will not be in the current instance� Moreover� even though this tuple is modi�ed to

become h�� ��� ��� ��� ��i it still does not satisfy �L 	 ��� and� hence� remains outside the updated derived

relation instance�

Property � guarantees that we can determine which tuples in v�E� d� belong in the modify set� For each

tuple in v�E� d� we need to test the satis�ability of

Cms � C � CM � CB�FM � � ���C�FM� � �
�

Ai����Ru�A

�Ai 	 	�fAi������

For this example we have

Cms � ��H � ����I 	 K��L 	 ��� � �K � ���K � ���
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� �L* �  ���L* � � ����K  ���K � ����L  ���L � ���

� ����H � ����I 	 K��L 	 ��� � �J 	 L * ������

The �rst tuple in v�E� d� gives us hh� �� ��� k� li to test� Since� Cms�hh��� ��� k� li� is not satis�able we conclude

that h�� ��i will not be visibly modi�ed and can be placed in the new instance� The second tuple to test

from v�E� d� is hh� ��� � � k� li� Since� Cms�hh� ��� � � k� li� is satis�able we conclude that h��� � i belongs in

the modify set�

Property � allows us to determine which tuples in the modify set will be deleted since they will no longer

satisfy condition C� The tuple h��� � i satis�es C�FM� and will remain in the updated instance
 �

Property � ensures that we can compute the new values for the modi�ed tuples� Here we need to compute

�L*��� Since C contains the condition �L 	 ��� we know that for any tuple in the modify set �L*�� 	 ���

Therefore� h��� � i should be updated to h��� ��i in the new instance� �

� Discussion

Necessary and su�cient conditions for detecting when an update operation is irrelevant to a derived relation

�or view� or integrity constraint� have not previously been available for any nontrivial class of updates and

derived relations� The concept of autonomously computable updates is new� Limiting the class of derived

relations to those de�ned by PSJ�expressions does not seem to be a severe restriction� at least not as it

applies to structuring the stored database in a relational system� The update operations considered are fairly

general� In particular� this seems to be one of a few works on update processing where modify operations

are considered explicitly and separately from insert and delete operations� Previously� modi�cations have

commonly been treated as a sequence of deletions followed by insertion of the modi�ed tuples�

Testing the conditions given in the theorems above does not require retrieval of any data from the database�

According to our de�nitions� if an update is irrelevant or autonomously computable� then it is so for every

instance of the base relations� The fact that an update is not irrelevant does not necessarily mean that it

a�ects the derived relation� Determining whether it does� requires checking the current instance� The same

applies for autonomously computable updates�

It should be emphasized that the theorems hold for any class of Boolean expressions� However� actual test�

ing of the conditions requires an algorithm for proving the satis�ability of Boolean expressions� Currently�

e�cient algorithms exist only for a restricted class of expressions� the restriction being on the atomic condi�

tions allowed� As mentioned above� we have built a prototype system� which uses the algorithm given in the

Appendix� to test the conditions for irrelevant and autonomously computable updates� The results obtained

from experiments using the prototype are encouraging� It appears that� in practice� the tests for irrelevant

and autonomously computable updates can be computed very e�ciently� Interested readers are referred to

�BCL��� for more details on implementation issues and experimental results�


Since the attributes in C have trivial update functions C�FM� 
 C� Hence	 no tuple will be deleted from the

derived relation�
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An important open problem is to �nd e�cient algorithms for more general types of atomic conditions�

The core of such an algorithm is a procedure for testing whether a set of inequalities'equalities can all be

simultaneously satis�ed� The complexity of such a procedure depends on the type of expressions �functions�

allowed and the domains of the variables� If linear functions with variables ranging over the real numbers

�integers� are allowed� the problem is equivalent to �nding a feasible solution to a linear programming

�integer programming� problem�

We have not imposed any restrictions on valid instances of base relations� for example� functional dependen�

cies or inclusion dependencies� Any combination of attribute values drawn from their respective domains

represents a valid tuple� Any set of valid tuples is a valid instance of a base relation� If relation instances

are further restricted� then the given conditions are still su�cient� but they may not be necessary� Current

work is aimed at extending the theory to incorporate knowledge about keys� functional dependencies� and

referential integrity�

Appendix	 Satis�ability Algorithm

The theorems presented in this chapter require that statements be proven at run�time� that is� when updates

are issued� What is required is that certain types of Boolean expressions be tested for unsatis�ability or

that implications involving Boolean expressions be proven valid� The latter problem can be translated into

one of showing that a Boolean expression is unsatis�able� Hence� in either case we can proceed by testing

satis�ability�

Rosenkrantz and Hunt �RH��� gave an algorithm for testing the satis�ability of conjunctive Boolean ex�

pressions where the atomic conditions come from a restricted class� Their algorithm is based on Floyd�s

all�pairs�shortest�path algorithm �Flo �� and therefore has an O�n�� worst case complexity� where n is the

number of distinct variables in the expression� The algorithm presented here is a modi�cation of that given

by Rosenkrantz and Hunt� there are three main di�erences� First� we assume that each variable has a �nite

domain whereas Rosenkrantz and Hunt allow in�nite domains� Second� if the expression is satis�able our

algorithm not only veri�es the satis�ability but also produces an assignment of values to the variables which

satis�es the expression� Third� although the worst case complexity of our algorithm remains O�n��� for a

large sub�class of expressions the runtime is reduced to O�n���

The algorithm given here tests the satis�ability of a restricted class of Boolean expressions� Each variable

is assumed to take its values from a �nite� ordered set� Since there is an obvious mapping from such sets

to the set of integers� we always assume that the domain consists of a �nite interval of the integers� It

is assumed that each Boolean expression� B� over the variables x�� x�� � � � xn� is in conjunctive form� i�e�

B 	 B� � B� � � � � �Bm� and that each atomic condition� Bi� is of the form �xi � xj * c� or �xi � c� where

� � f	�������g and c is an integer constant� We will outline the algorithm and discuss each step in

more detail�

�Step �� We �rst must normalize B so that the resulting expression� N 	 N� �N� � � � � �NmN � only has

atomic conditions of the form �xi � xj * c�� Conditions of the form �xi � c� are handled by modifying the
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Algorithm Satis�able

Input� A conjunctive Boolean expression B over the variables x�� � � � � xn� The variables� domain bounds

are given by vectors L and U with L�i� � xi � U �i�� � � i � n�

Output� If B is satis�able then the value true is returned and the assignment xi 	 U �i� will satisfy B�

otherwise false is returned�

Begin

�� Normalize B to obtain N � Check the resulting domain bounds� if U �i� � L�i� for some xi then return

false�

�� Initialize A �the adjacency matrix of the directed graph representing N��

�� Reduce A� that is� remove �recursively� rows representing nodes of in�degree zero�

�� Test the trial values against the lower bounds� If U �i� � L�i� for some xi then return false�

�� Test the trial values in N � If they satisfy N return true�

 � Execute Floyd�s Algorithm on A� after each iteration of the outer loop perform the following

�a� If A contains a negative cycle then return false�

�b� Calculate the new trial values�

�c� Test the trial values against the lower bounds� If U �i� � L�i� for some xi then return false�

�d� Test the trial values in N � If they satisfy N return true�

End

domain bounds for the variable xi� If any such modi�cation results in U �i� � L�i�� for any � � i � n� then

B is unsatis�able�

�Step �� We build a weighted� directed graph G 	 �V� E� representing N � Without loss of generality we

assume that N is de�ned over the variables x�� � � � � xnN where nN � n� Each variable in N is represented

by a node in G� For the atomic condition �xi � xj * c� we construct an arc from node 
xj� to node 
xi�

having weight c� Hence� jV j 	 nN and jEj 	 mN � The graph is represented by an nN � nN array A where�

initially� A�i� j� 	 c if and only if N contains an expression of the form �xi � xj * c�� If two nodes do not

have an arc between them the corresponding array entry is labeled with � �i�e� an arbitrarily large positive

value�� If there is more than one arc between a pair of nodes� then use the one with lowest weight�

�Step �� The graph� G� can be reduced in size by removing nodes of in�degree zero� The justi�cation for

doing this is that if xj is such a node then N does not have any conditions of the form �xj � xi* c�� Hence�

the upper limit value of xj is not constrainted by the value assigned to any other variable� Therefore� we

allow xj to be assigned its �possibly modi�ed� upper bound U �j�� Also� for each node xi in G� such that

there is an arc of weight c from xj to xi� we replace the upper bound on xi with minfU �i�� U �j� * cg� We

can then remove node xj and its incident arcs from G� This process may be repeated until no nodes of

in�degree zero remain in G� If G is acyclic �i�e� if B does not contain a cyclic chain of atomic conditions
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involving mutually dependent variables� then this process will terminate when there are no edges left in

G� The resulting trial assignment of values either proves or disproves that B is satis�able �Steps � and ���

As the reduction process requires examining each element of matrix A at most once� the entire Satis�able

algorithm performs O�n�N � operations in this case�

�Step  � If G is not acyclic then A is used as the input to a modi�ed version of Floyd�s algorithm �Flo ��

to determine either that N is unsatis�able or to produce an assignment which satis�es N � The idea is that

we give each remaining variable� xi� an initial trial value equal to its �possibly modi�ed� upper bound U �i��

At each iteration we adjust the values �downward� to re!ect the current values in A and the previous set of

trial values� The iterations continue until we �nd an assignment to the variables which satis�es N or until

we determine that N is unsatis�able� This takes at most nN iterations�

To be more speci�c� given a graph with nodes x�� � � � � xnN � the kth step of Floyd�s algorithm produces the

least weight path between each pair of nodes� with intermediate nodes from the set fx�� x�� � � � � xkg� In

terms of the Boolean expression this corresponds to forming� from the conditions in N � the most restrictive

condition between each pair of variables� The only conditions of N which may be used at the kth step are

those involving the variables x�� � � � � xk� The new trial value� U �i�� for xi is found by taking minfU �j�*A�i�j�g

for � � j � nN � There are three possible situations that indicate that the algorithm should terminate� We

test each of these conditions after each iteration

�� Is there a negative weight cycle� In this case N is unsatis�able�

�� Does the current trial assignment violate any variable�s lower bound� Again� N is unsatis�able�

�� Does the current trial assignment satisfy the lower bound for each variable and satisfy N� In this case

N is satis�able�

Since the longest cycle can contain at most nN arcs we conclude that this is the maximum number of

iterations required� hence the O�n�N � complexity� If after nN iterations we have not found a negative weight

cycle or violated any bound then the current trial assignment must satisfy N �
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QUERIES INDEPENDENT OF UPDATES

Alon Y
 Levy and Yehoshua Sagiv

� Introduction

We consider the problem of detecting independence of queries expressed by datalog programs from updates�

Detecting independence is important for several reasons� It can be used in view maintenance to identify

that some views are independent of certain updates� In transaction scheduling� we can provide greater

!exibility by identifying that one transaction is independent of updates made by another� Finally� we can

use independence in query optimization by ignoring parts of the database for which updates do not a�ect a

speci�c query�

In this chapter� we provide new insight into the independence problem by reducing it to the equivalence

problem for datalog programs� Equivalence� as well as independence� is undecidable in general� However�

algorithms for equivalence provide su�cient �and sometimes also necessary� conditions for independence�

We consider two such conditions� query reachability �LS��� and uniform equivalence �Sag����

Earlier work by Blakeley et al� �BCL��� and Elkan �Elk��� focussed on cases for which independence is the

same as query reachability� Essentially� these are the cases where the updated predicate has a single occur�

rence in the query� Blakeley et al� �BCL��� considered only conjunctive queries� Elkan �Elk��� considered a

more general framework� but gave an algorithm only for nonrecursive rules without negation� that algorithm

is complete only for the case of a single occurrence of the updated predicate� Elkan also gave a proof method

for recursive rules� but its power is limited�

Query reachability has recently been shown decidable even for recursive datalog programs with dense�

order constraints and negated EDB subgoals �LS��� LMSS���� We show how query�reachability algorithms

generalize the previous results on independence�

In order to use uniform equivalence for detecting independence� we extend the algorithm given in �Sag��� to

datalog programs with built�in predicates and strati�ed negation� As a result� we show new decidable cases

of independence� for example� if the update is an insertion� and both the query and the update are given

by datalog program with no recursion or negation� then independence is decidable �note that the updated

predicate may have multiple occurrences�� Our algorithms also provide su�cient conditions for independence

�
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in the general case� Aside from their usage in detecting independence� the algorithms we present for uniform

equivalence are important for optimizing datalog programs�

Finally� we also characterize new cases for which independence of insertions is the same as independence

of deletions� Since the former is� in many cases� easier to detect� these characterizations are of practical

importance�

� Preliminaries

�
� Datalog Programs

Datalog programs are collections of safe horn�rules with no function symbols �i�e�� only constants and variables

are allowed�� We allow the built�in predicates� �� �� 	� �	� �� and  that represent a dense order� Programs

may also have strati�ed negation� Both negation and built�in predicates must be used safely �cf� �Ull�����

We distinguish between two sets of predicates in a given program the extensional predicates �EDB predi�

cates�� which are those that appear only in bodies of rules� and the intensional predicates �IDB predicates��

which are the predicates appearing in heads of rules� The EDB predicates refer to the database relations

while the IDB predicates are de�ned by the program� We usually denote the EDB predicates as e�� � � � � em
and the IDB predicates as i�� � � � � in� The input to a datalog program is an extensional database �EDB�

consisting of relations E�� � � � � Em for the EDB predicates e�� � � � � em� respectively� Alternatively� the EDB

may also be viewed as a set of ground atoms �or facts� for the EDB predicates� Given a datalog program P

and an EDB E�� � � � � Em as input� a bottom�up evaluation is one in which we start with the ground EDB

facts and apply the rules to derive facts for the IDB predicates� We continue applying the rules until no

new facts are generated� We distinguish one IDB predicate as the query �or goal� predicate� and the output

�or answer� of program P for the input E�� � � � � Em� denoted P�E�� � � � � Em�� is the set of all ground facts

generated for the query predicate in the bottom�up evaluation� The query predicate is usually denoted as

q� Note that the bottom�up evaluation computes relations for all the IDB predicates� and I�� � � � � In usually

denote the relations for the IDB predicates i�� � � � � in� respectively�

We say that the query predicate is monotonic �anti�monotonic� in the input if whenever D� � D� then

P �D�� � P �D�� �P �D�� � P �D���� Note that a datalog program without negation is monotonic�

�
� Containment and Equivalence

Independence of queries from updates can be expressed as an equivalence of two programs one program

that computes the answer to the query before the update and a second program that computes the answer

after the update�

�The phrase �built�in predicates� refers in this chapter just to those listed above�
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De�nition ���� �Containment� A datalog program P� contains a program P�	 written P� � P�	 if for all

EDBs E�� � � � � Em	 the output of P� contains that of P�	 i�e�	 P��E�� � � � � Em� � P��E�� � � � � Em��

Two programs P� and P� are equivalent	 written P� � P�� if P� � P� and P� � P�� Containment of datalog

programs is undecidable �Shm���� even for programs without built�in predicates or negation�

A su�cient condition for containment is uniform containment� which was introduced and shown to be de�

cidable in �Sag��� for programs without built�in predicates or negation� In de�ning uniform containment�

we assume that the input to a program P consists of EDB relation E�� � � � � Em as well as initial IDB

relations I�� � � � � � I
�
n for the IDB predicates� The output of program P for E�� � � � � Em� I

�
� � � � � � I

�
n� written

P�E�� � � � � Em� I
�
� � � � � � I

�
n�� is computed as earlier by applying rules bottom�up until no new facts are gen�

erated� When dealing with uniform containment �equivalence�� we assume that the output is not just the

relation for the query predicate but rather all the IDB relations I�� � � � � In computed for the IDB predicates

i�� � � � � in� respectively� An output I�� � � � � In contains another output I ��� � � � � I
�
n if I �j � Ij �� � j � n�� A

program P� uniformly contains P�� written P� �
u P�� if for all EDBs E�� � � � � Em and for all initial IDBs

I�� � � � � � I
�
n�

P��E�� � � � � Em� I
�
� � � � � � I

�
n� � P��E�� � � � � Em� I

�
� � � � � � I

�
n��

Uniform containment can also be explained in model�theoretic terms �Sag���� For programs without nega�

tions� the uniform containment P� �
u P� holds if and only if M�P�� � M�P��� where M�Pi� denotes the

set of all models of Pi� Furthermore� for programs having only EDB predicates in bodies of rules� uniform

containment is the same as containment� Note that a program with no recursion �and no negation� can be

transformed into this form by unfolding the rules�

Query reachability is another notion that provides a su�cient condition for equivalence of programs�

De�nition ���� �Query Reachability� Let p be a predicate �either EDB or IDB� of a program P� The

predicate p is query reachable with respect to P if there is a derivation d of a fact for the query predicate

from some EDB D	 such that predicate p is used in d�

Algorithms for deciding query reachability are discussed in �LS��� LMSS��� for cases that include built�in

predicates and negation�

�
� Updates

Given a Datalog program P� which we call the query program	 we consider updates to the EDB predicates

of P� denoted e�� � � � � em� In an update� we either remove or add ground facts to the extensional database�

To simplify notation� we assume that updates are always done on the relation E� for the predicate e�� To

specify the set of facts that is updated in E�� we assume we have another datalog program� called the update

program and denoted as Pu� The query predicate of Pu is u and its arity is equal to that of e�� The relation

computed for u will be the set of facts updated in e��
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We assume that the IDB predicates of Pu are di�erent from those of P� The EDB predicates of Pu�

however� could be EDB predicates of P as well as predicates not appearing in P� To distinguish the two

sets of EDB predicates� from now on the phrase 
EDB predicates� refers exclusively to the EDB predicates

e�� � � � � em of the query program P� the other extensional relations that may appear in the update program

are referred to as base predicates� denoted by b�� � � � � bl� We denote the output of the update program Pu as

Pu�E�� � � � � Em�B�� � � � �Bl�� even if Pu does not use all �or any� of the EDB predicates� Sometimes we refer

to its output as U �

An update is either an insertion or a deletion and it applies to the relation E� for the EDB predicate e��

The tuples to be inserted into or deleted from E� are those in the relation computed for u� A large class of

updates consists of those not depending on the EDB relations� as captured by the following de�nition

De�nition ��	� �Oblivious Update� An update speci�ed by an update program Pu is oblivious with respect

to a query program P if Pu has only base predicates �and no EDB predicates�� An update is nonoblivious if

the update program Pu has some EDB predicates �and possibly some base predicates��

To de�ne independence� suppose we are given a query program P and an update program Pu� The program

P is independent of the given update if the update does not change the answer to the query predicate� More

precisely� program P is independent of the given update if for all EDB relations E�� � � � � Em and for all base

relations B�� � � � �Bl�

P�E�� E�� � � � � En� 	 P�E��� E�� � � � � En�

where E�� is the result of applying the update to E�� that is� E
�
� 	 E� � U if the update is an insertion and

E�� 	 E� � U if the update is a deletion� where U 	 Pu�E�� � � � � Em�B�� � � � �Bl��

We use the following notation� In��P�Pu� means that program P is independent of the insertion speci�ed

by the update program Pu� Similarly� In��P�Pu� means that program P is independent of the deletion

speci�ed by the update program Pu�

Several properties of independence are shown by Elkan �Elk���� In particular� he showed the following�

Lemma ��
� Consider a query program P and an update program Pu� If Pu is monotonic in the EDB

predicates and P is either monotonic or anti�monotonic in the EDB predicates	 then

In��P�Pu� 	� In��P�Pu��

Similarly to the above lemma� we can also prove the following�

Lemma ���� Consider a query program P and an update program Pu� If Pu is anti�monotonic in the

EDB predicates and P is either monotonic or anti�monotonic in the EDB predicates	 then

In��P�Pu� 	� In��P�Pu��
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Proof� Consider an EDB E�� � � � � En� denoted as 2E� and relations B�� � � � �Bm� denoted as 2B� for the base

predicates� The tuples of the update are given by U 	 Pu� 2E� 2B�� A deletion update transforms the EDB 2E

into the EDB E� � U� � � � � En� denoted as 2E�� We have to show the following�

P� 2E�� 	 P� 2E�

So� consider the EDB 2E� with the relations 2B for the base predicates� Let U � 	 Pu� 2E�� 2B�� Since Pu is

anti�monotonic in the EDB� U � U ��

We now apply the insertion update speci�ed by U � 	 Pu� 2E�� 2B� to 2E� yielding the following EDB�

�E� � U� � U �� E�� � � � � En

Since In��P�Pu� is assumed� we get the following�

P� 2E�� 	 P��E� � U� � U �� E�� � � � � En� �����

Moreover� U � U � implies the following�

E� � U � E� � �E� � U� � U � �����

If P is monotonic in the EDB� then ����� implies

P� 2E�� � P� 2E� � P��E� � U� � U �� E�� � � � � En�

and� so� from ����� we get the following�

P� 2E�� 	 P� 2E�

Similarly� if P is anti�monotonic in the EDB� then ����� implies

P� 2E�� � P� 2E� � P��E� � U� � U �� E�� � � � � En�

and� so� from ����� we get the following�

P� 2E�� 	 P� 2E�

�

Note that if an update is oblivious� then it is both monotonic and anti�monotonic� Therefore� the above two

lemmas imply the following corollary�

Corollary �� � Consider a query program P and an update program Pu� If the update is oblivious

�i�e�	 EDB predicates of P do not appear in Pu�	 and P is either monotonic or anti�monotonic in the

updated EDB predicates	 then the following equivalence holds

In��P�Pu��� In��P�Pu��

The importance of Lemma ��� and Corollary �� � as we will see in the next section� lies in the fact that

testing In��P�Pu� is usually easier than testing In��P�Pu��
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� Detecting Independence

To develop algorithms for detecting independence� we will show that the problem can be reformulated as a

problem of detecting equivalence of datalog programs� Like independence� detecting equivalence of datalog

programs is in general undecidable� however� algorithms that provide su�cient conditions for detecting

equivalence can also serve as su�cient conditions for independence� In contrast� previous work reduced

the independence problem to satis�ability� The following example illustrates the di�erence between the

approaches�

Example 	��� Consider the following program P�� An atom canDrive�X�Y� A� is true if person X can

drive car Y and A is the age of X� According to the rule for canDrive� person X can drive car Y if X is

a driver and there is someone of the age �� or older in the same car� An adult driver� as computed by the

IDB predicate adultDriver� is anyone who can drive a car and is of the age �� or older�

canDrive�X�Y� A� � inCar�X�Y� A�� driver�X��

inCar�Z� Y�B�� B  ���

adultDriver�X� � canDrive�X�Y�A�� A  ���

Let the update program consist of the rule

u��X�Y�A� � inCar�X�Y� A�� �driver�X��

A � ���

and suppose that the deletion de�ned by u� is applied to inCar� that is� non�drivers under the age of �� are

removed from inCar�

Let the query predicate be adultDriver and note that adultDriver�X� is equivalent to the following con�

junction� denoted as C�
inCar�X� Y�A� � driver�X� � inCar�Z� Y� B� �

A  �� �B  ��

An algorithm for detecting independence based on satis�ability �e�g�� �Elk��� BCL���� checks whether an

updated fact may appear in any derivation of the query� In our example� an updated fact may appear in a

derivation of adultDriver�X� if either the conjunction

C � �driver�X� � A � ��

or the conjunction

C � �driver�Z� � B � ��

is satis�able� Since none of the above is satis�able� the algorithm would conclude that the query is indepen�

dent of the update�

Now consider the following update program

u��X�Y�A� � inCar�X�Y� A�� �driver�X��
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and suppose that the deletion de�ned by u� is applied to inCar� In this case� the conjunction

C � �driver�Z�

is satis�able and the algorithm would not detect independence� However� to see that the update is indepen�

dent� observe that after the update� P� computes for adultDriver the same relation as the one computed

by the following program� P�� before the update�

canDrive�X�Y� A� � inCar�X�Y� A�� driver�X��

inCar�Z� Y�B�� B  ���

driver�Z��

adultDriver�X� � canDrive�X�Y�A�� A  ���

Since P� and P� are equivalent �when the query predicate is adultDriver�� the deletion update de�ned by

u� is independent of the query predicate� �

�
� Independence and Equivalence

As stated above� the independence problem can be formulated as a problem of detecting equivalence of

datalog programs� To show that� we construct a new program that computes the new value of the query

predicate q from the old value of the EDB �i�e�� the value before the update�� One program� P�� is constructed

for the case of insertion� and another program� P�� is constructed for the case of deletion� Each of P� and

P� consists of three parts

The rules of P� after all occurrences of the predicate name e� have been replaced by a new predicate

name s�

The rules of the update program Pu�

Rules for the new predicate s�

P� and P� di�er only in the third part� In the case of insertion� the predicate s in P� is intended to

represent the relation E� after the update� and therefore the rules for s are

s�X�� � � � � Xk� � e��X�� � � � �Xk��

s�X�� � � � � Xk� � u�X�� � � � �Xk��

In the case of deletion� the predicate s in P� is intended to represent the deletion update to E�� and the

rule for de�ning it is

s�X�� � � � �Xk� � e��X�� � � � �Xk�� �u�X�� � � � � Xk��

The following propositions are immediate corollaries of the de�nition of independence�

Proposition 	��� In��P�Pu��� P � P��
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Proposition 	�	� In��P�Pu��� P � P��

Proof� Both propositions follow from the observation that the relation computed for s is the updated

relation for E�� Therefore� since e� is replaced by s in the rules of the program� the new program will

compute the relation for q after the update� Clearly� the independence holds if and only if the new program

is equivalent to the original program� �

Example 	�
� Consider the following program P� with q as the query predicate

r�  q�X�Y � � p�X�Y �� �e��X�Y ��

r�  p�X�Y � � e��X�Y �� �e�X��

r�  p�X�Y � � e��X�Y �� X � ��

r
  p�X�Y � � e�X�� e�W �� p�W� Y �� W � X�

Let the update program Pu consist of the rule

ru  u�X�Y � � b�X�Y �� X � ��

The program for the insertion update P� would be

r��  q�X�Y � � p�X�Y �� �s�X�Y ��

r��  p�X�Y � � s�X�Y �� �e�X��

r��  p�X�Y � � s�X�Y �� X � ��

r�
  p�X�Y � � e�X�� e�W �� p�W�Y �� W � X�

r��  s�X�Y � � e��X�Y ��

r��  s�X�Y � � u�X�Y ��

r�	  u�X�Y � � b�X�Y �� X � ��

This program is equivalent to the original one� P�� and indeed In��P��P
u� does hold� �

In Section �� we describe algorithms for deciding uniform equivalence for datalog programs with built�in

predicates and strati�ed negation� Based on these algorithms� we get the following decidability results for

independence� Note that in the following theorem� the updated predicate may have multiple occurrences�

and so� this theorem generalizes earlier results on decidability of independence�

Theorem 	��� Independence is decidable in the following cases
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�� In��P�Pu� �In��P�Pu�� is decidable if both P� �P�� and P have only built�in and EDB predicates

�that may appear positively or negatively� in bodies of rules��

�� Both In��P�Pu� and In��P�Pu� are decidable if P has only built�in and EDB predicates �that may

appear positively or negatively� in bodies of rules	 and Pu has only rules of the form

u�X�� � � � �Xk� � e��X�� � � � �Xk�� c�

where c is a conjunction of built�in predicates�

The theorem follows from the observation that for these classes of programs� uniform equivalence is also a

necessary condition for equivalence� The algorithms of Section � also apply to arbitrary programs P� P�

and P�� but only as a su�cient condition for independence�

�
� Independence and Query Reachability

Detecting independence based on query reachability is based on the observation that if none of the updated

facts can be part of a derivation of the query� then clearly� the query is independent of the update� This is

made precise by the following lemma� based on query reachability�

Lemma 	�� Suppose that neither P nor Pu has negation� If predicate u is not query reachable in P�	

then both In��P�Pu� and In��P�Pu� are true�

Query reachability is decidable for all datalog programs with built�in predicates and negation applied to EDB

�and base� predicates �LS��� LMSS���� If negation is also applied to IDB predicates� then a generalization

of the algorithm of �LMSS��� is a su�cient test for query reachability� Thus� the above lemma provides a

considerable generalization of previous algorithms for detecting independence�

It should be realized that the independence tests of Elkan �Elk��� and of Blakely et al� �BCL��� are just

query reachability tests� Both essentially characterized special cases in which independence is equivalent to

query reachability� The result of Blakely et al� �BCL��� applies just to conjunctive queries with no repeated

predicates� The work of Elkan �Elk��� entails that� in the case of recursive rules� independence is equivalent

to query reachability provided that the updated predicate has a single occurrence� he also required that an

insertion update be monotonic� For testing independence� Elkan �Elk��� gave a query�reachability algorithm

for the case of nonrecursive� negation�free rules� and suggested a proof method for the recursive case� there

is no characterization of the power of that proof method� but it should be noted that it cannot capture all

cases detected by the algorithms of �LS��� LMSS����

�We prefer to describe this case in terms of P and P�	 rather than P and Pu	 since it is clearer� Note that if P and

Pu are nonrecursive then in some	 but not all cases	 P� and P can be converted by unfolding into forms satisfying

this condition�
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Example 	��� The following example shows how query reachability can be used for detecting independence

in the case of a recursive datalog program� Consider the following rules

r�  goodPath�X�Y � � badPoint�X��

path�X�Y ��

goodPoint�Y ��

r�  path�X�Y � � link�X�Y ��

r�  path�X�Y � � link�X�Z�� path�Z�Y ��

r
  link�X�Y � � step�X�Y ��

r�  link�X�Y � � bigStep�X� Y ��

The predicates step and bigStep describe single links between points in a space� The predicate path denotes

the paths that can be constructed by composing single links� The predicate goodPath denotes paths that

go from bad points to good ones� Furthermore� the following constraint are given on the EDB relations

badPoint�x�� ��� � x � ����

step�x� y�� x � y�

goodPoint�x�� ��� � x � ����

bigStep�x� y�� x � ��� � y � ����

Figure ��� show the query�tree representing all possible derivation of the query goodPath�X�Y �� The query�

tree shows that ground facts of the relation step which do not satisfy ��� � x and y � ��� cannot be part of

a derivation of the query� Similarly� facts of the relation bigStep cannot be part of derivations of the query�

Consequently� the query goodPath will be independent of removing or adding facts of that form� �

goodPath�x� y� f�

 � x � y � ��
� y � ��
g

r�
hhhhhhhhh

���������badPoint�x�
f�

 � x � ��
g

goodPoint�y�
f��
 � y � ��
g

path�x� y�

PPPPP

�����

f�

 � x � y � ��
� y � ��
g

r� r�
PPPP
����

link�x� y�
f�

 � x � y � ��
�

y � ��
g

link�x� z�
f�

 � x � z � ��
g

path�z� y�
f�

 � z � y � ��
� y � ��
g
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f�

 � x � y � ��
� y � ��
g
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 � x � z � ��
g

Figure �� Detecting independence using query reachability
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� Uniform Equivalence

In this section� we describe algorithms for deciding uniform equivalence of programs that have built�in pred�

icates and strati�ed negation� This extends a previous algorithm �Sag��� that dealt with datalog programs

without built�in predicates or negations�

As shown in �Sag���� uniform containment �and equivalence� can be given model�theoretic characterization�

namely� the uniform containment P� �
u P� holds if and only if M�P�� �M�P��� where M�Pi� denotes the

set of all models of Pi� We note that M�P�� � M�P�� holds if and only if M�P�� � M�r� for every rule

r � P�� since a database D is a model of P� if and only if it is a model of every rule r � P�� Our algorithms

will decide whether M�P�� �M�P�� by checking whether M�P�� �M�r� for every r � P�� We �rst discuss

programs with only built�in predicates�

�
� Uniform Containment with Built�in Predicates

When the programs have no interpreted predicates� the following algorithm �from �Sag���� will decide

whether a given rule r is uniformly contained in a program P� Given a rule r of the form

p � q�� � � � � qn�

where p is the head of the rule and q�� � � � � qn are its subgoals� we use a substitution � that maps every

variable in the body of r to a distinct symbol that does not appear in P or r� We then apply the program P

to the atoms q��� � � � � qn�� In �Sag��� it is shown that the program P generates p� from q��� � � � � qn� if and

only if M�P� �M�r��

However� there is a problem in applying this algorithm to programs with interpreted predicates� First� the

constants used in the input to P� i�e�� those that appear in q��� � � � � qn�� are arbitrary� and therefore� order

relations are not de�ned on them� Consequently� the interpreted subgoals in the rules �that may involve

���� etc�� can not be evaluated� Moreover� some of the derivations of p� by P depend on the symbols

satisfying the interpreted constraints� and so these cannot be discarded�

We address this problem by associating a constraint with every fact involved in the evaluation of P� The

constraints for a given fact f represent the conditions on q��� � � � � qn� under which f is derivable� We

manipulate these constraints as we evaluate P� Formally� let r be the rule

p � q�� � � � � qn� cr� �����

We denote the set of variables in r by Y � The subgoal cr is the conjunction of the subgoals of interpreted

predicates in r� We assume that all subgoals in r have distinct variables in every argument position� Note that

this requirement can always be ful�lled by introducing appropriate subgoals in rules using the 	 predicate�

As in the original algorithm� we de�ne a mapping � that maps each variable in r to a distinct symbol not

appearing in P or r� Instead of evaluating P with the ground atoms q��� � � � � qn�� we evaluate P with facts

that are pairs of the form �q� c�� where q is ground atom and c is a constraint on the symbols in Y �� The

input to P will be the pairs �qi�� cr��� for i 	 �� �� � � �� n�
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An application of a rule h � g�� � � � � gl� c proceeds as follows� Let �a�� c
��� � � � � �al� c

l� be pairs generated

previously� such that there is a substitution � for which gi� 	 ai �� � i � l�� Let ch be the conjunction

c� � � � � � cl � c� � If ch is satis�able� we derive the pair �h�� ch�� In words� the constraint of the new fact

generated is the conjunction of the constraints on the facts used in the derivation and the constraints of the

rule that was applied in that derivation� We apply the rules of P until no new pairs are generated� Note that

there are only a �nite number of possible constraints for the generated facts and� therefore� the bottom�up

evaluation must terminate�

Finally� let �p�� c��� � � � � �p�� cm� be all the pairs generated for p� in the evaluation of P� recall that p is the

head of Rule ����� and � is the substitution used to convert the variables of that rule to new symbols� The

containment M�P� �M�r� holds if and only if cr j	 c� � � � �� cm� where cr is the conjunction of interpreted

predicates from the body of Rule ������

Example 
��� Let P� be the program

r�  p�X�Y � � e�X�Z�� p�Z�Y ��

r�  q�X�Y � � e�X�Y ��

Let P� be the program

s�  p�X�Y � � p�X�Z�� p�Z�Y ��

s�  p�X�Y � � e�X�Y �� X � Y�

s�  q�X�Y � � e�X�Y �� Y � X�

s
  q�X�Y � � p�X�Y ��

For a variable X of r� we denote the constant X� by x�� True denotes the constraint satis�ed by all tuples�

To check the uniform containment of r�� the input to P� would be �e�x�� z��� True� and �p�z�� y��� True��

Rule s� will derive �p�x�� z��� x� � z�� and rule s� will then derive �p�x�� y��� x� � z��� Since p�x�� y�� was

only generated under the constraint x� � z�� we say that rule r� is not uniformly contained in P��

To check the uniform containment of rule r�� we begin with �e�x�� y��� True�� Rule s� will then derive

�q�x�� y��� y� � x��� Rule s� will derive �p�x�� y��� x� � y�� and rule s
 will use that to derive �q�x�� y��� x� �

y��� Since q�x�� y�� was derived for both possible orderings of x� and y�� rule r� is uniformly contained in

P�� �

The correctness of the algorithm is established by the following theorem�

Theorem 
��� M�P� �M�r��� cr j	 c� � � � � � cm�

The theorem is proved by showing the following� Let r be the rule p � q�� � � � � qm� cr and Y be the variables

appearing in r� If Y � is a valid instantiation of the rule r that satis�es cr� then p� is derivable from the

database containing the atoms q��� � � � � qn� and the program P if and only if Y � satis�es one of c�� � � � � cm�
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Our bottom�up evaluation of a program with a database containing facts tha are pairs is reminiscent of the

procedure used by Kanellakis et al� �KKR���� In their procedure� an EDB fact may be a generalized tuple

speci�ed in the form of a constraint on the arguments of its predicate� However� there is a key di�erence

between the two methods� In �KKR���� every tuple is a constraint only on the arguments of the predicate

involved� In our procedure� the constraint appearing in a pair is a constraint on all the constants that appear

in the database� i�e�� all the constants of Y �� where Y is the set of variables of rule r� Thus� the constraint

of a pair may have constants that do not appear in the atom of that pair� The following example illustrates

why this di�erence between the methods is important for detecting uniform containment�

Example 
�	� Consider rules r and s� and let P consist of rule s�

r  p�X�Y � � q��X�Y �� q��U�V ��

s  p�X�Y � � q��X�Y �� q��U�V �� U � V�

To show M�P� �M�r�� we begin with the pairs �q��x�� y��� True� and �q��u�� v��� True�� and apply s� If

we use the procedure of �KKR���� the result is the pair �p�x�� y��� True�� which has no recording of the fact

that its derivation required that u� � v�� Consequently� we will conclude erroneously that M�P� � M�r�

holds� In contrast� when our procedure applies rule s to the pairs �q��x�� y��� True� and �q��u�� v��� True��

the result is the pair �p�x�� y��� u� � v��� making it clear that s does not contain r� because True �j	 u� � v��

�

The complexity of the algorithm depends on the number of pairs generated during the evaluation of P� In

the worst case� it may be exponential in the number of variables of r� A key component in the e�ciency

of the algorithm is the complexity of checking whether cr j	 c� � � � � � cm holds� In �Lev��� we describe

how to reduce this problem to a linear programming problem� The result is an algorithm that decides the

entailment in time that is polynomial in the size of the disjunction and exponential in the number of �	�s

that appear in cr� c�� � � � � cm�

An interesting special case is containment of conjunctive queries with built�in predicates� Klug �Klu���

showed that if all constraints are left�semiinterval or all constraints are right�semiinterval� then containment

of conjunctive queries can be decided by �nding a homomorphism from one query to the other� For general

conjunctive queries� he pointed out that it could be done by �nding a homomorphism for every possible

ordering of the variables and constants in the queries �recently� van der Meyden �vdM��� has shown that

the containment problem of conjunctive queries with order constraints is "p
��complete�� In our algorithm�

the complexity depends only on the number of orderings that are actually generated during the evaluation

of P� More precisely� our algorithm generates partial rather than complete orderings of the variables and

constants in the queries� Essentially� it lumps together complete orderings that need not be distinguished

from each other in order to test containment� Therefore� our algorithm is likely to be better in practice�

albeit not in the worst case �of course� our algorithm also applies to more than just conjunctive queries��
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Beyond Uniform Containment

For testing uniform containment of P� in P�� it is enough to check the containment separately for each

rule of P�� Consequently� uniform containment completely ignores possible interactions between the rules�

interactions that may imply containment of P� in P�� Consider the following example�

Example 
�
� Consider the following programs whose query predicate is p� Let P� be

r�  p�X� � q�X�� X � ��

r�  q�X� � e�X�� X � ��

And let P� be the program

r�  p�X� � q�X�� X �  � X � ��

r
  q�X� � e�X�� X � ��

The program P� is contained in P�� because whenever � � X � �� the atom p�X� will be derived from P�

if e�X� is in the database� However� r� is not uniformly contained in P� �and� therefore� P� ��
u P��� For

example� the model consisting of fq����� e������p����g is a model of P� but not a model of P�� �

The weakness of uniform containment stems from the fact that it considers all models while for proving

�ordinary� containment it is su�cient to consider just minimal models�� We may� however� try to transform

P� into an equivalent program P � with a larger set of models �but� of course� the same set of minimal models�

since equivalence must be preserved�� One way of doing it is by propagating constraints from one rule to

another� The query tree of �LS��� is a tool for doing just that� for the type of constraints considered in this

chapter the propagation is complete� i�e�� each rule ends up having the tightest possible constraint among

its variables� In our example� the result of constraint propagation is the following program P ��

r��  p�X� � q�X�� X � �� X � ��

r��  q�X� � e�X�� X � ��

Now we can show that P � �u P�� and since P� � P �� it follows that P� �
u P��

�
� Uniform Equivalence with Strati�ed Negation

In this section� we describe how to test uniform equivalence of datalog programs with safe� strati�ed negation�

We begin with the case of strati�ed programs with neither constants nor built�in predicates� By de�nition�

two programs P� and P� are uniformly equivalent� denoted P� �
u P�� if for every database D �that may

have both EDB and IDB facts�� P��D� 	 P��D�� Note that applying a strati�ed program to a database

that may also have IDB facts is done stratum by stratum� as in the usual case� in other words� P �D� is the

perfect model of the program P and the database D �cf� �Ull�����

�In our formalism	 a set of relations for the EDB and IDB predicates is a minimal model if the IDB part is a

minimal model once the EDB facts are added to the program as rules with empty bodies�
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Suppose that that P� and P� are not uniformly equivalent� Hence� there is a database D� such that P��D�� �	

P��D��� D� is called a counterexample� We may assume that P��D�� �� P��D�� �the case P��D�� �� P��D��

is handled similarly��

We assume that both P� and P� have the same set of EDB predicates and the same set of IDB predicates�

and moreover� there is a partition of the predicates into strata that is a strati�cation for both P� and P��

In particular� we assume that the lowest stratum consists of just the EDB predicates and we refer to it as

the zeroth stratum� We denote by P i
� the program consisting of those rules of P� with head predicates that

belong to the �rst i strata� similarly for P i
�� Note that P �

� is an empty program �i�e�� it has no rules�� By

de�nition� P �
� �D� 	 D for every database D� similarly for P �

� �

We now assume that for some given i� P i
� �

u P i
� and we will show how to test whether P i��

� �u P i��
� � The

algorithm is based on the following two lemmas�

Lemma 
��� Suppose that there is an i	 such that P i
� �

u P i
�� If there is a counterexample database D�	

such that P i��
� �D�� �� P i��

� �D��	 then there is some rule r of P i��
� with a head predicate from stratum i��

and a database D	 such that

�� D is a model of P i��
� but not a model of r�

�� The number of distinct constants in D is no more than the number of distinct variables in r�

Proof� Let D� 	 P i
��D��� note that D� 	 P i

��D
��� By the assumption in the lemma� P i

��D�� 	 P i
��D�� and�

hence� D� is also a counterexample� i�e�� P i��
� �D�� �� P i��

� �D��� Now let 2D 	 P i��
� �D��� Observe that 2D

and D� have the same set of facts for predicates of the �rst i strata� since D� 	 P i
��D

��� In addition� observe

that D� � 2D� These observations imply that P i��
� �D�� � P i��

� � 2D�� Thus� P i��
� � 2D� �� P i��

� � 2D�� because

P i��
� �D�� �� P i��

� �D�� and P i��
� �D�� 	 P i��

� � 2D��

So� we have shown that P i��
� � 2D� �� P i��

� � 2D� and 2D is a model of P i��
� � Therefore� there is a rule r in P i��

�

of the form

h � q�� � � � � qm��s�� � � � ��sl

and a substitution �� such that

the predicate of h is from stratum i* ��

� is a mapping from the variables of r to constants�

qi� � 2D �� � i � m��

sj� �� 2D �� � j � l�� and

h� �� 2D�

The above and the fact 2D 	 P i��
� � 2D� imply that the database 2D is a model of P i��

� but not of ri���

Let D be the database consisting of facts from 2D that have only constants from r�� Database D is also a

model of P i��
� � In proof� suppose that D is not a model of P i��

� � Thus� there is a rule 2r of P i��
� and a

substitution � � such that
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�� the head 2h of 2r satis�es 2h� �� D�

�� every positive subgoal 2q of 2r satis�es 2q� � D� and

�� every negative subgoal 2s of 2r satis�es 2s� �� D�

By the de�nition of D� if g is a ground fact having only constants from D� then g � D if and only if g � 2D�

moreover� for every negative subgoal 2s� the constants appearing in 2s� are all from D� since rules are safe

�cf� �Ull����� Therefore� items ������� hold even if we replace D with 2D� and so it follows that 2D is not a

model of 2r&a contradiction� since 2D is a model of P i��
� and 2r is a rule of P i��

� � Thus� we have shown that

D is a model of P i��
� � Furthermore� items ������� above imply that D is not a model of r� So� the lemma

is proved� �

Lemma 
�� Suppose that P i
� �

u P i
�� Moreover	 suppose that there is a database D that is a model of P i��

�

and is not a model of some rule r of P i��
� having a head predicate from stratum i* �� Then P��D� �� P��D�

and	 hence	 P� ��
u P��

Proof� From the assumptions in the lemma� it follows that rule r can be applied to D to generate a new

fact g that is not already in D� Note that g �� P��D�� since P i��
� �D� 	 D and strata higher than i* � do

not include facts with the same predicate as that of g� If we show that rule r can still generate g even when

P� is applied to D� it would follow that g � P��D�� and hence� P��D� �� P��D�� To show that� recall that

P i
� �

u P i
� and D is a model of P i��

� � therefore� D is also a model of P i
�� Thus� rule r can still generate g

during the application of P� to D� since nothing is generated by rules of lower strata� �

The algorithm of Figure ��� tests whether P� �
u P�� its correctness follows from the above two lemmas and

the following proposition�

Proposition 
�� � P��D� �� P��D� if and only if there is some i and a database D	 such that either

P i
��D� �� P i

��D� or P i
��D� �� P i

��D��

Note that in the algorithm� it does not matter what are the constants in S as long as their number is equal

to the number of distinct variables in the given rule r� Also� if two databases over constants from S are

isomorphic� it is su�cient to consider just one of them�

Example 
��� Let P� consist of the rules

r�  Iown�X�Y � � own�X�Y ��

r�  Iown�X�Y � � lives�X�Z�� inHouse�Z�Y ��

r�  Iown�X�U� � own�X�Z�� lives�Y�Z��

Iown�Y�U��

r
  buys�X�Y � � likes�X�Y �� �Iown�X�Y ��
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procedure check�P�� P���

begin

for every rule r of P� do

begin

Let S be a set of v distinct constants�

where v is the number of variables in r�

for every database D that includes

only constants from S do

if D is a model of P� but not of r

then return false�

end�

return true�

end�

begin '� main procedure �'

for i 	 � to max�stratum do

if not check�P i
�� P

i
�� or not check�P

i
�� P

i
��

then return P� ��u P��

return P� �
u P��

end�

Figure �� An algorithm for testing P� 
u P��

Let P� consist of the rules r�� r
 and the rule

r�  Iown�X�Y � � Own�X�Z�� inHouse�Z�Y ��

The EDB relation own describes an ownership relationship between persons and objects� The IDB relation

Iown represents a landlord�s perspective of the ownership relation� The programs P� and P� are not

uniformly equivalent� Speci�cally� consider the database D�

flikes�a� o�� lives�b� h�� own�b� o�� own�a�h�g

Rule r
 �of P�� and program P� satisfy r
�D�� �� P��D��� since Iown�a�o� �� r
�D�� and therefore

buys�a� o� � r
�D��� while the converse is true for P��D��� �

To extend the algorithm to programs with built�in predicates �and constants�� we need to check for the

possibility that a database may become a counterexample by analyzing the built�in constraints� One con�

ceptually simple �albeit not the most e�cient� way of doing it is by using the algorithm of Figure ���� but

with the following modi�cations� Let C be the set of constants appearing in either P� or P�� Instead of

considering every database over constants from S� we should consider every database over constants from

S � C� Moreover� for each database we should consider every total order on the constants of the database�

such that the order is consistent with any order that may implicitly be de�ned on C �e�g�� if C is a set of
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integers� then presumably the usual order on integers should apply to C�� For each such database and total

order de�ned on its constants� we should apply the given test of the check procedure� that is� we should test

whether D is a model of P� but not of r� The rest of the algorithm is the same as earlier� Thus� we get the

following result� for the full details of the proof and for a more e�cient algorithm than the one described

above see �Lev����

Theorem 
��� Uniform equivalence for datalog programs with safe	 strati�ed negation and built�in predicates

is decidable�

� Concluding Remarks

We have presented an analysis of the notion of independence and described algorithms for detecting inde�

pendence of queries from updates� Our formulation of the problem gives us !exibility in the analysis� For

example� we can distinguish between the case in which an updates is speci�ed intensionally and the actual

tuples to be inserted are computed at update time� and the case in which the set of tuples to be inserted is

given a priori� Our framework and algorithms can also be extended to incorporate integrity constraints� as

in Elkan �Elk����

Posing the problem of independence as a problem of equivalence suggests that further algorithms for inde�

pendence can be found by trying to identify additional su�cient conditions for equivalence� One possibility

mentioned in this chapter involves program transformations that increase the set of models but preserve the

set of minimal models� Consequently� these transformations increase the possibility of detecting equivalence

by an algorithm for uniform equivalence� More powerful transformations can be obtained by considering�

for example� only minimal derivations �LS����

In this chapter� we have considered the problem of detecting independence assuming we have no knowledge

of the EDB relations� An important problem� investigated in �BCL��� and �GW��� is detecting independence

when some of the EDB relations are known and can be inspected e�ciently� Combining our techniques with

the ones described in those papers is an intersting area for future research�
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Views and On Line Analytical Processing

This part of the book contains three chapters on OLAP and views�

OLAP or On Line Analytical Processing has become a hotly researched and developed area to enable

decision support applications� OLAP is primarily based on the need for visualising di�erent aggregations

on the same base data� For example� sales information from a store can be aggregated in di�erent ways to

give an analyst views like 
total sales for a month� and 
average sales of each item in each month of ������

OLAP applications are typically run over warehoused data and require real time response to analysts who

ask dynamic queries that� Views play a very important role in such applications because of many reasons

��� Warehouses are very large and computing results on the !y may be slow � making materialized views

attractive� ��� The queries do not require exact answers and tolerate some 
out�datedness� � enabling the

use of views that can be periodically updated� ��� The queries asked by analysts are frequently interrelated

making possible the reuse of intermediate queries that can be materialized � for example partial aggregates

are used for further aggregation� ��� The result of a query may need substantial o��line preprocessing for

viewing in a non�tabular visualization tool � views enable this preprocessing� ��� Di�erential computation

across time and space is very important to study trends � views provide snapshots at di�erent points that

can then be compared� This part includes three chapters that consider three of the steps involved in using

views for OLAP� �HRU� � discusses algorithms to identify a set of views to maintain� �AAD�� a� describes

how to compute a set of aggregate views� and �MQM��� studies how to incrementally maintain the set� The

problem of how to use precomputed views to answer queries is discussed in the previous parts of this book

and in �GHQ��� SDJL� ��

The �rst chapter �HRU� � considers the data cube and models it as a lattice of view that captures the

dependencies among the views� In this framework� the chapter describes how to identify the views to

materialize when the optimization criterion is the response time� The optimization criterion can alternatively

be the space available for storing the views� or the number of views that may be materialized� The chapter

gives a greedy algorithm with a bounded distance from the optimal solution�

�AAD�� a� discusses how to compute a data cube where all the di�erent nodes in the lattice may not

necessarily need be materialized� The chapter considers sort and hash based grouping algorithms along with a

variety of optimizationss like combining common operations across multiple group�bys� caching intermediate

results� using aggregates 
lower� in the lattice to compute further aggregations in the lattice� and pipelining�

The di�erent strategies are evaluated on both synthetic and emperical data to determine the factors that

determine which strategy does well � for example available size of memory� the sparsity of the data� the

reduction obtained by any grouping attribute� the number of scans over the base data�

�MQM��� considers the next step in the problem � that is having materialized a set of views how to e�ciently

maintain them�
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ABSTRACT

Decision support applications involve complex queries on very large databases� Since response times should

be small� query optimization is critical� Users typically view the data as multidimensional data cubes�

Each cell of the data cube is a view consisting of an aggregation of interest� like total sales� The values of

many of these cells are dependent on the values of other cells in the data cube� A common and powerful

query optimization technique is to materialize some or all of these cells rather than compute them from

raw data each time� Commercial systems di�er mainly in their approach to materializing the data cube�

In this chapter� we investigate the issue of which cells �views� to materialize when it is too expensive to

materialize all views� A lattice framework is used to express dependencies among views� We then present

greedy algorithms that work o� this lattice and determine a good set of views to materialize� The greedy

algorithm performs within a small constant factor of optimal under a variety of models� We then consider

the most common case of the hypercube lattice and examine the choice of materialized views for hypercubes

in detail� giving some good tradeo�s between the space used and the average time to answer a query�

� Introduction

Decision support systems �DSS� are rapidly becoming a key to gaining competitive advantage for businesses�

DSS allow businesses to get at data that is locked away in operational databases and turn that data into

useful information� Many corporations have built or are building uni�ed decision�support databases called

data warehouses on which users can carry out their analysis�

While operational databases maintain state information� data warehouses typically maintain historical in�

formation� As a result� data warehouses tend to be very large and to grow over time� Users of DSS are

typically interested in identifying trends rather than looking at individual records in isolation� Decision�

support queries are thus much more complex than OLTP queries and make heavy use of aggregations�

��
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The size of the data warehouse and the complexity of queries can cause queries to take very long to com�

plete� This delay is unacceptable in most DSS environments� as it severely limits productivity� The usual

requirement is query execution times of a few seconds or a few minutes at the most�

There are many ways to achieve such performance goals� Query optimizers and query evaluation techniques

can be enhanced to handle aggregations better �CS���� �GHQ���� to use di�erent indexing strategies like

bit�mapped indexes and join indexes �OG���� and so on�

A commonly used technique is to materialize �precompute� frequently�asked queries� The data warehouse at

the Mervyn�s department�store chain� for instance� has a total of ���� precomputed tables �Rad��� to improve

query performance� Picking the right set of queries to materialize is a nontrivial task� since by materializing a

query we may be able to answer other queries quickly� For example� we may want to materialize a query that

is relatively infrequently asked if it helps us answer many other queries quickly� In this chapter� we present

a framework and algorithms that enable us to pick a good set of queries to materialize� Our framework also

lets us infer in what order these queries are to be materialized�

�
� The Data Cube

Users of data warehouses work in a graphical environment and data are usually presented to them as a

multidimensional 
data cube� whose ��D� ��D� or even higher�dimensional sub cubes they explore trying to

discover interesting information� The values in each cell of this data cube are some 
measures� of interest�

As an example consider the TPC�D decision�support benchmark�

EXAMPLE ��� The TPC�D benchmark models a business warehouse� Parts are bought from suppliers

and then sold to customers at a sale price SP� The database has information about each such transaction

over a period of  years�

There are three dimensions we are interested in part� supplier� and customer� The 
measure� of interest

is the total sales total sales� So for each cell �p� s� c� in this ��D data cube� we store the total sales of

part p that was bought from supplier s� and sold to customer c� We use the terms dimension and attribute

interchangeably in this section� In the general case� a given dimension may have many attributes as we shall

see in Section ��

Users are also interested in consolidated sales for example� what is the total sales of a given part p to a

given customer c� �GBLP� � suggests adding an additional value 
ALL� to the domain of each dimension

to achieve this� In the question above we want the total sales of a given part p to a given customer c for


ALL� suppliers� The query is answered by looking up the value in cell �p�ALL� c��

We use the TPC�D database of size �GB as a running example throughout this chapter� For more details

on this benchmark refer to �Raa����

We have only discussed the presentation of the data set as a multi�dimensional data cube to the user� The

following implementation alternatives are possible
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�� Physically materialize the whole data cube� This approach gives the best query response time� However�

precomputing and storing every cell is not a feasible alternative for large data cubes� as the space

consumed becomes excessive� It should be noted that the space consumed by the data cube is also a

good indicator of the time it takes to create the data cube� which is important in many applications�

The space consumed also impacts indexing and so adds to the overall cost�

�� Materialize nothing� In this case we need to go to the raw data and compute every cell on request�

This approach punts the problem of quick query response to the database system where the raw data

is stored� No extra space beyond that for the raw data is required�

�� Materialize only part of the data cube� We consider this approach in this chapter� In a data cube� the

values of many cells are computable from those of other cells in the data cube� This dependency is

similar to a spreadsheet where the value of cells can be expressed as a function of the values of other

cells� We call such cells 
dependent� cells� For instance� in Example ���� we can compute the value of

cell �p�ALL� c� as the sum of the values of cells of �p� s�� c�� � � � � �p� sNsupplier� c�� where Nsupplier

is the number of suppliers� The more cells we materialize� the better query performance is� For large

data cubes however� we may be able to materialize only a small fraction of the cells of the data cube�

due to space and other constraints� It is thus important that we pick the right cells to materialize�

Any cell that has an 
ALL� value as one of the components of its address is a dependent cell� The value of

this cell is computable from those of other cells in the data cube� If a cell has no 
ALL�s in its components�

its value cannot be computed from those of other cells� and we must query the raw data to compute its

value� The number of cells with 
ALL� as one of their components is usually a large fraction of the total

number of cells in the data cube� The problem of which dependent cells of to materialize� is a very real one�

For example� in the TPC�D database �Example ����� seventy percent of all the cells in the data cube are

dependent�

There is also the issue of where the materialized data cube is stored in a relational system or a proprietary

MDDB �multi�dimensional database� system� In this chapter� we assume that the data cube is stored in


summary� tables in a relational system� Sets of cells of the data cube are assigned to di�erent tables�

The cells of the data cube are organized into di�erent sets based on the positions of 
ALL� in their addresses�

Thus� for example� all cells whose addresses match the address � �ALL� � are placed in the same set� Here�


 � is a placeholder that matches any value but 
ALL�� Each of these sets corresponds to a di�erent SQL

query� The values in the set of cells � �ALL� � is output by the SQL query

SELECT Part�Customer�SUM�SP	 AS Sales

FROM R

GROUP BY Part�Customer�

Here� R refers to the raw�data relation� The queries corresponding to the di�erent sets of cells� di�er only

in the GROUP�BY clause� In general� attributes with 
ALL� values in the description of the set of cells� do

not appear in the GROUP�BY clause of the SQL query above� For example� supplier has an 
ALL� value in

the set description � �ALL� �� Hence it does not appear in the GROUP�BY clause of the SQL query� Since the

SQL queries of the various sets of cells di�er only in the grouping attributes� we use the grouping attributes

to identify queries uniquely�
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Deciding which sets of cells to materialize is equivalent to deciding which of the corresponding SQL queries

�views� to materialize� In the rest of this chapter we thus work with views rather than with sets of cells�

�
� Motivating Example

The TPC�D database we considered in Example ��� has � attributes part� supplier� customer� We thus

have � possible groupings of the attributes� We list all the queries �views� possible below with the number

of rows in their result � 
M� denotes million� Note again it su�ces to only mention the attributes in the

GROUP�BY clause of the view�

�� part� supplier� customer ��M rows	

�� part� customer ��M	


� part� supplier ����M	

� supplier� customer ��M	

�� part ����M	

�� supplier �����M	

�� customer ����M	

�� none ��	

none indicates that there are are no attributes in the GROUP�BY clause� Figure ��� shows these eight views

organized as a lattice of the type we shall discuss in Section �� In naming the views in this diagram� we use

the abbreviation p for part� s for supplier� and c for customer�

none 1

pc  6M ps  0.8M

psc  6M

 sc  6M

 p 0.2M   s 0.01M  c  0.1M

Figure �� The eight TPC�D views

One possible user query is a request for an entire view� For example� the user may ask for the sales grouped

by part� If we have materialized the view that groups only by part �view ��� we only need scan the view

and output the answer� We can also answer this query using the view that groups by part and customer

�view ��� In this case� since we have the total sales for each customer� for each part we need to sum the sales

across all customers to get the result�

In this chapter we assume the cost of answering a query is proportional to the number of rows examined�

Thus� the cost of �nding the total sales grouped by part� if �view �� is materialized� is the cost of processing

��� million rows �the size of this view�� To answer the same query using the part� customer view we would

need to process  million rows�
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Another kind of user query would ask only for the sales for a single part� say 
widgets�� To answer this

query� we still have to scan the entire view �or half on the average�� Thus� the same comparison� ���M rows

for view � versus  M rows for view �� would apply to this query� Note� in this chapter� we do not consider

indexes on the views� We shall discuss the cost model in more detail in Section ��

There are some interesting questions we can now ask

�� How many views must we materialize to get reasonable performance�

�� Given that we have space S� what views do we materialize so that we minimize average query cost�

In this chapter� we provide algorithms that help us answer the above questions and provide near optimal

results�

In the above example� a fully materialized data cube would have all the views materialized and thus have

slightly more than �� million rows�

Now let us see if we can do better� To avoid going to the raw data� we need to materialize the view grouping

by part� supplier� and customer �view ��� since that view cannot be constructed from any of the other

views� Now consider the view grouping by part and customer �view ��� Answering any query using this

view will require us to process  million rows� The same query can always be answered using the view

grouping by part� supplier� and customer� which again requires processing of  million rows� Thus there

is no advantage to materializing the view grouping by part and customer� By similar reasoning� there is

no advantage materializing the view grouping by supplier and customer �view ��� Thus we can get almost

the same average query cost using only � million rows� an improvement of more than  �( in terms of space

consumed and thus in the cost of creating the data cube�

Thus by cleverly choosing what parts of the data cube to materialize� we can reap dramatic bene�ts�

�
� Related Work

Multi�dimensional data processing �also known as OLAP� has enjoyed spectacular growth of late� There

are two basic implementation approaches that facilitate OLAP� The �rst approach is to eschew SQL and

relational databases and to use proprietary multi�dimensional database �MDDB� systems and APIs for

OLAP� So while the raw data is in relational data warehouses� the data cube is materialized in an MDDB�

Users query the data cube� and the MDDB e�ciently retrieves the value of a cell given its address� To

allocate only space for those cells present in the raw data and not every possible cell of the data cube� a

cell�address hashing scheme is used� Arbor�s Essbase �Sof� and many other MDDBs are implemented this

way� Note� this approach still materializes all the cells of the data cube present in raw data� which can be

very large�

The other approach is to use relational database systems and let users directly query the raw data� The issue

of query performance is attacked using smart indexes and other conventional relational query optimization

strategies� There are many products like BusinessObjects and Microstrategy�s DSS Agent that take this
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tack� However� MDDBs retain a signi�cant performance advantage� Performance in relational database

systems though can be improved dramatically by materializing parts of the data cube into summary tables�

The relational approach is very scalable and can handle very large data warehouses� MDDBs on the other

hand have much better query performance� but are not very scalable� By materializing only selected parts of

the data cube� we can improve performance in the relational database� and improve scalability in MDDBs�

There are products in both the relational world �Gro���� and the MDDB world �Sinper�s Spreadsheet Con�

nector� that materialize only parts of the data cube� �Gro��� also appears to use a simple greedy algorithm�

similar to that given in this chapter� We believe however that this chapter is the �rst to investigate this

fundamental problem in such detail�

�GBLP� � generalizes the SQL GROUP�BY operator to a data cube operator� They introduce the notion of


ALL� that we mention� However� they claim the size of the entire data cube is not much larger than the

size of the corresponding GROUP�BY� We believe di�erently�� As we saw in the TPC�D database� the data

cube is usually much larger more than three times larger than the corresponding GROUP�BY psc�

�
� Chapter Organization

The chapter is organized as follows� In Section � we introduce the lattice framework to model dependency

among views� We also show how the lattice framework models more complex groupings that involve ar�

bitrary hierarchies of attributes� Then in Section �� we present the query�cost model that we use in this

chapter� Section � presents a general technique for producing near�optimal selections of materialized views

for problems based on arbitrary lattices� In Section �� we consider the important special case of a 
hyper�

cube� lattice� where the views are each associated with a set of attributes on which grouping occurs� The

running example of Section ��� is such a hypercube�

� The Lattice Framework

In this section we develop the notation for describing when one data�cube query can be answered using the

results of another� We denote a view or a query �which is the same thing� by giving its grouping attributes

inside parenthesis� For example the query with grouping attributes part and customer is denoted by �part�

customer�� In Section ��� we saw that views de�ned by supersets can be used to answer queries involving

subsets�

�The analysis in �GBLP��	 assumes that every possible cell of the data cube exists� However	 in many cases	 data

cubes are sparse only a small fraction of all possible cells are present� In such cases	 the size of the data cube can be

much larger than the corresponding GROUP�BY� In fact	 the sparser the data cube	 the larger is the ratio of the size of

the data cube to the size of the corresponding GROUP�BY�
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�
� The Dependence Relation on Queries

We may generalize the observations of Section ��� as follows� Consider two queries Q� and Q�� We say

Q� � Q� if Q� can be answered using only the results of Q�� We then say that Q� is dependent on Q��

For example� in Section ���� the query �part�� can be answered using only the results of the query �part�

customer�� Thus �part� � �part� customer�� There are certain queries that are not comparable with each

other using the � operator� For example �part� �� �customer� and �customer� �� �part��

The � operator imposes a partial ordering on the queries� We shall talk about the views of a data�cube

problem as forming a lattice� In order to be a lattice� any two elements �views or queries� must have a least

upper bound and a greatest lower bound according to the � ordering� However� in practice� we only need

the assumptions that � is a partial order� and that there is a top element� a view upon which every view is

dependent�

�
� Lattice Notation

We denote a lattice with set of elements �queries or views in this chapter� L and dependence relation � by

hL��i� For elements a� b of the lattice� b is an ancestor of a� if and only if a � b� It is common to represent

a lattice by a lattice diagram� a graph in which the lattice elements are nodes� and there is a path downward

from a to b if and only if a � b� The hypercube of Fig� ��� is the lattice diagram of the set of views discussed

in Section ����

�
� Hierarchies

In most real�life applications� dimensions of a data cube consist of more than one attribute� and the dimen�

sions are organized as hierarchies of these attributes� A simple example is organizing the time dimension

into the hierarchy day� month� and year� Hierarchies are very important� as they underlie two very com�

monly used querying operations 
drill�down� and 
roll�up�� Drill�down is the process of viewing data at

progressively more detailed levels� For example� a user drills down by �rst looking at the total sales per

year and then total sales per month and �nally� sales on a given day� Roll�up is just the opposite it is the

process of viewing data in progressively less detail� In roll�up� a user starts with total sales on a given day�

then looks at the total sales in that month and �nally the total sales in that year�

In the presence of hierarchies� the dependency lattice hL��i is more complex than a hypercube lattice� For

example� consider a query that groups on the time dimension and no other� When we use the time hierarchy

given earlier� we have the following three queries possible �day�� �month�� �year�� each of which groups at a

di�erent granularity of the time dimension� Further� �year� � �month� � �day�� In other words� if we have

total sales grouped by month� for example� we can use the results to compute the total sales grouped by

year� Hierarchies introduce query dependencies that we must account for when determining what queries

to materialize�
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To make things more complex� hierarchies often are not total orders but partial orders on the attributes that

make up a dimension� Consider the time dimension with the hierarchy day� week� month� and year� Since

months and years cannot be divided evenly into weeks� if we do the grouping by week we cannot determine

the grouping by month or year� In other words �month� �� �week�� �week� �� �month�� and similarly for week

and year� When we include the none view corresponding to no time grouping at all� we get the lattice for

the time dimension shown in the diagram of Fig� ����

Week Month

Day

Year

none

Figure �� Hierarchy of time attributes

�
� Composite Lattices for Multiple� Hierarchical

Dimensions

We are faced with query dependencies of two types query dependencies caused by the interaction of the

di�erent dimensions with one another �the example in Section ��� and the corresponding lattice in Fig� ���

is an example of this sort of dependency� and query dependencies within a dimension caused by attribute

hierarchies�

If we are allowed to create views that independently group by any or no member of the hierarchy for each

of n dimensions� then we can represent each view by an n�tuple �a�� a�� � � � � an�� where each ai is a point in

the hierarchy for the ith dimension� This lattice is called the direct product of the dimensional lattices� We

directly get a � operator for these views by the rule

�a�� a�� � � � � an� � �b�� b�� � � � � bn� if and only if ai � bi for all i

We illustrate the building of this direct�product lattice in the presence of hierarchies using an example based

on the TPC�D benchmark�

EXAMPLE ��� In Example ���� we mentioned the TPC�D benchmark database� In this example we focus

further on two dimensions part and customer� Each of these dimensions is organized into hierarchies� The

dimensional lattices for the dimension queries are given in Fig� ���� These dimension lattices have already

been modi�ed to include the attribute �none� as the lowest element�

The customer dimension is organized into the following hierarchy� We can group by individual customers

c� Customers could also be grouped more coarsely based on their nation n� The coarsest level of grouping

is none at all & none� For the part dimension� individual parts p may be grouped based on their size s or
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(a) Customer (b) Part

c

n

none

p

s t

none

Figure �� Hierarchies for the customer and part dimensions

based on their type t� Note neither of s and t is � the other� The direct�product lattice is shown in Fig� ����

Note� when a dimension�s value is none in a query� we do not specify the dimension in the query� Thus for

example� �s�none� is written as �s��

6M

5.99M5M

5M

3750

0.2M

1250

150

25

0.1M

50

1

cp

cs ct

c
np

ntns

n

t

none

p

s

Figure �� Combining two hierarchical dimensions

The lattice framework� we present and advocate in this chapter� is advantageous for several reasons

�� It provides a clean framework to reason with dimensional hierarchies� since hierarchies are themselves

lattices� As can be seen in Fig� ���� the direct�product lattice is not always a hypercube when hierarchies

are not simple�

�� We can model the common queries asked by users better using a lattice framework� Users usually do

not jump between unconnected elements in this lattice� they move along the edges of the lattice� In

fact� drill�down is going up �going from a lower to higher level� a path in this lattice� while roll�up is

going down a path�

�� The lattice approach also tells us in what order to materialize the views� By using views that have

already been materialized to materialize other views� we can reduce access to the raw data and so

decrease the total materialization time� A simple descending�order topological sort on the � operator

gives the required order of materialization� The details are in �HRU����
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� The Cost Model

In this section� we review and justify our assumptions about the 
linear cost model�� in which the time to

answer a query is taken to be equal to the space occupied by the view from which the query is answered�

We then consider some points about estimating sizes of views without materializing them and give some

experimental validation of the linear cost model�

�
� The Linear Cost Model

Let hL��i be a lattice of queries �views�� To answer a query Q we choose an ancestor of Q� say QA� that

has been materialized� We thus need to process the table corresponding to QA to answer Q� The cost of

answering Q is a function of the size of the table for QA� In this chapter� we choose the simplest cost�model

The cost of answering Q is the number of rows present in the table for that query QA used to construct

Q�

As we discussed in Section ���� not all queries ask for an entire view� such as a request for the sales of all

parts� It is at least as likely that the user would like to see sales for a particular part or for a few parts� If

we have the appropriate index structure� and the view �part� is materialized� then we can get our answer

in O��� time� If there is not an appropriate index structure� then we would have to search the entire �part�

view� and the query for a single part takes almost as long as producing the entire view�

If� for example� we need to answer a query about a single part from some ancestor view such as �part�

supplier� we need to examine the entire view� It can be seen that a single scan of the view is su�cient

to get the total sales of a particular part� On the other hand� if we wish to �nd the total sales for

each part from the ancestor view �part� supplier�� we need to do an aggregation over this view� We can

use either hashing or sorting �with early aggregation� �Gra��� to do this aggregation� The cost of doing the

aggregation is a function of the amount of memory available and the ratio of the number of rows in the

input to that in the output� In the best case� a single pass of the input is su�cient �for example� when the

hash table �ts in main memory�� In practice� it has been observed that most aggregations take between one

and two passes of the input data�

While the actual cost of queries that ask for single cells� or small numbers of cells� rather than a complete

view� is thus complex� we feel it is appropriate to make an assumption of uniformity� We provide a rationale

for this assumption in �HRU���� Thus

We assume that all queries are identical to some element �view� in the given lattice�

Clearly there are other factors� not considered here� that in!uence query cost� Among them are the clustering

of the materialized views on some attribute� and the indexes that may be present� More complicated cost

models are certainly possible� but we believe the cost model we pick� being both simple and realistic� enables

us to design and analyze powerful algorithms� Moreover� our analysis of the algorithms we develop in

Sections � and � re!ects their performance under other cost models as well as under the model we use here�

�GHRU� � investigates a more detailed model incorporating indexes�
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�
� Experimental Examination of the Linear Cost Model

An experimental validation of our cost model is shown in Fig� ���� On the TPC�D data� we asked for

the total sales for a single supplier� using views of four di�erent granularities� We �nd an almost linear

relationship between size and running time of the query� This linear relationship can be expressed by the

formula T 	 m � S * c� Here T is the running time of the query on a view of size S� c gives the �xed cost

�the overhead of running this query on a view of negligible size�� and m is the ratio of the query time to the

size of the view� after accounting for the �xed cost� As can be seen in Fig� ��� this ratio is almost the same

for the di�erent views�

Source Size Time Ratio

From cell itself � ���� �

From view s ������ ���� �������

From view ps ���M ����� �������

From view psc  M �� ��� �������

Figure �� Query response time and view size

�
� Determining View Sizes

Our algorithms require knowledge of the number of rows present in each view� There are many ways of

estimating the sizes of the views without materializing all the views� One commonly used approach is to

run our algorithms on a statistically representative but small subset of the raw data� In such a case� we can

get the sizes of the views by actually materializing the views� We use this subset of raw data to determine

which views we want to materialize�

We can use sampling and analytical methods to compute the sizes of the di�erent views if we only materialize

the largest element vl in the lattice �the view that groups by the largest attribute in each dimension�� For a

view� if we know that the grouping attributes are statistically independent� we can estimate the size of the

view analytically� given the size of vl� Otherwise we can sample vl �or the raw data� to estimate the size

of the other views� The size of a given view is the number of distinct values of the attributes it groups by�

There are many well�known sampling techniques that we can use to determine the number of distinct values

of attributes in a relation �HNSS����

� Optimizing Data�Cube Lattices

Our most important objective is to develop techniques for optimizing the space�time tradeo� when imple�

menting a lattice of views� The problem can be approached from many angles� since we may in one situation

favor time� in another space� and in a third be willing to trade time for space as long as we get good 
value�

for what we trade away� In this section� we shall begin with a simple optimization problem� in which



��� Chapter ��

�� We wish to minimize the average time taken to evaluate the set of queries that are identical to the

views�

�� We are constrained to materialize a �xed number of views� regardless of the space they use�

Evidently item ��� does not minimize space� but in Section ��� we shall show how to adapt our techniques

to a model that does optimize space utilization�

Even in this simple setting� the optimization problem is NP�complete� there is a straightforward reduction

from Set�Cover� Thus� we are motivated to look at heuristics to produce approximate solutions� The obvious

choice of heuristic is a 
greedy� algorithm� where we select a sequence of views� each of which is the best

choice given what has gone before� We shall see that this approach is always fairly close to optimal and in

some cases can be shown to produce the best possible selection of views to materialize�

�
� The Greedy Algorithm

Suppose we are given a data�cube lattice with space costs associated with each view� In this chapter� the

space cost is the number of rows in the view� Let C�v� be the cost of view v� The set of views we materalize

should always include the top view� because there is no other view that can be used to answer the query

corresponding to that view� Suppose there is a limit k on the number of views� in addition to the top view�

that we may select� After selecting some set S of views� the bene�t of view v relative to S� denoted by

B�v� S�� is de�ned as follows�

�� For each w � v� de�ne the quantity Bw by

�a� Let u be the view of least cost in S such that w � u� Note that since the top view is in S� there

must be at least one such view in S�

�b� If C�v� � C�u�� then Bw 	 C�v��C�u�� Otherwise� Bw 	 ��

�� De�ne B�v� S� 	
P

w�v Bw�

That is� we compute the bene�t of v by considering how it can improve the cost of evaluating views� including

itself� For each view w that v covers� we compare the cost of evaluating w using v and using whatever view

from S o�ered the cheapest way of evaluating w� If v helps� i�e�� the cost of v is less than the cost of its

competitor� then the di�erence represents part of the bene�t of selecting v as a materialized view� The total

bene�t B�v� s� is the sum over all views w of the bene�t of using v to evaluate w� providing that bene�t is

positive�

Now� we can de�ne the Greedy Algorithm for selecting a set of k views to materialize� The algorithm is

shown in Fig� �� �

EXAMPLE 
�� Consider the lattice of Fig� ���� Eight views� named a through h have space costs as

indicated on the �gure� The top view a� with cost ���� must be chosen� Suppose we wish to choose three

more views�
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S � �top view��

for i�� to k do begin

select that view v not in S such

that B�v�S	 is maximized�

S � S union �v��

end�

resulting S is the greedy selection�

Figure �� The Greedy Algorithm

a

b c

d e f
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50

20
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40
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Figure �� Example lattice with space costs

To execute the greedy algorithm on this lattice� we must make three successive choices of view to materialize�

The column headed 
First Choice� in Fig� ��� gives us the bene�t of each of the views besides a� When

calculating the bene�t� we begin with the assumption that each view is evaluated using a� and will therefore

have a cost of ����

If we pick view b to materialize �rst� then we reduce by �� its cost and that of each of the views d� e� g� and

h below it� The bene�t is thus �� times �� or ���� as indicated in the row b and �rst column of Fig� ����

As another example� if we pick e �rst then it and the views below it & g and h & each have their costs

reduced by ��� from ��� to ��� Thus� the bene�t of e is ����

Choice � Choice � Choice 


b ��� � 	 ���

c ��� � 	 ��� ��� � 	 �� ��� � 	 ��

d ��� � 	 � � ��� � 	  � ��� � 	  �

e ��� � 	 ��� ��� � 	  � �� �� * �� 	 ��

f  �� � 	 ���  � * �� 	 ��

g ��� � 	 �� ��� � 	 �� ��� � 	 ��

h ��� � 	 �� ��� � 	 �� ��� � 	 ��

Figure �	 Bene�ts of possible choices at each round

Evidently� the winner in the �rst round is b� so we pick that view as one of the materialized views� Now�

we must recalculate the bene�t of each view V � given that the view will be created either from b� at a cost
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of ��� if b is above V � or from a at a cost of ���� if not� The bene�ts are shown in the second column of

Fig� ����

For example� the bene�t of c is now ��� �� each for itself and f � Choosing c no longer improves the cost of

e� g� or h� so we do not count an improvement of �� for those views� As another example� choosing f yields

a bene�t of  � for itself� from ��� to ��� For h� it yields a bene�t of ��� from �� to ��� since the choice of b

already improved the cost associated with h to ��� The winner of the second round is thus f � with a bene�t

of ��� Notice that f wasn�t even close to the best choice at the �rst round�

Our third choice is summarized in the last column of Fig� ���� The winner of the third round is d� with a

bene�t of  �� gained from the improvement to its own cost and that of g�

The greedy selection is thus b� d� and f � These� together with a� reduces the total cost of evaluating all the

views from ���� which would be the case if only a was materialized� to ���� That cost is actually optimal�

EXAMPLE 
�� Let us now examine the lattice suggested by Fig� ���� This lattice is� as we shall see�

essentially as bad as a lattice can be for the case k 	 �� The greedy algorithm� starting with only the top

view a� �rst picks c� whose bene�t is ����� That is� c and the �� views below it are each improved from ���

to ��� when we use c in place of a�

20
nodes
total
1000

20
nodes
total
1000

20
nodes
total
1000

20
nodes
total
1000

a

b c d

200

99

100100

Figure �
 A lattice where the greedy does poorly

For our second choice� we can pick either b or d� They both have a bene�t of ����� Speci�cally� consider

b� It improves itself and the �� nodes at the far left by ��� each� Thus� with k 	 �� the greedy algorithm

produces a solution with a bene�t of  ����

However� the optimal choice is to pick b and d� Together� these two views improve� by ��� each� them�

selves and the �� views of the four chains� Thus� the optimal solution has a bene�t of ����� the ratio of

greedy'optimal is  ���'����� which is about �'�� In fact� by making the cost of c closer to ���� and by

making the four chains have arbitrarily large numbers of views� we can �nd examples for k 	 � with ratio

arbitrarily close to �'�� but no worse�
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�
� An Experiment With the Greedy Algorithm

We ran the greedy algorithm on the lattice of Fig� ���� using the TPC�D database described earlier� Fig�

ure ���� shows the resulting order of views� from the �rst �top view� which is mandatory� to the twelfth and

last view� The units of Bene�t� Total Time and Total Space are number of rows� Note� the average query

time is the total time divided by the number of views ��� in this case��

Selection Bene�t Time Space

�� cp in�nite ��M  M

�� ns ��M ��M  M

�� nt ��M � M  M

�� c ���M ����M  ��M

�� p ���M ����M  ��M

 � cs �M ����M ����M

�� np �M ����M � ��M

�� ct ����M ����M ����M

�� t small ����M ����M

�� n small ����M ����M

��� s small ����M ����M

��� none small ����M ����M

Figure ��� Greedy order of view selection for TPC�D�based example

This example shows why it is important to materialize some views and also why materializing all views is

not a good choice� The graph in Fig� ���� has the total time taken and the space consumed on the Y�axis�

and the number of views picked on the X�axis� It is clear that for the �rst few views we pick� with minimal
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Figure ��� Time and Space versus number of views selected by the greedy algorithm
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addition of space� the query time is reduced substantially� After we have picked � views however� we cannot

improve total query time substantially even by using up large amounts of space� For this example� there is

a clear choice of when to stop picking views� If we pick the �rst �ve views & cp� ns� nt� c� and p & �i�e��

k 	 �� since the top view is included in the table�� then we get almost the minimum possible total time�

while the total space used is hardly more than the mandatory space used for just the top view�

�
� A Performance Guarantee for the Greedy Algorithm

We can show that no matter what lattice we are given� the greedy algorithm never performs too badly�

Speci�cally� the bene�t of the greedy algorithm is at least  �( of the bene�t of the optimal algorithm� The

precise fraction is �e� ���e� where e is the base of the natural logarithms�

To begin our explanation� we need to develop some notation� Let m be the number of views in the lattice�

Suppose we had no views selected except for the top view �which is mandatory�� Then the time to answer

each query is just the number of rows in the top view� Denote this time by T�� Suppose that in addition

to the top view� we choose a set of views V � Denote the average time to answer a query by TV � The bene�t

of the set of views V is the reduction in average time to answer a query� that is� T� � TV � Thus minimizing

the average time to answer a query is equivalent to maximizing the bene�t of a set of views�

Let v�� v�� � � � � vk be the k views selected in order by the greedy algorithm� Let ai be the bene�t achieved

by the selection of vi� for i 	 �� �� � � � � k� That is� ai is the bene�t of vi� with respect to the set consisting of

the top view and v�� v�� � � � � vi��� Let V 	 fv�� v�� � � � � vkg�

Let W 	 fw�� w�� � � � � wkg be an optimal set of k views� i�e�� those that give the maximum total bene�t�

The order in which these views appear is arbitrary� but we need to pick an order� Given the w�s in order

w�� w�� � � � � wk� de�ne bi to be the bene�t of wi with respect to the set consisting of the top view plus

w�� w�� � � � � wi��� De�ne A 	
Pk

i�� ai and B 	
Pk

i�� bi�

It is easy to show that the bene�t of the set V chosen by the greedy algorithm� Bgreedy� is T��TV 	 A�m� and

the bene�t of the optimal choice W is Bopt 	 T��TW 	 B�m� In the full version of this chapter �HRU����

we show that

Bgreedy�Bopt 	 A�B  �� �
k� �

k
�k

For example� for k 	 � we get A�B  ���� i�e�� the greedy algorithm is at least �'� of optimal� We saw

in Example ��� that for k 	 � there were speci�c lattices that approached �'� as the ratio of the bene�ts of

the greedy and optimal algorithms� In �HRU��� we show how for any k we can construct a lattice such that

the ratio A�B 	 �� � k��
k

�k�

As k � �� � k��
k

�k approaches ��e� so A�B  �� �
e
	 �e� ���e 	 �� �� That is� for no lattice whatsoever

does the greedy algorithm give a bene�t less than  �( of the optimal bene�t� Conversely� the sequence of

bad examples we can construct shows that this ratio cannot be improved upon� We summarize our results

in the following theorem
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Theorem 
�� For any lattice� let Bgreedy be the bene�t of k views chosen by the greedy algorithm and let

Bopt be the bene�t of an optimal set of k views� Then Bgreedy�Bopt  �� �
e � Moreover� this bound is tight

that is� there are lattices such that Bgreedy�Bopt is arbitrarily close to �� �
e
�

An interesting point is that the greedy algorithm does as well as we can hope any polynomial�time algorithm

to do� Chekuri �Che� has shown� using the recently published result of Feige �Fei� �� that unless P 	 NP �

there is no deterministic polynomial�time algorithm that can guarantee a better bound than the greedy�

�
� Cases Where Greedy is Optimal

The analysis of Section ��� also lets us discover certain cases when the greedy approach is optimal� or very

close to optimal� Here are two situations where we never have to look further than the greedy solution�

�� If a� is much larger than the other a�s� then greedy is close to optimal�

�� If all the a�s are equal then greedy is optimal�

The justi�cations for these claims are based on the proof of Theorem ��� and appear in �HRU����

�
� Extensions to the Basic Model

There are at least two ways in which our model fails to re!ect reality�

�� The views in a lattice are unlikely to have the same probability of being requested in a query� Rather�

we might be able to associate some probability with each view� representing the frequency with which

it is queried�

�� Instead of asking for some �xed number of views to materialize� we might instead allocate a �xed

amount of space to views �other than the top view� which must always be materialized��

Point ��� requires little extra thought� When computing bene�ts� we weight each view by its probability�

The greedy algorithm will then have exactly the same bounds on its performance at least  �( of optimal�

Point ��� presents an additional problem� If we do not restrict the number of views selected but �x their

total space� then we need to consider the bene�t of each view per unit space used by a materialization of that

view� The greedy algorithm again seems appropriate� but there is the additional complication that we might

have a very small view with a very high bene�t per unit space� and a very large view with almost the same

bene�t per unit space� Choosing the small view excludes the large view� because there is not enough space

available for the large view after we choose the small� However� we can prove the following theorem �HRU����

which says that if we ignore 
boundary cases� like the one above� the performance guarantee of the greedy

algorithm is the same as in the simple case� The theorem assumes that we use the bene�t per unit space in

the greedy algorithm as discussed above�
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Theorem 
�� Let Bgreedy be the bene�t and S the space occupied by some set of views chosen using the

greedy algorithm� and let Bopt be the bene�t of an optimal set of views that occupy no more than S units

of space� Then Bgreedy�Bopt  �� �
e
and this bound is tight�

� The Hypercube Lattice

Arguably� the most important class of lattices are the hypercubes� in which the views are vertices of an n�

dimensional cube for some n� The intuition is that there are n attributes A��A�� � � � �An on which grouping

may occur and an �n* ��st attribute B whose value is aggregated in each view� Figure ��� was an example

of a hypercube lattice with n 	 �� taken from the TPC�D benchmark database�

The top view groups on all n attributes� We can visualize the views organized by ranks� where the ith rank

from the bottom is all those views in which we group on i attributes� There are
�
n
i

�
views of rank i�

�
� The Equal�Domain�Size Case

We can� of course� apply the greedy algorithm to hypercube lattices� either looking for a �xed number of

views to materialize� or looking for a �xed amount of space to allocate to views� However� because of the

regularity of this lattice� we would like to examine in more detail some of the options for selecting a set of

views to materialize�

In our investigations� we shall �rst make an assumption that is unlikely to be true in practice all attributes

A��A�� � � � �An have the same domain size� which we shall denote r� The consequence of this assumption

is that we can easily estimate the size of any view� In Section ���� we shall consider what happens when

the domain sizes vary� It will be seen that the actual views selected to materialize will vary� but the basic

techniques do not change to accommodate this more general situation�

When each domain size is r� and data in the data cube is distributed randomly� then there is a simple way to

estimate the sizes of views� The combinatorics involved is complex� but the intuition should be convincing�

Suppose only m cells in the top element of our lattice appear in the raw data� If we group on i attributes�

then the number of cells in the resulting cube is ri� To a �rst approximation� if ri  m� then each cell will

contain at most one data point� and m of the cells will be nonempty� We can thus use m as the size of any

view for which ri  m� On the other hand� if ri � m� then almost all ri cells will have at least one data

point� Since we may collapse all the data points in a cell into one aggregate value� the space cost of a view

with ri � m will be approximately ri� The view size as a function of the number of grouped attributes is

shown in Fig� �����

The size of views grows exponentially� until it reaches the size of the raw data at rank dlogrme �the 
cli��

in Fig� ������ and then ceases to grow� Notice that the data in Fig� ��� almost matches this pattern� The

top view and the views with two grouping attributes have the same� maximum size� except that the view ps

has fewer rows� since the benchmark explicitly sets it to have fewer rows�
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Figure ��� How the size of views grows with number of grouped attributes
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Figure ��� Time�optimal strategies for the hypercube

�
� The Space�Optimal and Time�Optimal Solutions

One natural question to ask when investigating the time'space tradeo� for the hypercube is what is the

average time for a query when the space is minimal� Space is minimized when we materialize only the top

view� Then every query takes time m� and the total time cost for all �n queries is m�n�

At the other extreme� we could minimize time by materializing every query� However� we will not gain much

by materializing any view above the cli� in Figure ����� so we might as well avoid materializing those views�

The nature of the time�optimal solution depends on the rank k 	 dlogrme at which the cli� occurs� and the

rank j such that rj
�
n
j

�
is maximized� Figure ���� summarizes the time and space used for the three tradeo�

points studied� A more detailed discussion of the tradeo� points is in �HRU����

�
� Extension to Varying Domain Sizes

Suppose now that the domains of each attribute do not each have r equally�likely values� The next simplest

model is to assume that for each dimension� values are equally likely� but the number of values varies� with

ri values in the ith dimension for i 	 �� �� � � � � n�

Now� the 
cli�� suggested in Fig� ���� does not occur at a particular rank� but rather the cli� is distributed

among ranks� However� the fundamental behavior suggested by Fig� ���� is unchanged� The details are

in �HRU����
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� Conclusions and Future Work

In this chapter we have investigated the problem of deciding which set of cells �views� in the data cube

to materialize in order to minimize query response times� Materialization of views is an essential query

optimization strategy for decision�support applications� In this chapter� we make the case that the right

selection of the views to materialize is critical to the success of this strategy� We use the TPC�D benchmark

database as an example database in showing why it is important to materialize some part of the data cube

but not all of the cube�

Our second contribution is a lattice framework that models multidimensional analysis very well� Our greedy

algorithms work on this lattice and pick the right views to materialize� subject to various constraints� The

greedy algorithm we give performs within a small constant factor of the optimal solution for many of the

constraints considered� Moreover� �Che� has shown that no polynomial�time algorithm can perform better

than the greedy� Finally� we looked at the most common case of the hypercube lattice and investigated the

time�space trade�o� in detail�

The views� in some sense� form a memory hierarchy with di�ering access times� In conventional memory

hierarchies� data is usually assigned to di�erent memory stores �like cache� or main memory� dynamically

based on the run time access patterns� We are currently investigating similar dynamic materialization

strategies for the data cube�
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ABSTRACT

At the heart of all OLAP or multidimensional data analysis applications is the ability to simultaneously

aggregate across many sets of dimensions� Computing multidimensional aggregates is a performance bottle�

neck for these applications� This chapter presents fast algorithms for computing a collection of group�bys�

We focus on a special case of the aggregation problem & computation of the CUBE operator� The CUBE

operator requires computing group�bys on all possible combinations of a list of attributes� and is equivalent

to the union of a number of standard group�by operations� We show how the structure of CUBE compu�

tation can be viewed in terms of a hierarchy of group�by operations� Our algorithms extend sort�based and

hash�based grouping methods with several optimizations� like combining common operations across multiple

group�bys� caching� and using pre�computed group�bys for computing other group�bys� Empirical evaluation

shows that the resulting algorithms give much better performance compared to straightforward methods�

This chapter combines work done concurrently on computing the data cube by two di�erent teams as reported

in �SAG� � and �AAD�� b��

� Introduction

The group�by operator in SQL is typically used to compute aggregates on a set of attributes� For business

data analysis� it is often necessary to aggregate data across many dimensions �attributes� �Fin� Wel���� For

example� in a retail application� one might have a table Transactionswith attributes Product�P	� Date�D	�

Customer�C	 and Sales�S	� An analyst could then query the data for �nding

sum of sales by P� C

For each product� give a breakdown on how much of it was sold to each customer�

sum of sales by D� C

For each date� give a breakdown of sales by customer�

sum of sales by P

For each product� give total sales�

���
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Speed is a primary goal in these class of applications called On�Line Analytical Processing �OLAP� appli�

cations �Cod���� To make interactive analysis �response time in seconds� possible� OLAP databases often

precompute aggregates at various levels of detail and on various combinations of attributes� Speed is critical

for this precomputation as well� since the cost and speed of precomputation in!uences how frequently the

aggregates are brought up�to�date�

�
� What is a CUBE�

Recently� �GBLP� � introduced the CUBE operator for conveniently supporting multiple aggregates in

OLAP databases� The CUBE operator is the n�dimensional generalization of the group�by operator� It

computes group�bys corresponding to all possible combinations of a list of attributes� Returning to our

retail example� the collection of aggregate queries can be conveniently expressed using the cube�operator as

follows

SELECT P� D� C� Sum�S	

FROM Transactions

CUBE�BY P� D� C

This query will result in the computation of �� 	 � group�bys PDC� PD� PC� DC� D� C� P and all� where

all denotes the empty group�by� The straightforward way to support the above query is to rewrite it as

a collection of eight group�by queries and execute them separately� There are several ways in which this

simple solution can be improved�

In this chapter� we present fast algorithms for computing the data cube� We assume that the aggregating

functions are distributive �GBLP� �� that is� they allow the input set to be partitioned into disjoint sets

that can be aggregated separately and later combined� Examples of distributive functions include max� min�

count� and sum� The proposed algorithms are also applicable to the algebraic aggregate functions �GBLP� ��

such as average� that can be expressed in terms of other distributive functions �sum and count in the case

of average�� However� as pointed out in �GBLP� �� there are some aggregate functions �holistic functions

of �GBLP� �� e�g�� median� that cannot be computed in parts and combined�

Related Work

Methods of computing single group�bys have been well�studied �see �Gra��� for a survey�� but little work

has been done on optimizing a collection of related aggregates� �GBLP� � gives some rules of thumb to be

used in an e�cient implementation of the cube operator� These include the smallest parent optimization

and partitioning of data by attribute values� which we adopt in our algorithms� However� the primary

focus in �GBLP� � is on de�ning the semantics of the cube operator �GBLP� �� There are reports of on�

going research related to the data cube in directions complementary to ours �HRU� � GHRU� � presents

algorithms for deciding what group�bys to pre�compute and index� �SR� � and �JS� � discuss methods for

indexing pre�computed summaries to allow e�cient querying�



Multidimensional Aggregates ��	

Aggregate pre�computation is quite common in statistical databases �Sho���� Research in this area has con�

sidered various aspects of the problem starting from developing a model for aggregate computation �CM����

indexing pre�computed aggregates �STL��� and incrementally maintaining them �Mic���� However� to the

best of our knowledge� there is no published work in the statistical database literature on methods for

optimizing the computation of related aggregates�

This chapter is in two parts and combines work done concurrently on computing the data cube� Part I�

presents the methods proposed by �SAG� �� whereas the methods proposed by �AAD�� b� are described in

Part II� � Section �� presents a summary and brief comparison of the two approaches�

Part I

� Optimizations Possible

There are two basic methods for computing a group�by ��� the sort�based method and ��� the hash�based

method �Gra���� We will adapt these methods to compute multiple group�bys by incorporating the following

optimizations

�� Smallest�parent� This optimization� �rst proposed in �GBLP� �� aims at computing a group�by

from the smallest previously computed group�by� In general� each group�by can be computed from

a number of other group�bys� Figure ��� shows a four attribute cube �ABCD� and the options for

computing a group�by from a group�by having one more attribute called its parent� For instance� AB

can be computed from ABC� ABD or ABCD� ABC or ABD are clearly better choices for computing

AB� In addition� even between ABC and ABD� there can often be big di�erence in size making it

critical to consider size in selecting a parent for computing AB�

�� Cache�results� This optimization aims at caching �in memory� the results of a group�by from which

other group�bys are computed to reduce disk I'O� For instance� for the cube in Figure ���� having

computed ABC� we compute AB from it while ABC is still in memory�

�� Amortize�scans� This optimization aims at amortizing disk reads by computing as many group�bys

as possible� together in memory� For instance� if the group�by ABCD is stored on disk� we could reduce

disk read costs if all of ABC� ACD� ABD and BCD were computed in one scan of ABCD�

�� Share�sorts� This optimization is speci�c to the sort�based algorithms and aims at sharing sorting

cost across multiple group�bys�

�� Share�partitions� This optimization is speci�c to the hash�based algorithms� When the hash�table

is too large to �t in memory� data is partitioned and aggregation is done for each partition that �ts in

memory� We can save on partitioning cost by sharing this cost across multiple group�bys�

For OLAP databases� the size of the data to be aggregated is usually much larger than the available main

memory� Under such constraints� the above optimizations are often contradictory� For computing B� for

�This part presents work done by Sunita Sarawagi	 Rakesh Agrawal and Ashish Gupta at IBM Almaden Research

Center	 San Jose�
�This part presents work done by Prasad M� Deshpande	 Sameet Agarwal	 Je�rey F� Naughton and Raghu Ra�

makrishnan! fpmd� sameet� naughton� raghug�cs�wisc�edu	 University of Wisconsin�Madison� It was supported by a

grant from IBM under the University Partnership Programand NSF grant IRI��������
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Figure �� A search lattice for the cube operator

instance� the �rst optimization will favor BC over AB if BC is smaller but the second optimization will

favor AB if AB is in memory and BC is on disk�

Contributions In this part of the chapter� we will present two algorithms for computing the data cube the

sort�based algorithm PipeSort �Section �� and the hash�based algorithm PipeHash �Section �� that includes

the optimizations listed above� We have extended these algorithms to two important real�life OLAP cases�

The �rst deals with the useful case of computing a speci�ed subset of the group�bys in a cube� For this

case� we identify a reduction of the problem to the minimum steiner tree �GJ��� problem� This enables us to

�nd plans that consider computation of intermediate group�bys that are not part of the speci�ed subset but

can lead to smaller total cost� The second extension handles the case in which attributes have hierarchies

de�ned on them� Due to space limitation� we have not included these extensions in this chapter� and we

refer the reader to �SAG� � for them�

� Sort�based methods

In this section� we present the sort�based algorithm that incorporates the optimizations listed earlier� We

include the optimization share�sort by using data sorted in a particular order to compute all group�bys

that are pre�xes of that order� For instance� if we sort the raw data on attribute order ABCD� then we can

compute group�bys ABCD� ABC� AB and A without additional sorts� However� this decision could con!ict

with the optimization smallest�parent� For instance� the smallest parent of AB might be BDA although

by generating AB from ABC we are able to share the sorting cost� It is necessary� therefore� to do global

planning to decide what group�by is computed from what and the attribute order in which it is computed�

We propose an algorithm called PipeSort that combines the optimizations share�sorts and smallest�parent

to get the minimum total cost�

The PipeSort algorithm also includes the optimizations cache�results and amortize�scans to reduce disk

scan cost by executing multiple group�bys in a pipelined fashion� For instance� consider the previous example

of using data sorted in the order ABCD to compute pre�xes ABCD� ABC� AB and A� Instead of computing

each of these group�bys separately� we can compute them in a pipelined fashion as follows� Having sorted

the raw data in the attribute order ABCD� we scan the sorted data to compute group�by ABCD� Every
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time a tuple of ABCD is computed� it is propagated up the pipeline to compute ABC� every time a tuple of

ABC is computed� it is propagated up to compute AB� and so on� Thus� each pipeline is a list of group�bys

all of which are computed in a single scan of the sort input stream� During the course of execution of a

pipeline we need to keep only one tuple per group�by in the pipeline in memory�

Algorithm PipeSort

Assume that for each group�by we have an estimate of the number of distinct values� A number of statistical

procedures �e�g�� �HNSS���� can be used for this purpose� The input to the algorithm is the search lattice

de�ned as follows�

Search Lattice A search lattice for a data cube is a graph where a vertex represents a group�by of the cube�

A directed edge connects group�by i to group�by j whenever j can be generated from i and j has exactly one

attribute less than i �i is called the parent of j�� Thus� the out�degree of any node with k attributes is k�

Figure ��� is an example of a search lattice� Level k of the search lattice denotes all group�bys that contain

exactly k attributes� The keyword all is used to denote the empty group�by �Level ��� Each edge in the

search lattice eij is labeled with two costs� The �rst cost S�eij� is the cost of computing j from i when i is

not already sorted� The second cost A�eij� is the cost of computing j from i when i is already sorted�

The output� O of the algorithm is a subgraph of the search lattice where each group�by is connected to a

single parent group�by from which it will be computed and is associated with an attribute order in which it

will be sorted� If the attribute order of a group�by j is a pre�x of the order of its parent i� then j can be

computed from i without sorting i and in O� edge eij is marked A and incurs cost A�eij�� Otherwise� i has

to be sorted to compute j and in O� eij is marked S and incurs cost Sij � Clearly� for any output O� there

can be at most one out�edge marked A from any group�by i� since there can be only one pre�x of i in the

adjacent level� However� there can be multiple out�edges marked S from i� The objective of the algorithm

is to �nd an output O that has minimum sum of edge costs�

Algorithm The algorithm proceeds level�by�level� starting from level k 	 � to level k 	 N � �� where N is

the total number of attributes� For each level k� it �nds the best way of computing level k from level k* �

by reducing the problem to a weighted bipartite matching problem� �PS��� as follows�

We �rst transform level k * � of the original search lattice by making k additional copies of each group�by

in that level� Thus each level k*� group�by has k * � vertices which is the same as the number of children

or out�edges of that group�by� Each replicated vertex is connected to the same set of vertices as the original

vertex in the search lattice� The cost on an edge eij from the original vertex i to a level k vertex j is set

to A�eij� whereas all replicated vertices of i have edge cost set to S�eij�� We then �nd the minimum 
 cost

matching in the bipartite graph induced by this transformed graph� In the matching so found� each vertex

h in level k will be matched to some vertex g in level k * �� If h is connected to g by an A�� edge� then h

�The weighted bipartite matching problems is de�ned as follows We are given a graph with two disjoint sets of

vertices V� and V� and a set of edges E that connect vertices in set V� to vertices in set V�� Each edge is associated

with a �xed weight� The weighted matching problem selects the maximum weight subset of edges from E such that

in the selected subgraph each vertex in V� is connected to at most one vertex in V� and vice�versa�

Note we can covert a minimum weight matching to a maximum weight matching de�ned earlier by replacing each

edge weight w by max�w�� w where max�w� is the maximum edge cost�
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determines the attribute order in which g will be sorted during its computation� On the other hand� if h is

connected by an S�� edge� g will be re�sorted for computing h�

For illustration� we show how level � group�bys are generated from level � group�bys for a three attribute

search lattice� As shown in Figure ����a�� we �rst make one additional copy of each level � group�by� Solid

edges represent the A�� edges whereas dashed edges indicate the S�� edges� The number underneath each

vertex is the cost of all out�edges from this vertex� In the minimum cost matching �Figure ����b��� A is

connected to AB with an S�� edge and B by an A�� edge� Thus at level �� group�by AB will be computed

in the attribute order BA so that B is generated from it without sorting and A is generated by resorting

BA� Similarly� since C is connected to AC by an A�� edge� AC will be generated in the attribute order CA�

Since� BC is not matched to any level�� group�by� BC can be computed in any order�

A 

AB     AB     AC     AC     BC   BC

CB

2 10 5

(b) Minimum cost matching

12 13 20

A 

AB     AB     AC     AC     BC   BC

CB

2 10 5 12 13 20

(a) Transformed search lattice

Figure �� Computing level � group�bys from level � group�bys in a � attribute cube

We use the algorithm in �PS��� for �nding the minimum cost matching in a bipartite graph� � The complexity

of this algorithm is O���k * ��Mk���
��� where Mk�� is the number of group�bys in level k * ��

PipeSort�

Input search lattice with the A�� and S�� edges costs

For level k 	 � to N � �

'� �nd how to generate level k from level k * � �'

Generate�Plan�k * �� k��

For each group�by g in level k * �

Fix the sort order of g as the order of the

group�by connected to g by an A�� edge�

Generate�Plan�k * �� k��

Make k additional copies of each level k * � vertex�

Connect each copy vertex to the same set

of level k vertices as the original vertex�

Assign cost A�eij� to edge eij from the original

vertex and S�eij� to edge from the copy vertex�

Find the minimum cost matching on the transformed levels�

Example� We illustrate the PipeSort algorithm for the four attribute lattice of Figure ���� For simplicity�

assume that for a given group�by g the costs A�� and S�� are the same for all group�bys computable from

g� The pair of numbers underneath each group�by in Figure ��� denote the A�� and S�� costs� Solid edges

�The code for the matching algorithm is available from ftp�request�theory�stanford�edu
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Figure �� Sort�based method for computing a four attribute cube

denote A�� edges and dashed edges denote S�� edges� For these costs� the graph in Figure ����a� shows the

�nal minimum cost plan output by the PipeSort algorithm� Note that the plan in Figure ����a� is optimal

in terms of the total cost although the total number of sorts is suboptimal� For most real�life datasets there

could be a big di�erence in the sizes of group�bys on a level� Hence� optimizing for the number of sorts alone

could lead to poor plans�

In Figure ����b� we show the pipelines that are executed� Sorts are indicated by ellipses� We would �rst

sort data in the order CBAD� In one scan of the sorted data� CBAD� CBA� CB� C and all would be

computed in a pipelined fashion� Then group�by ABCD would be sorted into the new order BADC and

thereafter BAD� BA and B would be computed in a pipelined fashion�

We can make the following claims about algorithm PipeSort�

Claim 	�� Generate�plan�� �nds the best plan to get level k from level k * ��

Proof� Follows by construction assuming a cost function where the cost of sorting a group�by does not

depend on the order in which the group�by is already sorted�

Claim 	�� Generate�plan�k* �� k� does not prevent Generate�plan�k* �� k* �� from �nding the best

plan�

Proof� After we have �xed the way to generate level k from level k*� the only constraint we have on level

k * � is the order in which the group�bys should be generated� This ordering does not a�ect the minimum

matching solution for generating level k * � from k * �� After �nding the best solution for generating level

k * � from level k * �� we can always change the order in which each group�by should be generated �as

dictated by level k solution� without a�ecting the minimum cost�

Note that PipeSort computes each group�by from a group�by occurring only in the immediately preceding

level� Although the level�by�level approach is not provably optimal� we have not been able to �nd any case
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where generating a group�by from a group�by not in the preceding level leads to a better solution� Our

experiments reported in Section � also show that our solution is very close to empirically estimated lower

bounds for several datasets�

Further Enhancements Our implementation of PipeSort includes the usual optimizations of aggregating

and removing duplicates while sorting� instead of doing aggregation as a di�erent phase after sorting�Gra����

Often we can reduce the sorting cost by taking advantage of the partial sorting order� For instance� in

Figure ��� for sorting ACD in the attribute order AD� we can get a sorted run of D for each distinct value

of AC and for each distinct A we can merge these runs of D� Also� after the PipeSort algorithm has �xed

the order in which each group�by is generated we can modify the sort�edges in the output search lattice to

take advantage of the partial sorting orders whenever it is advantageous to do so�

� Hash�based methods

We now discuss how we extend the hash�based method for computing a data cube� For hash�based methods�

the new challenge is careful memory allocations of multiple hash�tables for incorporating optimizations

cache�results and amortize�scans� For instance� if the hash tables for AB and AC �t in memory then

the two group�bys could be computed in one scan of ABC� After AB is computed one could compute A

and B while AB is still in memory and thus avoid the disk scan of AB� If memory were not a limitation�

we could include all optimizations stated in Section � as follows�

For k 	 N to �

For each k* � attribute group�by� g

Compute in one scan of g all k attribute group�by

for which g is the smallest parent�

Save g to disk and destroy hash table of g�

However� the data to be aggregated is usually too large for the hash�tables to �t in memory� The standard

way to deal with limited memory when constructing hash tables is to partition the data on one or more

attributes� When data is partitioned on some attribute� say A� then all group�bys that contain A can be

computed by independently grouping on each partition & the results across multiple partitions need not

be combined� We can share the cost of data partitioning across all group�bys that contain the partitioning

attribute� leading to the optimization share�partitions� We present below the PipeHash algorithm that

incorporates this optimization and also includes the optimizations cache�results� amortize�scans and

smallest�parent�

Algorithm PipeHash

The input to the algorithm is the search lattice described in the previous section� The PipeHash algorithm

�rst chooses for each group�by� the parent group�by with the smallest estimated total size� The outcome is

a minimum spanning tree �MST� where each vertex is a group�by and an edge from group�by a to b shows

that a is the smallest parent of b� In Figure ��� we show the MST for a four attribute search lattice �the

size of each group�by is indicated below the group�by��
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Figure �� PipeHash on a four attribute group�by

In general� the available memory will not be su�cient to compute all the group�bys in the MST together�

hence the next step is to decide what group�bys to compute together� when to allocate and deallocate memory

for di�erent hash�tables� and what attribute to choose for partitioning data� We conjecture this problem

to be NP�complete because solving this problem optimally requires us to solve the following sub�problem

optimally Divide the MST into smaller subtrees each of which can be computed in one scan of the group�by

at the root of the MST such that the cost of scanning �from disk� the root group�by is minimized� This

problem is similar to well�known NP�complete partitioning problems �GJ���� Hence� we resort to using a

heuristic solution� Later �in Section �� we show that our solution is very close to empirically estimated lower

bounds for several datasets�

Optimizations cache�results and amortize�scans are favored by choosing as large a subtree of the MST as

possible so that we can use the method above to compute together the group�bys in the subtree� However�

when data needs to be partitioned based on some attribute� the partitioning attribute limits the subtree to

only include group�bys containing the partitioning attribute� We therefore� choose a partitioning attribute

that allows the choice of the largest subtree as shown in the pseudo�code of the PipeHash algorithm below�

PipeHash�

Input search lattice with group�by estimated sizes

Initialize worklist with MST of the search lattice�

While worklist is not empty

Pick any tree T from the worklist�

T � 	 Select�subtree of T to be executed next�

Compute�subtree T ��

Select�subtree�

If memory required by T � available� return T

Else let S be the attributes of root�T �

�We will pick s � S for partitioning root�T ��

For any s we get a subtree Ts of T also rooted at

T including all group�bys that contain s��

Let Ps 	 maximum number of partitions of root�T �

possible if partitioned on s � S�
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We choose s � S such that

memory required by Ts'Ps � memory available�

and Ts is the largest over all subsets of S�

Remove Ts from T �

This leaves T � Ts� a forest of smaller trees� add

this to the worklist�

return Ts�

Compute�subtree�

M 	 memory available�

numParts 	 memory required by T ��fudge factor'M�

Partition root of T � into numParts�

For each partition of root�T ��

For each node� n in T �

�scanned in a breadth �rst manner�

Compute all children of n in one scan�

If n is cached� save it to disk and

release memory occupied by its hash�table�

Example� Figure ��� illustrates the PipeHash algorithm for the four attribute search lattice of Figure ����

The boxed group�bys represent the root of the subtrees� Figure ����a� shows the minimum spanning tree�

Assume there is not enough memory to compute the whole tree in one pass and we need to partition the

data� Figure ����b� shows the �rst subtree TA selected when A is chosen as the partitioning attribute� After

removing TA from the MST� we are left with four subtrees as shown in Figure ����c�� None of the group�bys

in these subtrees include A� For computing TA� we �rst partition the raw data on A� For each partition we

compute �rst the group�by ABCD� then scan ABCD �while it is still in memory� to compute ABC� ABD

and ACD together� save ABCD and ABD to disk� compute AD from ACD� save ACD and AD to disk�

scan ABC to compute AB and AC� save ABC and AC to disk� scan AB to compute A and save AB and

A to disk� After TA is computed� we compute each of the remaining four subtrees in the worklist�

Note that PipeHash incorporates the optimization share�partitions by computing from the same partition

all group�bys that contain the partitioning attribute� Also� when computing a subtree we maintain all hash�

tables of group�bys in the subtree �except the root� in memory until all its children are created� Also� for

each group�by we compute its children in one scan of the group�by� Thus PipeHash also incorporate the

optimizations amortize�scans and cache�results� �

PipeHash is biased towards optimizing for the smallest�parent� For each group�by� we �rst �x the smallest

parent and then incorporate the other optimizations� For instance� in Figure ����c�� we could have computed

BC from BCD instead of its smallest parent ABC and thus saved the extra scan on ABC� However� in practice�

saving on sequential disk scans is less important than reducing the CPU cost of aggregation by choosing the

smallest parent�

�Refer �SAG�� for a discussion of how we handle the problems of data skew and incorrect size estimates in

allocating hash�tables
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Dataset # grouping # tuples size

attributes �in millions� �in MB�

Dataset�A � ��� ���

Dataset�B � ��� ���

Dataset�C � � ���

Dataset�D � � ���

Dataset�E  ��� ��

Table � Description of the datasets
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Figure �� Performance of the cube computation algorithms on the �ve real life datasets� The

y�axis denotes the total time normalized by the time taken by the NaiveHash algorithm for each

dataset�

� Experimental evaluation

In this section� we present the performance of our cube algorithms on several real�life datasets and analyze

the behavior of these algorithms on tunable synthetic datasets� These experiments were performed on a

RS' ��� ��� workstation running AIX ������ The workstation had a total physical memory of �� MB�

We used a bu�er of size �� MB� The datasets were stored as !at �les on a local �GB SCSI ���� drive with

sequential throughput of about ��� MB'second�

Datasets Table � lists the �ve real�life datasets used in the experiments� These datasets were derived from

sales transactions of various department stores and mail order companies� A brief description is given next�

The datasets di�er in the number of transactions� the number of attributes� and the number of distinct

values for each attribute� For each attribute� the number within brackets denotes the number of its distinct

values�
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Figure �� E�ect of sparseness on relative performance of PipeSort and PipeHash for a � attribute

synthetic dataset�

Dataset�A� This data is about supermarket purchases� Each transaction has three attributes store

id����� date�� � and item identi�er�������� In addition� two attributes cost and amount are used as

aggregation columns�

Dataset�B� This data is from a mail order company� A sales transaction here consists of four attributes

the customer identi�er��������� the order date������� the product identi�er����� �� and the catalog

used for ordering������

Dataset�C� This is data about grocery purchases of customers from a supermarket� Each transaction

has �ve attributes the date of purchase������� the shopper type������ the store code������ the state

in which the store is located�� � and the product group of the item purchased������

Dataset�D� This is data from a department store� Each transaction has �ve attributes the store

identi�er����� the date of purchase����� the UPC of the product���� ��� the department number����

and the SKU number� ������

Dataset�E� This data is also from a department store� Each transaction has total of six attributes

the store number���� the date of purchase����� the item number�� ����� the business center� �� the

merchandising group����� � and a sequence number������ A seventh attribute the quantity of purchase

was used as the aggregating column�

Algorithms compared For providing a basis of evaluation� we choose the straightforward method of

computing each group�by in a cube as a separate group�by resulting in algorithms NaiveHash and NaiveSort

depending on whether group�bys are computed using hash�based or sort�based methods� We further compare

our algorithms against easy but possibly unachievable lower�bounds�

For the hash�based method the lower bound is obtained by summing up the following operations Compute

the bottom�most �level�N� group�by by hashing raw�data stored on disk� include the data partitioning cost

if any� Compute all other group�bys by hashing the smallest parent assumed to be in memory� ignore data

partitioning costs� Save all computed group�bys to disk�

For the sort�based method the lower bound is obtained by summing up the following operations Compute

the bottom�most �level�N� group�by by sorting the raw�data stored on disk� Compute all other group�bys
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from the smallest parent assumed to be in memory and sorted in the order of the group�by to be computed�

Save all computed group�bys�

Performance results Figure ��� shows the performance of the proposed PipeHash and PipeSort relative

to the corresponding naive algorithms and estimated lower bounds� The total execution time is normalized

by the time taken by the NaiveHash algorithm for each dataset to enable presentation on the same scale� In

�SAG� � we discuss the methods we used for estimating the size of each group�by and the hashing function

used with NaiveHash and PipeHash� We can make the following observations�

Our algorithms are two to eight times faster than the naive methods�

The performance of PipeHash is very close to our calculated lower bound for hash�based algorithms�

The maximum di�erence in performance is �(�

PipeSort is also close to the calculated lower bound for sort�based method in most cases� The maximum

gap between their performance is ��(�

For most of the datasets� PipeHash is inferior to the PipeSort algorithms� We suspected this to be an

artifact of these datasets� To further investigate the di�erence between them� therefore� we did a series

of experiments on a synthetically generated dataset described next�

�
� Comparing PipeSort and PipeHash

For the datasets in Table �� the sort�based method performs better than the hash�based method� For

Dataset�D� PipeSort is almost a factor of two better than PipeHash� Based on results in �GLS���� we had

expected the hash�based method to be comparable or better than the sort�based method� Careful scrutiny

of the performance data revealed that this deviation is because after some parent group�by is sorted we

compute more than one group�by from it whereas for the hash�based method we build a di�erent hash table

for each group�by� Even though we share the partitioning cost for the hash�based method� the partitioning

cost is not a dominant fraction of the total cost unlike sorting�

We conjectured that the hash�based method can perform better than the sort�based method when each

group�by results in a considerable reduction in the number of tuples� This is because the cost of hashing at

higher levels of aggregations can become a negligible fraction of the total cost when the number of tuples

reduces rapidly� To validate our conjecture that the performance di�erence between the hash�based method

and sort�based method is mainly due to the rate of decrease in the number of tuples as we aggregate along

more and more attributes� we took a series of measurements on synthetic datasets described below�

Synthetic datasets Each dataset is characterized by four parameters

�� Number of tuples� T �

�� Number of grouping attributes� N �

�� Ratio amongst the number of distinct values of each attribute d�  d�  � � �  dN �

�� A parameter� p� denoting the degree of sparsity of the data� It is de�ned as the ratio of T to the total

number of possible attribute value combinations� Thus� if Di denotes the number of distinct values of

attribute i� then p is de�ned as T��D� �D� � � �DN �� Clearly� higher the degree of sparsity �lower value

of p�� lower the reduction in the number of tuples after aggregation�
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Given these four parameters� the dataset is generated as follows� We �rst determine the total number of

values Di along each dimension i as

Di 	

�
T

p

� �
N di

�d� � d� � � � �� dN �
�
N

Then� for each of the T tuples� we choose a value for each attribute i randomly between � and Di�

Results We show the results for two sets of synthetic datasets with T is � million� N is �� For dataset

in Figure �� �a� the ratio between the number of distinct values of each attribute is �������� �large

variance in number of distinct values�� We vary the sparsity by changing p� The X�axis denotes decreasing

levels of sparsity and the Y �axis denotes the ratio between the total running time of algorithms PipeHash

and PipeSort� We notice that as the data becomes less and less sparse the hash�based method performs

better than the sort�based method� We repeated the same set of measurements for datasets with a di�erent

ratio� ����� �Figure �� �b��� We notice the same trend for datasets with very di�erent characteristics�

empirically con�rming that sparsity indeed is a predictor of the relative performance of the PipeHash and

PipeSort algorithms�
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Part II

� Contributions of this Part

We present a class of sorting�based methods for computing the CUBE that try to minimize the number of

disk accesses by overlapping the computation of the various cuboids� They make use of partially matching

sort orders to reduce the number of sorting steps required� Our experiments with an implementation of

these methods show that they perform well even with limited amounts of memory� In particular� they

always perform substantially better than the Independent and Parent method of computing the CUBE by

a sequence of group�by statements� which is currently the only option in commercial relational database

systems�

� Options for Computing the CUBE

Let R be a relation with k * � attributes fA��A�� � � � �Ak��g� Consider the computation of a CUBE on k

attributes X 	 fA��A�� � � � �Akg of relation R with aggregate function F ��� applied on Ak��� A cuboid on

j attributes S 	 fAi� �Ai� � � � � �Aij g is de�ned as a group�by on the attributes Ai� �Ai� � � � � � Aij using the

aggregate function F � This cuboid can be represented as a k*� attribute relation by using the special value

ALL for the remaining k� j attributes �GBLP� �� The CUBE on attribute set X is the union of cuboids on

all subsets of attributes of X� The cuboid �or group�by� on all attributes in X is called the base cuboid�

To compute the CUBE we need to compute all the cuboids that together form the CUBE� The base cuboid

has to be computed from the original relation� The other cuboids can be computed from the base cuboid due

to the distributive nature of the aggregation� For example� in a retail application relation with attributes

�Product	 Year	 Customer	 Sales�� sum of sales by �product	 customer� can be obtained by using sum of sales

by �product	 year	 customer�� There are di�erent ways of scheduling the computations of the cuboids

Multiple Independent Group�By Queries �Independent

Method�

A straightforward approach �which we call Independent� is to independently compute each cuboid from the

base cuboid� using any of the standard group�by techniques� Thus the base cuboid is read and processed for

each cuboid to be computed� leading to poor performance�

Hierarchy of Group�By Queries �Parent Method�

Consider the computation of di�erent cuboids for the CUBE on attributes fA�B�C�Dg� The cuboid fA�Cg

can be computed from the cuboid fA�B�Cg or the cuboid fA�C�Dg� since the aggregation function is

distributive� In general� a cuboid on attribute set X �called cuboid X� can be computed from a cuboid

on attribute set Y i� X � Y � One optimization is to choose Y to be as small as possible to reduce cost
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of computation� We use the heuristic of computing a cuboid with k � � attributes from a cuboid with k

attributes� since cuboid size is likely to increase with additional attributes� For example� it is better to

compute sum of sales by �product� using sum of sales by �product	 customer� rather than sum of sales by

�product	 year	 customer��

We can view this hierarchy as a DAG where the nodes are cuboids and there is an edge from a k attribute

cuboid to a k � � attribute cuboid i� the k � � attribute set is a subset of the k attribute set� The DAG

captures the 
consider�computing�from� relationship between the cuboids� The DAG for the CUBE on

fA�B�C�Dg is shown in Figure ����

In the Parent method each cuboid is computed from one of its parents in the DAG� This is better than the

Independentmethod since the parent is likely to be much smaller than the base cuboid� which is the largest

of all the cuboids�

Overlap Method

This is a further extension of the idea behind the Parentmethod� While the Independent and Parentmethods

are currently in use by Relational OLAP tools� the Overlap method cannot be used directly by a standard

SQL database system and to our knowledge it has not appeared in the literature to date� As in the Parent

method� the Overlap method computes each cuboid from one of its parents in the cuboid tree� It tries to do

better than Parent by overlapping the computation of di�erent cuboids and using partially matching sort

orders� This can signi�cantly reduce the number of I'Os required� The details of this scheme are explained

in Section ��

�
� Computing the Group�bys using Sorting

In relational query processing� there are various methods for computing a group�by� such as sorting or

hashing �Eps��� Gra��� SN���� These methods can be used to compute one cuboid from another� We

concentrate on sorting based methods in this chapter� though we believe that hashing could also be used

similarly� Computing a CUBE requires computation of a number of cuboids �group�bys�� Sorting combined

with Overlap seems to be a good option due to the following observations which help in reducing the number

of sorting steps�

Cuboids can be computed from a sorted cuboid in sorted order�

An existing sort order on a cuboid can be used while computing other cuboids from it� For example�

consider a cuboid X 	 fA�B�Dg to be computed from Y 	 fA�B�C�Dg� Let Y be sorted in ABCD

order which is not the same as ABD order needed to compute X� But Y need not be resorted to

compute X� The existing order on Y can be used� The exact details are explained in Section ��

 The Overlap Method

The method we propose for CUBE computation is a sort�based overlap method� Computations of di�erent

cuboids are overlapped and all cuboids are computed in sorted order� In this chapter we give only a short
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description of our method� More details can be found in �AAD�� b�� We �rst de�ne some terms which will

be used frequently�

Sorted Runs � Consider a cuboid on j attributes fA��A�� � � � �Ajg� We use �A��A�� � � � �Aj� to de�

note the cuboid sorted on the attributes A�� A�� � � �� Aj in that order� Consider the cuboid S 	

�A��A�� � � � � Al���Al��� � � � �Aj� computed using B 	 �A��A�� � � � �Aj�� A sorted run R of S in B is de�

�ned as follows R 	 "A��A������Al�� �Al�� �����Aj �Q� where Q is a maximal sequence of tuples � of B such

that for each tuple in Q� the �rst l columns have the same value� Informally a sorted run of S in B is a

maximal run of tuples in B whose ordering is consistent with their ordering in the sort order associated with

S�

For example� consider B 	 ��a� �� ��� �a� �� ��� �a� �� ��� �b� �� ��� �b� �� ��� �c��� ���� Let S be the cuboid on the

�rst and third attribute� i�e�� S 	 ��a� ��� �a� ��� �b� ����b� ��� �c� ���� The sorted runs for S are ��a� ��� �a� ����

��a� ���� ��b� ���� ��b� ��� and ��c�����

Partitions � B and S have a common pre�x of A��A�� � � � �Al��� A partition of the cuboid S in B is a

union of sorted runs such that the �rst l�� columns �the common pre�x� of all the tuples of the sorted runs

have the same value� In the above example� the partitions for S in B will be ��a� ��� �a� ���� ��b� ��� �b� ��� and

��c�����

This de�nition implies that all tuples of one partition are either less or greater than all tuples of any other

partition� Tuples from di�erent partitions will not merge for aggregation� Thus partition becomes a unit of

computation and each partition can be computed independently of the others�


� Overview of the Overlap Method

The overlap method is a muti�pass method� In each pass� a set of cuboids is selected for computing under

memory constraints� These cuboids are computed in a overlapped manner� The tuples generated for a cuboid

are used to compute its descendents in the DAG� This pipelining reduces the number of scans needed� The

process is repeated until all cuboids get computed�

The algorithm begins by sorting the base cuboid� All other cuboids can be directly computed in sorted order

without any further sorting� Instead of re�sorting for each cuboid� the existing sorted runs are merged to

create the cuboid� This reduces the number of comparisons as well� Suppose the base cuboid for the CUBE

on fA�B�C�Dg is sorted in the order �A�B�C�D�� This decides the sort order in which the other cuboids

get computed� The sort orders for the other cuboids of fA�B�C�Dg are shown in the Figure ���� A few

heuristics for choosing this sort order are mentioned in �AAD�� b��

Computation of each cuboid requires some amount of memory� If there is enough to memory to hold all the

cuboids� then the entire CUBE can be computed in one scan of the input relation� But often� this is not

the case� The available memory may be insu�cient for large CUBEs� Thus� to get the maximum overlap

across computations of di�erent cuboids� we could try to reduce the amount of memory needed to compute

a particular cuboid� Since partition can be a unit of computation� while computing a cuboid from another

sorted cuboid we just need memory su�cient to hold a partition of the cuboid� As soon as a partition
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Figure 	� Sort orders enforced on the cuboids

is completed� the tuples can be pipelined into the computation of descendant cuboids� or written out to

disk� the same memory can then be used to start computation of the next partition� This is a signi�cant

reduction since for most cuboids the partition size is much less than the size of the cuboid� For example�

while computing �A�B�C� and �A�B�D� from �A�B�C�D� the partition size for �A�B�C� is � tuple �since

�A�B�C� sort order matches �A�B�C�D� sort order� whereas the partition size for �A�B�D� is bounded by

the number of distinct values of D� So for computing these we just need space su�cient to hold a partition�

Thus computation of many cuboids can be overlapped in the available memory e�ectively reducing the

number of scans�


� Details

Choosing a Parent to Compute a Cuboid

Each cuboid in the cuboid DAG has more than one parent from which it could be computed� We need to

choose one of these parents thus converting the DAG to a rooted tree� The root of the tree is the base

cuboid and each cuboid�s parent is the cuboid to be used for computing it� For example� one possible tree

for computing the DAG in Figure ��� is as shown in Figure ����

There are many possible trees� The goal in choosing a tree is to minimize the size of the partitions of a cuboid

so that minimum memory is needed for its computation� For example� it is better to compute �A�C� from

�A�C�D� rather than �A�B�C�� This is because �A�C�D� sort order matches the �A�C� sort order and the

partition size is �� This is generalized to the following heuristic Consider the cuboid S 	 �Ai� �Ai� � � � � �Aij ��

where the base cuboid is �A��A�� � � � �Ak�� S can be computed from any cuboid with one additional attribute�

say Al� Our heuristic is to choose the cuboid with the largest value of l to compute S� Maximizing the

size of the common pre�x minimizes the partition size� The tree in Figure ��� is obtained by using this

heuristic� Note that among the children of a particular node� the partition sizes increase from left to right�

For example� partition size for computing �A�B�C� from �A�B�C�D� is � whereas the partition size for

�B�C�D� is the maximum �equal to size of the cuboid �B�C�D� itself��
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 Estimates of Partition Sizes

Choosing a Set of Cuboids for Overlapped Computation

The next step is to choose a set of cuboids that can be computed concurrently within the memory constraints�

To compute a cuboid in memory� we need memory equal to the size of its partition� We assume that we have

estimates of sizes of the cuboids� The partition sizes can be estimated from these using uniform distribution

assumption �AAD�� b�� If this much memory can be allocated� the cuboid will be marked to be in Partition

state� For some other cuboids it may be possible to allocate one page of memory� These cuboids will be

SortRun state� The allocated page can be used to write out sorted runs for this cuboid on disk� This will

save a scan of the parent when the cuboid has to be computed� These sorted runs are merged in further

passes to complete the computation�

Given any subtree of a cuboid tree and the size of memory M � we need to mark the cuboids to be computed

and allocate memory for their computation� When a cuboid is in Partition state� its tuples can be pipelined
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for computing the descendent cuboids in the same pass� This is not true for SortRun state� Thus we have

the following constraints

C�� A cuboid can be considered for computation if either its parent is the root of the subtree �this means

either the parent cuboid itself or sorted�runs for the parent cuboid have been materialized on the disk��

or the parent has been marked as being in the Partition state�

C�� The total memory allocated to all the cuboids should not be more than the available memory M�

There are a large number of options for selecting which cuboids to compute and in what state� The cost

of computation depends critically on the choices made� When a cuboid is marked in SortRun state there is

an additional cost of writing out the sorted runs and reading them to merge and compute the cuboids in

the subtree rooted at that node� We have shown that �nding an overall optimal allocation scheme for our

cuboid tree is NP�hard �AAD�� b� � So� instead of trying to �nd the optimal allocation we do the allocation

by using the heuristic of traversing the tree in a breadth �rst �BF� search order

Cuboids to the left have smaller partition sizes� and require less memory� So consider these before

considering cuboids to the right�

Cuboids at a higher level tend to be bigger� Thus� these should be given higher priority for allocation

than cuboids at a lower level in the tree�

Because of the constraints there may be some subtrees that remain uncomputed� These are considered

in subsequent passes� using the same algorithm to allocate memory and mark cuboids� Thus� when the

algorithm terminates� all cuboids have been computed�

Computing a Cuboid From its Parent

This section describes the actual method of computation for the chosen cuboids� Every cuboid �say S�

other than the base cuboid is computed from its parent in the cuboid tree �say B�� If a cuboid has been

marked in Partition state it means that we have su�cient memory to �t the largest partition of S in memory�

We can compute the entire cuboid S in one pass over B and also pipeline the tuples generated for further

computation if necessary� However� if the cuboid is marked to be in SortRun state� we can write out sorted

runs of S in this pass� Writing out the sorted runs requires just one page of memory� The algorithm for

computing a cuboid is speci�ed below 

ComputeCuboid�

Output The sorted cuboid S�

foreach tuple � of B do

if �state 		 Partition� then

process partition���

else

process sorted run���

endif

end of cuboid��

endfor
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The process partition�� procedure is as follows

If the input tuple starts a new partition� output the current partition at the end of the cuboid� start a

new one and make it current�

If the input tuple matches with an existing tuple in the partition then recompute the aggregate of the

existing tuple using the old aggregate value and the input tuple�

If the input tuple is not the same as any existing tuple then insert the input tuple into the current

partition at the appropriate location to maintain the sorted order of the partition�

The process sort run�� procedure is as follows

If the input tuple starts a new sorted run� !ush all the pages of the current sorted run� start a new

sorted run and make it current�

If the input tuple matches with the last tuple in the sorted run then recompute the aggregate of the

last tuple using the old aggregate value and the input tuple�

If the input tuple does not match with the last tuple of the sorted run� append the tuple to the end

of the existing run� If� there is no space in the allocated memory for the sorted run� we !ush out the

pages in the memory to the end of the current sorted run on disk� Continue the sorted run in memory

with the input tuple�

The end of cuboid�� processing writes the �nal partition or sorted run currently in memory to disk� For

the case of the Partition state� the cuboids get computed completely in the �rst pass� For SortRun� we now

have a set of sorted runs on disk� We compute such a cuboid by merging these runs� like the merge step of

external sort� aggregating duplicates if necessary� This step is combined with the computation of cuboids

that are descendants of that cuboid� The runs are merged and the result pipelined for further computation

�of descendants�� Note that computation of a cuboid in the SortRun state involves the additional cost of

writing out and merging the runs� Further� the child cuboids cannot be computed during the run�creation

phase� and must be computed during the subsequent merging phase� as noted above�


� Example computation of a CUBE

Consider the CUBE to be computed on fA�B�C�Dg� The tree of cuboids and the estimates of the partition

sizes of the cuboids are shown in Figure ���� If the memory available is �� pages� BF allocation will generate

three subtrees� each of which is computed in one pass� These subtrees are shown in Figure ����� In the

second and third steps the cuboids �B�C�D� and �C�D� are allocated �� pages as there are � sorted runs

to merge�

Comparison with Independent and Parent method

The cost of writing out the computed cuboids is common to all the schemes� The only additional cost in this

case was of writing the sorted runs of �B�C�D� and �C�D� and merging these sorted runs� The Independent

scheme would have required � scans and sorts of the base cuboid �once for each cuboid to be computed�

and the Parent scheme would require a number of scans and sorts of each non�leaf cuboid in the tree �one

for each of its children�� Thus our scheme incurs fewer I'Os and less computation compared to these two�
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Figure 	�� Steps of the algorithm

� Implementation and Results

To test how well our algorithm performs� we implemented a stand�alone version of the algorithm and tested

it for varying memory sizes and data distributions� All the experiments were done on a Sun SPARC ��

machine running SUN�OS or Solaris� The implementation uses the �le system provided by the OS� All reads

and writes to the �les were in terms of blocks corresponding to the page size� Performance was measured

in terms of I'Os by counting the number of page read and page write requests generated by the algorithm

and is thus independent of the OS� A detailed performance study is described in �AAD�� b�� We mention

only a few important experiments here�

Unless otherwise mentioned� the data for the input relation was generated randomly� The values for each

attribute is independently chosen uniformly from a domain of values for that attribute� Each tuple has six

attributes and the CUBE is computed on �ve attributes with the aggregation �computing the sum� on the

sixth attribute� Each CUBE attribute has �� distinct values� Each tuple is �� bytes wide� The page size

used was �K�

�
� Comparison with Independent and Parent methods

To illustrate the gains of our algorithm over other methods� we compare the performance of our algorithm

with the Independent and Parent methods described before� We varied di�erent parameters like memory

size� relation size� data distribution and the number of attributes on which the CUBE is computed�

Di�erent data distributions

In order to run experiments that �nished in a reasonable amount of time� for the bulk of our experiments

the relation size was kept constant at ���� ��� tuples ���� MByte�� While this is quite small� the important

performance parameter in our algorithm is the ratio of the relation size and the memory size� To compensate

for an arti�cially small input relation size� we used very small memory sizes� varying from a low of ��� pages
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���� KByte� to a high of ���� pages �� MB�� Section ���� shows that the performance characteristics of the

algorithms we tested are unchanged if you scale the memory and data size to more realistic levels� For each

of the methods� we plotted the sum of the number of reads and writes�

The graph in Figure ���� shows the performance of the three algorithms for uniform data� Figure ���� is for

non�uniform data which is generated using zipf distribution for the attribute values� Values for A and B were

chosen with a zipf factor of �� C with a factor of �� and D and E with a factor of � �uniform distribution�
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�� Scale up  I�Os

The graphs in Figures ���� and ���� show that our method achieves a signi�cant improvement over the

Independent and Parent methods for both uniform and non�uniform data� There are some spikes in the

graph in Figure ����� For example� the I'O performance at memory size ����K is worse than that at ����K

for our algorithm� This only shows that the breadth��rst heuristic that we are using for memory allocation

is not always optimal�

The graphs also show that choosing a proper sort order is important� For non�uniform data� sort order �ED�

CBA� is better than the order �ABCDE�� This is due to di�erent degrees of skewness in di�erent attributes�

Scaleup Experiments

We performed some experiments to check how our method scales for larger input sizes with proportionately

larger memory sizes� The relation size was varied from ������� ����M� to �������� tuples ��� M�� The

memory used for each case was about ��( of the relation size� The graph in Figure ���� shows that the

performance characteristics of the algorithms we consider are unchanged when the data sets are scaled to

more realistic levels�

�
� Relation between Memory and Input size for Overlap

method

We performed some experiments to study how our method performs for di�erent ratios of memory to the

input size�
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Varying Memory

Figure ���� plots the number of Reads and Writes for computing CUBE for a input size of ������� tuples

����MB�� The memory is varied from ���K to �MB� From the graphs in Figure ����� it is clear that the

I'Os decrease with increasing memory since more and more cuboids are computed simultaneously� avoiding

excess reading and writing of sorted runs� We observe that even for very low memory sizes� the number of

writes is only slightly more than the size of CUBE and the number of reads is within two times the input

relation size� This shows that we are getting near optimal performance with respect to number of I'Os�

Varying Relation size

In the other experiment� the memory was kept constant at ��� pages ����K�� The input relation size was

varied from ����� to ���� ��� tuples� Each attribute has �� distinct values� The graph is shown in the

Figure ����� The X axis represents the size of the relation in bytes� On the Y axis� we plot the following

ratios�

�� Number of Writes

Size of the CUBE in Pages

�� Number of Reads
Size of the Input Relation in Pages

Any algorithm to compute the cube has to scan the input and write out the results� Hence these ratios give

an idea of how close the algorithm is to ideal� Since the memory size is ���K� for relations of size up to

���K� the performance is ideal� For bigger relations� the performance degrades slowly as the partitions no

longer �t in memory and sorted runs have to be written out for many cuboids� The spikes show that the

BF allocation may be non�optimal in some cases�
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�� Conclusions and Summary

��
� Summary of part I

We presented two algorithms for computing the data cube� Our algorithms extend the sort�based and hash�

based methods for computing group�bys with �ve optimizations smallest�parent� cache�results� amortize�

scans� share�sorts and share�partitions� These optimizations are often con!icting� Our proposed algorithms

combine them so as to reduce the total cost� The sort�based algorithm� called PipeSort� develops a plan

by reducing the problem to a minimum weight matching problem on a bipartite graph� The hash�based

algorithm� called PipeHash� develops a plan by �rst creating the minimum spanning tree showing what

group�by should be generated from what and then choosing a partitioning that takes into account memory

availability�

Measurements on �ve real�life olap datasets yielded a factor of two to eight improvement with our algorithms

over straightforward methods of computing each group�by separately� Although the PipeHash and PipeSort

algorithms are not provably optimum� comparison with conservatively calculated lower bounds show that

the PipeHash algorithm was within �( and the PipeSort algorithm was within ��( of these lower bounds

on several datasets� We further experimented with the PipeHash and PipeSort algorithms using a tunable

synthetic dataset and observed that their relative performance depends on the sparsity of data values�

PipeHash does better on low sparsity data whereas PipeSort does better on high sparsity data� Thus� we

can choose between the PipeHash and PipeSort algorithms for a particular dataset based on estimated

sparsity of the dataset�

We extended the cube algorithms to compute a speci�ed subset of the �N group�bys instead of all of them�

Our proposed extension considers intermediate group�bys that are not in the desired subset for generating
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the best plan� We also extended our algorithms for computing aggregations in the presence of hierarchies

on attributes� These extensions are discussed in �SAG� ��

��
� Summary of Part II

In this part we have examined various schemes to implement the CUBE operator� Sorting�based methods

exploit the existing ordering to reduce the number of sorts� Also� pipelining can be used to save on reads�

We have presented one particular sorting based scheme called Overlap� This scheme overlaps the

computation of di�erent cuboids and minimizes the number of scans needed� It uses estimates about

cuboid sizes to determine a 
good� schedule for the computation of the cuboids if the estimates are

fairly accurate�

We implemented the Overlap method and compared it with two other schemes�From the performance

results� it is clear that our algorithm is a de�nite improvement over the Independent and the Parent

methods� The idea of partitions allows us to overlap the computation of many cuboids using minimum

possible memory for each� By overlapping computations and making use of partially matching sort

orders� our algorithms will perform much better than the Independent and Parent method� irrespective

of what heuristic is used for allocation�

The Overlap algorithm gives reasonably good performance even for very limited memory� Though these

results are for relatively small relations� the memory used was also relatively small� Scaleup experiments

show that similar results should hold for larger relations with more memory available� Very often we

may not want to compute all the cuboids� This can be handled in our algorithm by deleting nodes which

are not to be computed from the cuboid tree� Results show that the algorithm gives good performance

even for this case�

We have shown that the optimal allocation problem is NP�hard� We have therefore used a heuristic

allocation �BF� in our algorithm� The results suggest that the heuristics yield performance close to

that of optimal allocation in most cases�

��
� Comparison of PipeSort and Overlap

The PipeSort method takes into account the size of a group�by while selecting a parent with the aim of

reducing both scanning cost and sorting cost� It views this as a matching problem to choose the optimal

parent and sort order for each group�by� It may thus use more than one sort order�

The Overlap method on the other hand uses a single sort order� This helps in setting up multiple pipelines

�as against the single pipeline of the PipeSort method� to achieve more overlap using Partitions� While

choosing a parent� it tries to get maximum match in their sort orders� However� unlike PipeSort� it does not

consider the size of the group�bys�

We have not compared the performance of these two methods� As future work� we plan to study their

relative merits� and consider how their best features can be combined�
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SUMMARY TABLES IN A WAREHOUSE
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ABSTRACT

Data warehouses contain large amounts of information� often collected from a variety of independent sources�

Decision�support functions in a warehouse� such as on�line analytical processing �OLAP�� involve hundreds

of complex aggregate queries over large volumes of data� It is not feasible to compute these queries by

scanning the data sets each time� Warehouse applications therefore build a large number of summary tables�

or materialized aggregate views� to help them increase the system performance�

As changes� most notably new transactional data� are collected at the data sources� all summary tables at

the warehouse that depend upon this data need to be updated� Usually� source changes are loaded into the

warehouse at regular intervals� usually once a day� in a batch window� and the warehouse is made unavailable

for querying while it is updated� Since the number of summary tables that need to be maintained is often

large� a critical issue for data warehousing is how to maintain the summary tables e�ciently�

In this chapter we propose a method of maintaining aggregate views �the summary�delta table method�� and

use it to solve two problems in maintaining summary tables in a warehouse ��� how to e�ciently maintain

a summary table while minimizing the batch window needed for maintenance� and ��� how to maintain a

large set of summary tables de�ned over the same base tables� We show that much of the work required for

maintaining one summary table by the summary�delta method can be re�used in maintaining other summary

tables� so that a set of summary tables can be maintained e�ciently�

While several papers have addressed the issues relating to choosing and materializing a set of summary

tables� this is the �rst chapter to address maintaining summary tables e�ciently�

� Introduction

Data warehouses contain information that is collected from multiple� independent data sources and in�

tegrated into a common repository for querying and analysis� Often� data warehouses are designed for

on�line analytical processing

��
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�OLAP�� where the queries aggregate large volumes of data in order to detect trends and anomalies� In

order to speed up query processing in such environments� warehouses usually contain a large number of

summary tables� which represent materialized aggregate views of the base data collected from the sources�

The summary tables group the base data along various dimensions� corresponding to di�erent sets of group�

by attributes� and compute various aggregate functions� often called measures� As an example� the cube

operator �GBLP� � can be used to de�ne several such summary tables with one statement�

As changes are made to the data sources� the warehouse views must be updated to re!ect the changed

state of the data sources� The views either can be recomputed from scratch� or incremental maintenance

techniques �BC��� SI��� RK� b� BLT� � Han��� SP��b� QW��� Qua� � CW��� GMS��� GL��� LMSS��b�

ZGMHW��� can be used to calculate the changes to the views due to the source changes� It is common in a

data warehousing environment for source changes to be deferred and applied to the warehouse views in large

batches for e�ciency� Source changes received during the day are applied to the views in a nightly batch

window� during which time the warehouse is unavailable to readers�

The nightly batch window involves updating the base tables �if any� stored at the warehouse� and maintaining

all the materialized summary tables� The problem with this approach is that the warehouse is typically

unavailable to readers while the views are being maintained� due to the large number of updates that need

to be applied� Since the warehouse must be made available to readers again by the next morning� the

time required for maintenance is often a limiting factor in the number of summary tables that can be made

available in the warehouse� Because the number of summary tables available has such a signi�cant impact

on OLAP query performance� maintaining the summary tables e�ciently is crucial�

This chapter addresses the issue of e�ciently maintaining a set of summary tables in a data warehouse�

Using e�cient incremental maintenance techniques� it is possible to increase the number of summary tables

available in the warehouse� or alternatively� to decrease the time that the warehouse is unavailable to readers�

The chapter includes the following contributions

We propose a new method� called the summary�delta tables method� for maintenance of aggregate views�

The summary�delta tables method represents a new paradigm for incremental view maintenance�

A general strategy to minimize the batch time needed for maintenance is to split the maintenance work

into propagate and refresh functions� Propagate can occur outside the batch window� while refresh

occurs inside the batch window� The propagate and refresh split for relational algebra was originally

presented and formalized in �CGL�� �� We use the propagate and refresh approach of �CGL�� �� and

extend it to aggregate views by giving algorithms that split the maintenance work required for summary

tables into propagate and refresh functions�

We show how multiple summary tables can be related so that their maintenance can take advantage of

the computation done to maintain other summary tables�

Chapter outline� Section � presents a motivating example illustrating the importance of e�cient incre�

mental maintenance of summary tables� Background and notation is given in Section �� Section � presents

propagate and refresh functions for maintaining individual summary tables� Section � explains how mul�

tiple summary tables can be maintained e�ciently together� A performance study of the summary�delta

table method� based upon an experimental implementation� is presented in Section  � Related work and

conclusions appear in Section ��
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� Motivating Example

Consider a warehouse of retail information� with point�of�sale �pos� data from hundreds of stores� The point

of sale data is stored in the warehouse in a large pos table� called a fact table� that contains a tuple for each

item sold in a sales transaction� Each tuple has the format

pos�storeID� itemID� date� qty� price��

The attributes of the tuple are the id of the store selling the item� the id of the item sold� the date of the

sale� the quantity of the item sold� and the selling price of the item� The pos table is allowed to contain

duplicates� for example� when an item is sold in di�erent transactions in the same store on the same date�

In addition� a warehouse will often store dimension tables� which contain information related to the fact

table� Let the stores and items tables contain store information and item information� respectively� The

key of stores is storeID� and the key of items is itemID�

stores�storeID� city� region��

items�itemID� name� category� cost��

Data in dimension tables often represents dimension hierarchies� A dimension hierarchy is essentially a set

of functional dependencies among the attributes of the dimension table� For our example we will assume

that in the stores dimension hierarchy� storeID functionally determines city� and city functionally determines

region� In the items dimension hierarchy� itemID functionally determines name� category� and cost�

In order to answer aggregate queries quickly� a warehouse will often store a number of summary tables�

which are materialized views that aggregate the data in the fact table� possibly after joining it with one or

more dimension tables� Figure ��� shows four summary tables� each de�ned as a materialized SQL view�

We assume that these views have been chosen to be materialized� either by the database administrator� or

by using an algorithm such as �HRU� ��

Note that the names of the views have been chosen to re!ect the group�by attributes� The character S

represents storeID� I represents itemID� and D represents date� The notation sC represents the city for a

store� sR represents the region for a store� and iC represents the category for an item� For example� the

name SiC sales implies that storeID and category are the group�by attributes in the view de�nition�

The views of Figure ��� could represent four of the possible points on a 
data cube� as described in �GBLP� ��

except for the use of date as both a dimension and a measure� Another di�erence between this chapter and

previous work on data cubes is that in previous work the data being aggregated comes solely from the fact

table� with dimension hierarchy information obtained implicitly� As mentioned earlier� data warehouses

typically store dimension hierarchy information explicitly in dimension tables� in this chapter we extend the

data�cube concept to include explicit joins with dimension tables �see Section �����

As sales are made� changes representing the new point�of�sale data come into the warehouse� As mentioned

in Section �� most warehouses do not apply the changes immediately� Instead� changes are deferred and

applied to the base tables and summary tables in the warehouse at night in a single batch� Deferring the
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CREATE VIEW SID sales�storeID� itemID� date� TotalCount� TotalQuantity� AS

SELECT storeID� itemID� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity

FROM pos

GROUPBY storeID� itemID� date

CREATE VIEW sCD sales�city� date� TotalCount� TotalQuantity� AS

SELECT city� date� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity

FROM pos� stores

WHERE pos�storeID 	 stores�storeID

GROUPBY city� date

CREATE VIEW SiC sales�storeID� category� TotalCount� EarliestSale� TotalQuantity� AS

SELECT storeID� category� COUNT��� AS TotalCount� MIN�date� AS EarliestSale� SUM�qty� AS TotalQuantity

FROM pos� items

WHERE pos�itemID 	 items�itemID

GROUPBY storeID� category

CREATE VIEW sR sales�region� TotalCount� TotalQuantity� AS

SELECT region� COUNT��� AS TotalCount� SUM�qty� AS TotalQuantity

FROM pos� stores

WHERE pos�storeID 	 stores�storeID

GROUPBY region

Figure �� Example summary tables

changes allows analysts that query the warehouse to see a consistent snapshot of the data throughout the

day� and can make the maintenance more e�cient�

Although it is often the case that changes to a warehouse involve only insertions� for the sake of example

in this chapter we will assume that the changes involve both insertions and deletions� In order to correctly

maintain an aggregate view in the presence of deletions it is necessary to include a COUNT��� aggregate

function in the view� Having COUNT��� makes it possible to determine when all tuples in a group have been

deleted �i�e�� when COUNT��� for the group becomes ��� implying the deletion of the tuple for the group in

the view� We have included COUNT��� explicitly in the example views above� but it also could be added

implicitly when the view is materialized in the warehouse�

For simplicity of presentation� we will usually assume in this chapter that maintenance is performed in

response to changes only to the fact table� and that the columns being aggregated do not include null values�

However� the algorithms we present are easily extended to handle changes also to the dimension tables� as

well as nulls in the aggregated columns� The e�ect of changes to dimension tables is considered in Section �� �

and the e�ect of nulls in the aggregated columns is considered in Section ����
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�
� Maintaining a single summary table

We will illustrate the summary�delta table method through an example� using it to maintain the SID sales

summary table of Figure ���� Later in Section ���� we show that much of the work in maintaining SID sales

can be re�used to maintain the other summary tables in the �gure� The complete algorithms for maintaining

a single summary table and a set of summary tables appear in Sections � and � respectively�

An important aspect of our maintenance algorithm is that the maintenance process is divided into two func�

tions propagate and refresh� The work of computing a summary�delta table happens within the propagate

function� which can take place without locking the summary tables so that the warehouse can continue to be

made available for querying by analysts� Summary tables are not locked until the refresh function� during

which time the summary table is updated from the summary�delta table�

Propagate� The propagate function involves creating a summary�delta table from the deferred set of

changes� The summary�delta table represents the net changes to the summary table due to the changes to

the fact table� Let the deferred set of insertions be stored in table pos ins and the deferred set of deletions

be stored in table pos del� Then the summary�delta table is derived using the following SQL statement�

without accessing the base pos table�

CREATE VIEW sd SID sales �storeID� itemID� date� sd Count�

sd Quantity� AS

SELECT storeID� itemID� date� SUM� count� AS sd Count�

SUM� quantity� AS sd Quantity

FROM � �SELECT storeID� itemID� date� � as count�

qty as quantity

FROM pos ins�

UNION ALL

�SELECT storeID� itemID� date� �� as count�

�qty as quantity

FROM pos del� �

GROUPBY storeID� itemID� date

To compute the summary�delta table� we �rst perform a projection on the inserted and deleted tuples so

that we have � for count and qty for quantity from the inserted tuples� and the negative of those values from

the deleted tuples� We then take the union of this result and aggregate it� grouping by the same group�by

attributes as in the summary table� The resulting aggregate function values represent the net changes to the

corresponding aggregate function values in the summary table� The propagate function is explained fully in

Section ����

Refresh� The refresh function applies the net changes represented in the summary�delta table to the

summary table� The function to refresh SID sales appears in Figure ���� and is described below� It takes

as input the summary�delta table sd SID sales� and the summary table SID sales� and updates the summary

table to re!ect the changes in the summary�delta table� For simplicity� we assume here that there are no

null values in pos� Null values will be considered later when deriving the generic refresh algorithm�
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The refresh function has been designed to run quickly� Except for certain cases involving MIN and MAX

�see Section ����� the refresh function does not require access to the base pos table� and all aggregation is

performed in the propagate function� Each tuple in the summary�delta table causes a single update to the

summary table� and each tuple in the summary table is updated at most once�

For each tuple �t in sd SID sales

Let tuple t 	

�SELECT �

FROM SID sales d

WHERE d�storeID 	 �t�storeID AND d�date 	 �t�date AND d�itemID 	 �t�itemID�

If t is not found�

Insert tuple �t into SID sales

Else '� if t is found �'

If �t�sd Count * t�TotalCount	 ��

Delete tuple t from SID sales

Else

Update tuple t�TotalCount *	 �t�sd Count�

t�TotalQuantity *	 �t�sd Quantity

Figure �� Refresh function for SID sales�

Intuitively� the refresh function of Figure ��� can be written as an embedded SQL program using cursors

as follows� A cursor c� is opened to iterate over each tuple �t in the summary�delta table sd SID sales� For

each �t� a query is issued and a second cursor c� is opened to �nd a matching tuple t in the summary table

SID sales �there is at most one matching t since the match is on the group�by attributes�� If a matching

tuple t is not found� then the �t tuple is inserted into the summary table� Otherwise� if t is found it is

updated or deleted using cursor c�� depending upon whether all tuples in t�s group have been deleted� The

refresh function is explained fully in Section ���� including an explanation of how it can be optimized when

certain integrity constraints on the changes hold�

�
� Maintaining multiple summary tables

We now give propagate functions that create summary deltas for the remaining summary tables of Fig�

ure ���� E�ciently maintaining multiple summary tables together allows more opportunity for optimization

than maintaining each summary table individually� because the summary�delta table computed for the main�

tenance of one summary table often can be used to compute summary�delta tables for other summary tables�

Since a summary�delta table already involves some aggregation over the changes to the base tables� it is likely

to be smaller than the changes themselves� so using a summary�delta table to compute other summary�delta

tables will likely require fewer tuple accesses than computing each summary�delta table from the changes

directly�
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The queries de�ning summary�delta tables for sCD sales� SiC sales� and sR sales are shown in Figure ����

The summary�delta tables for sCD sales and SiC sales both reference the summary�delta table for SID sales�

and the summary�delta table for sR sales references the summary�delta table for sCD sales�

CREATE VIEW sd sCD sales�city� region� date� sd Count� sd Quantity� AS

SELECT city� region� date� SUM�sd Count� AS sd Count� SUM�sd Quantity� AS sd Quantity

FROM sd SID sales� stores

WHERE sd SID sales�storeID 	 stores�storeID

GROUPBY city� region� date

CREATE VIEW sd SiC sales�storeID� category� sd Count� sd EarliestSale� sd Quantity� AS

SELECT storeID� category� SUM�sd Count� AS sd Count� MIN�date� AS sd EarliestSale�

SUM�sd Quantity� AS sd Quantity

FROM sd SID sales� items

WHERE sd SID sales�itemID 	 items�itemID

GROUPBY storeID� category

CREATE VIEW sd sR sales�region� sd Count� sd Quantity� AS

SELECT region� sum�sd Count� AS sd Count� SUM�sd Quantity� AS sd Quantity

FROM sd sCD sales

GROUPBY region

Figure �� Propagate Functions

Note that the summary�delta table sd sCD sales includes the region attribute� which is not necessary to

maintain sCD sales� Region is included so that later in the de�nition of sd sR sales we do not need to join

sd sCD sales with stores� Including region in sd sCD sales does not a�ect the maintenance of sCD sales

because in the dimension hierarchy for cities we have speci�ed that city functionally determines region�

i�e�� every city belongs to a single region� so grouping by �city� region� date� results in the same groups as

grouping by �city� date��

The refresh functions corresponding to the summary�delta tables of Figure ��� are not given in this section�

In general they follow in a straightforward fashion from the example refresh function for SID sales given in

Section ���� with the exception of the MIN aggregate function in SiC sales� In Section ��� we show how the

refresh function handles MIN and MAX aggregate functions�

� Background and Notation

In this section we review the concepts of self�maintainable aggregate functions �Section ����� data cube

�Section ����� and the computation lattice corresponding to a data cube �Section �����
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�
� Self�maintainable aggregate functions

In �GBLP� �� aggregate functions are divided three classes distributive� algebraic� and holistic� Distributive

aggregate functions can be computed by partitioning their input into disjoint sets� aggregating each set

individually� then further aggregating the �partial� results from each set into the �nal result� Amongst

the aggregate functions found in standard SQL� COUNT� SUM� MIN� and MAX are distributive� For example�

COUNT can be computed by summing partial counts� Note however� if the DISTINCT keyword is used� as in

COUNT�DISTINCT E� �count the distinct values of E� then these functions are no longer distributive�

Algebraic aggregate functions can be expressed as a scalar function of distributive aggregate functions�

Average is algebraic� since it can be expressed as SUM'COUNT� From now on we will assume that if a view

is supposed to contain the AVG aggregate function� the materialized view will contain instead the SUM and

COUNT functions�

Holistic aggregate functions cannot be computed by dividing into parts� Median is an example of a holistic

aggregate function� We will not consider holistic functions in this chapter�

De�nition 	�� �Self�maintainable aggregates�� A set of aggregate functions is self�maintainable if the

new value of the functions can be computed solely from the old values of the aggregation functions and from

the changes to the base data� Aggregate functions can be self�maintainable with respect to insertions� with

respect to deletions� or both�

In order for an aggregate function to be self�maintainable it must be distributive� In fact� all distributive

aggregate functions are self�maintainable with respect to insertions� However� not all distributive aggregate

functions are self�maintainable with respect to deletions� The COUNT��� function can help to make certain

aggregate functions self�maintainable with respect to deletions� by helping to determine when all tuples in

the group �or in the full table if a group�by is not performed� have been deleted� so that the grouped tuple

can be deleted from the view�

The function COUNT��� is always self�maintainable with respect to deletions� Including COUNT��� also makes

the function COUNT�E�� �count the number of non�null values of E�� self�maintainable with respect to dele�

tions� If nulls are not allowed in the input� then COUNT��� also makes SUM�E� self�maintainable with respect

to deletions� In the presence of nulls� both COUNT��� and COUNT�E� are required to make SUM�E� self�

maintainable�

MIN and MAX functions� MIN and MAX are not self�maintainable with respect to deletions� and cannot be

made self�maintainable� For instance� when a tuple having the minimum �maximum� value is deleted� the

new minimum �maximum� value for the group must be recomputed from the changes and the base data�

Including COUNT��� can help a little �if COUNT��� reaches �� there is no other tuple in the group� so the

group can be deleted�� but COUNT��� cannot make MIN and MAX self�maintainable� �If COUNT��� � � after a

tuple having minimum �maximum� value is deleted� we still need to look up the base table�� COUNT�E� can

also help in maintaining MIN�E� and MAX�E� �If Count��� � � and COUNT�E� 	 �� then MIN�E�	 null�� but

COUNT�E� also cannot make MIN and MAX self�maintainable �if Count��� � � and COUNT�E� � �� and a tuple

having minimum �maximum� value is deleted� then we need to look up the base table��
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�
� Data cube

The date cube �GBLP� � is a convenient way of thinking about multiple aggregate views� all derived from a

fact table using di�erent sets of group�by attributes� Data cubes are popular in OLAP because they provide

an intuitive way for data analysts to navigate various levels of summary information in the database� In a

data cube� attributes are categorized into dimension attributes� on which grouping may be performed� and

measures� which are the results of aggregate functions�

Cube Views� A data cube with k dimension attributes is a shorthand for �k cube views� each one de�ned

by a single SELECT�FROM�WHERE�GROUPBY block� having identical aggregation functions� identical FROM and

WHERE clauses� no HAVING clause� and one of the �k subsets of the dimension attributes as the groupby

columns�

EXAMPLE 	�� An example data cube for the pos table of Section � is shown in Figure ��� as a lattice

structure� Construction of the lattice corresponding to a data cube was �rst introduced in �HRU� �� The

(storeID, itemID, date)

(storeID, itemID) (storeID, date) (itemID, date)

(storeID) (itemID) (date)

( )

Figure �� Data Cube Lattice�

dimension attributes of the data cube are storeID� itemID� and date� and the measures are COUNT��� and

SUM�qty�� Since the measures computed are assumed to be the same� each point in the �gure is annotated

simply by the group�by attributes� Thus� the point �storeID� itemID� represents the cube view corresponding

to the query

�SI� SELECT storeID� itemID� COUNT���� SUM�qty�

FROM pos

GROUPBY storeID� itemID �

Edges in a lattice run from the node above to the node below� Each edge v� � v� implies that v� can be

answered using v�� instead of accessing the base data� The edge de�nes a query that derives view v� below

from the view v� above by simply replacing the table in the FROM clause with the name of the view above�

and by replacing any COUNT aggregate function with the SUM aggregate function� For example� the edge from

v� 	 �storeID� itemID� date� to v� 	 �storeID� itemID� de�nes the following query equivalent to query SI

above �assuming that the aggregate columns in the views are named count and qty��

�SI �� SELECT storeID� itemID� SUM�count�� SUM�qty�



��� Chapter ��

FROM v�

GROUPBY storeID� itemID �

Generalized Cube Views� However� in most warehouses and decision support systems� the set of sum�

mary tables do not �t into the structure of cube views&they di�er in their aggregation functions and the

joins they perform with the fact tables� � Further� some views may do aggregation on columns used as

dimension attributes in other views� We will call these views generalized cube views� and de�ne them as

traditional cube�style views that are extended in the following ways

di�erent views may compute di�erent aggregate functions�

some views may compute aggregate functions over attributes that are used as group�by attributes in

other views�

views may join with di�erent combinations of dimension tables �note that dimension�table joins are

always along foreign keys��

�
� Dimension hierarchies and lattices

As mentioned in Section �� the various dimensions represented by the group�by attributes of a fact table often

are organized into dimension hierarchies� For example� in the stores dimension� stores can be grouped into

cities� and cities can be grouped into regions� In the items dimension� items can be grouped into categories�

The dimension hierarchy information can be stored in separate dimension tables� as we did in the stores

and items tables� In order to group by attributes further along the dimension hierarchy� the fact table must

be joined with the dimension tables before doing the aggregation� The joins between the fact table and

dimension tables are always along foreign keys� so each tuple in the fact table is guaranteed to join with one

and only one tuple from each dimension table�

A dimension hierarchy can also be represented by a lattice� similar to a data�cube lattice� We can construct

a lattice representing the set of views that can be obtained by grouping on each combination of elements

from the set of dimension hierarchies� It turns out that a direct product of the lattice for the fact table along

with the lattices for the dimension hierarchies yields the desired result �HRU� �� For example� given that

stores are grouped into cities and then regions� and items are grouped into categories� Figure ��� shows the

lattice combining the fact table lattice of Figure ��� with the dimension hierarchy lattices of store and item�

�
� Partially�materialized lattices

A partially�materialized lattice is obtained by removing some nodes of the lattice� to represent the fact that

the corresponding views are not being materialized� When a node n is removed� all incoming and outgoing

edges from node n are also removed� and new edges are added between nodes above and below node n� For

every incoming edge �n�� n�� and every outgoing edge �n� n��� we add an edge �n�� n��� The query de�ning

�They may also di�er in the WHERE clause	 but we do not consider di�ering WHERE clauses in this chapter�
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(storeID, itemID, date)

(storeID, category, date) (city, itemID, date)(storeID, itemID)

(storeID, date)(storeID, category) (city, category, date)(city, itemID) (region, itemID, date)

(storeID) (city, category) (region, category, date)(city, date) (itemID, date)(region, itemID)

(city) (itemID)(region, category) (category, date)(region, date)

(category)(region) (date)

( )

Figure �� Combined lattice�

view n� along the edge �n�� n�� is obtained from the query along the edge �n�n�� by replacing view n in

the FROM clause with view n�� Note that if the top and'or bottom elements of the lattice are removed�

the resulting partially�materialized lattice may not be a lattice � it represents a partial order between nodes

without a top and'or a bottom element�

� Basic Summary�Delta Maintenance Algorithm

In this section we show how to e�ciently maintain a summary table given changes to the base data� Speci��

cally� we give propagate and refresh functions for maintaining a generalized cube view of the type described

in Section ���� including joins with dimension tables� We require that the aggregate functions calculated in

the summary table either be self�maintainable� be made self�maintainable by adding the appropriate COUNT

functions as described in Section ���� or be MIN or MAX aggregate functions �in which case the circumstances

under which they are not self�maintainable are detected and handled in the refresh function�� For simplicity�

we start out by considering changes �insertions and deletions� only to the base fact table� We consider

changes to the dimension tables in Section �� �

�
� Propagate function

As described brie!y in Section �� the general intuition for the propagate function is to create a summary�

delta table that contains the net e�ect of the changes on the summary table� Since the propagate function

does not a�ect the summary table� the summary table can continue to be available to readers while the

propagate function is computed� Therefore� the goal of the propagate function is to do as much work as

possible so that the time required by the refresh function is minimized�
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Preparing changes

In order to make the computation of the summary�delta table easier to understand� we split up some of

the work by �rst de�ning three virtual views prepare�changes� prepare�insertions and prepare�deletions�

The prepare�changes virtual view is de�ned simply as the union of prepare�insertions and prepare�deletions�

which are described below� In Section �� we will see that the summary�delta table is computed from the

prepare�changes virtual view�

The prepare�insertions and prepare�deletions views derive the changes to the aggregate functions caused

by individual insertions and deletions� respectively� to the base data� They take a projection of the in�

sertions'deletions to the base data� after applying any selections conditions and joins that appear in the

de�nition of the summary table� The projected attributes include

each of the group�by attributes of the summary table� and

aggregate�source attributes corresponding to each of the aggregate functions computed in the summary

table�

An aggregate�source attribute computes the result of the expression on which the aggregate function is

applied� For example� if the summary table included the aggregate function sum�A�B	� the prepare�insertions

and prepare�deletions virtual views would each include in their select clause an aggregate�source attribute

computing either A � B �for prepare�insertions�� or ��A � B� �for prepare�deletions�� We will see later that

the aggregate�source attributes are aggregated when de�ning the summary�delta table�

The aggregate�source attributes are derived according to Table �� The column labeled prepare�insertions

describes how they are derived for the prepare�insertions view� the column labeled prepare�deletions de�

scribes how they are derived for the prepare�deletions view� The COUNT�expr� row uses the SQL��� case

statement �MS��a��

prepare�insertions prepare�deletions

COUNT��� � ��

COUNT�expr� case when expr is case when expr is

null then � else � null then � else ��

SUM�expr� expr �expr

MIN�expr� expr expr

MAX�expr� expr expr

Table � Deriving aggregate�source attributes

EXAMPLE 
�� Consider the SiC sales view of Figure ���� The prepare�insertions� prepare�deletions� and

the prepare�changes virtual views for SiC sales are shown in Figure �� � The prepare�insertions view name

is pre�xed by 
pi �� the prepare�deletions view name is pre�xed by 
pd �� and the prepare�changes view

name is pre�xed by 
pc �� The aggregate sources are named count� date� and quantity� respectively�
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CREATE VIEW pi SiC sales�storeID� category� count� date� quantity� AS

SELECT storeID� category� � AS count� date AS date� qty AS quantity

FROM pos ins� items

WHERE pos ins�itemID 	 items�itemID

CREATE VIEW pd SiC sales�storeID� category� count� date� quantity� AS

SELECT storeID� category� �� AS count� date AS date� �qty AS quantity

FROM pos del� items

WHERE pos del�itemID 	 items�itemID

CREATE VIEW pc SiC sales�storeID� category� count� date� quantity� AS

SELECT �

FROM �pi SiC sales UNION ALL pd SiC sales�

Figure �� Prepare changes example

Computing the summary�delta table

The summary�delta table is computed by aggregating the prepare�changes virtual view� The summary�

delta table has the same schema as the summary table� except that the attributes resulting from aggregate

functions in the summary delta represent changes to the corresponding aggregate functions in the summary

table� For this reason we name attributes resulting from aggregate functions in the summary�delta table

after the name of the corresponding attribute in the summary table� pre�xed by 
sd ��

Each tuple in the summary�delta table describes the e�ect of the base�data changes on the aggregate functions

of a corresponding tuple in the summary table �i�e�� a tuple in the summary table having the same values

for all group�by attributes as the tuple in the summary�delta table�� Note that a corresponding tuple in the

summary table may not exist� and in fact it is sometimes necessary in the refresh function to insert a tuple

into �or delete a tuple from� the summary table due to the changes represented in the summary�delta table�

The query to compute the summary�delta table follows from the query computing the summary table� with

the following di�erences

The FROM clause is replaced by prepare�changes�

The WHERE clause is removed� �It is already applied when de�ning prepare�insertions and prepare�

deletions��

The expressions on which the aggregate functions are applied are replaced by references to the aggregate�

source attributes of prepare�changes�

COUNT aggregate functions are replaced by SUM�

Note that computing the summary�delta table involves essentially aggregating the tuples in the changes�

Thus� techniques for parallelizing aggregation can be used to speed up computation of the summary�delta

table�
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EXAMPLE 
�� Consider again the SiC sales view of Figure ���� The query computing the summary�delta

table for SiC sales is shown below� It aggregates the changes represented in the prepare�changes virtual view�

grouping by the same group�by attributes as the summary table�

CREATE VIEW sd SiC sales�storeID� category� sd Count�

sd EarliestSale� sd Quantity� AS

SELECT storeID� category� sum� count� AS sd Count�

min� date� AS sd EarliestSale�

sum� quantity� AS sd Quantity

FROM pc SiC sales

GROUPBY storeID� category

The astute reader will recall that in Section ��� the summary�delta table for SiC sales was de�ned using the

summary�delta table for SID sales� In this example we de�ned the summary�delta table using instead the

changes to the base data�

Pre�aggregation

As a potential optimization� it is possible to pre�aggregate the insertions and deletions before joining with

some of the dimension tables� In particular� joins with dimension tables whose attributes are not referenced in

the aggregate functions� can be delayed until after pre�aggregation� Delaying joins until after pre�aggregation

reduces the number of tuples involved in the join� potentially speeding up the computation of the summary�

delta table� The decision of whether or not to pre�aggregate could be made in a cost�based manner by a

query optimizer� The notion of pre�aggregation follows essentially from the idea of pushing down aggregation

presented in �CS��� GHQ��� YL����

Changes to dimension tables

Up to now we have considered changes only to the fact table� Changes to the dimension tables can also

be incorporated into our method� Due to space constraints we will only give the intuition underlying the

technique�

Applying the incremental view�maintenance techniques of �GMS��� GL���� we can start with the changes to

a dimension table� and derive dimension�table�speci�c prepare�insertions and prepare�deletions views that

represent the changes to the aggregate functions due to changes to the dimension table� For example� the

following view de�nition calculates prepare�insertions for SiC sales due to insertions to items �made available

in items ins��

CREATE VIEW pi items SiC sales�storeID� category� count�

date� quantity� AS

SELECT storeID� category� � AS count� date AS date�

qty AS quantity

FROM pos� items ins

WHERE pos�itemID 	 items ins�itemID
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Prepare�changes then takes the union of all such prepare�insertions and prepare�deletions views� representing

changes to the fact table and all dimension tables� and the summary�delta computation proceeds as before�

�
� Refresh function

The refresh function applies the changes represented in the summary�delta table to the summary table� Each

tuple in the summary�delta table causes a change to a single corresponding tuple in the summary table �by

corresponding we mean a tuple in the summary table having the same values for all group�by attributes as

the tuple in the summary delta�� The corresponding tuple in the summary table is either updated� deleted�

or if the corresponding tuple is not found� the summary�delta tuple is inserted into the summary table�

The refresh algorithm is shown in Figure ���� It generalizes and extends the example refresh function given

in Section ���� by handling the case of nulls in the input and MIN and MAX aggregate functions� In the

algorithm� for each tuple �t in the summary�delta table the corresponding tuple t in the summary table is

looked up� If t is not found� the summary�delta tuple is inserted into the summary table� If t is found� then

if COUNT��� from t plus COUNT��� from �t is zero� then t is deleted�� Otherwise� a check is performed for each

of the MIN and MAX aggregate functions� to see if a value less than or equal to the minimum �greater than or

equal to the maximum� value was deleted� in which case the new MIN or MAX value of t will probably need

to be recomputed� The only exception is if COUNT�e� from t plus COUNT�e� from �t is zero� in which case the

new min'max'sum'count�e� values are null�

As the last step in the algorithm� the aggregation functions of tuple t are updated from the values in �t�

or �if needed� by recomputing a min'max value from the base data for t�s group� For simplicity in the

recomputation� we assume that when a summary table is being refreshed� the changes have already been

applied to the base data� However� an alternative would be to do the recomputation before the changes

have been applied to the base table by issuing a query that subtracts the deletions from the base data and

unions the insertions� As written� the refresh function only considers the COUNT� SUM� MIN� and MAX aggregate

functions� but it should be easy to see how any self�maintainable aggregation function would be incorporated�

The above refresh function may appear complex� but conceptually it is very simple� One can think of it as

a left outer�join between the summary�delta table and the summary table� Each summary table tuple that

joins with a summary�delta tuple is updated or deleted as it joins� while a summary�delta tuple that does not

join is inserted into the summary table� The only complication in the process is an occasional recomputation

of a min'max value� The refresh function could be parallelized by partitioning the summary�delta table and

summary table on the group�by attributes� Such a �summary�delta join� needs to be implemented in the

database server� and should be implemented by database vendors that are targeting the warehouse market�

� E�ciently maintaining multiple summary tables

In the previous section we have shown how to compute the summary�delta table for a generalized cube view�

directly from the insertions and deletions into the base fact table�

�Note that COUNT��� from t plus COUNT��� from �t can never be less than zero	 and that if COUNT��� from �t is less

than zero	 then the corresponding tuples t must be found in the summary table�



��
 Chapter ��

For each tuple �t in the summary�delta table�

� get the corresponding tuple in the summary table

Let tuple t 	 tuple in the summary table having the same values for its group�by attributes as �t

If t is not found�

� insert tuple

Insert tuple �t into the summary table

Else

� check if the tuple needs to be deleted

If �t�COUNT��� * t�COUNT��� 	 ��

Delete tuple t

Else

� check if min�max values must be recomputed

recompute 	 false

For each MIN and MAX aggregate function m�e� in the summary table�

If ��m is a MIN function AND �t�MIN�e� � t�MIN�e� AND t�COUNT�e� * �t�COUNT�e� � �� OR

�m is a MAX function AND �t�MAX�e�  t�MAX�e� AND t�COUNT�e� * �t�COUNT�e� � � ��

recompute 	 true

If �recompute�

Update tuple t by recomputing its aggregate functions from the base data for t�s group�

Else

� update the tuple

For each aggregate function a�e� in the summary table�

If t�COUNT�e� * �t�COUNT�e� 	 ��

t�a 	 null

Else If a is COUNT or SUM�

t�a 	 t�a* �t�a

Else If a is MIN�

t�a 	 MIN�t�a� �t�a�

Else If a is MAX�

t�a 	 MAX�t�a� �t�a�

Figure �� The Refresh function

We have also seen that multiple cube views can be arranged into a �partially�materialized� lattice �Sec�

tion ����� We will now show that multiple summary tables� which are generalized cube views� can also be

placed in a �partially�materialized� lattice� which we call a V�lattice� Further� all the summary�delta tables

can also be written as generalized cube views� and can be placed in a �partially�materialized� lattice� which

we call a D�lattice� It turns out that the D�lattice is identical to the V�lattice� modulo renaming of tables�
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�
� Placing generalized cube views into a lattice

The principle behind the placement of cube views in a lattice is that a cube view v� should be derivable from

the cube view v� placed above v� in the cube lattice� The same principle can be adapted to place a given set

of generalized cube views into a �partially�materialized� lattice� We will show how to de�ne a derives relation

v� � v� between the given set of generalized cube views� The derives relation� �� can be used to impose a

partial ordering on the set of generalized views� and to place the views into a �partially�materialized� lattice�

with v� being an ancestor of v� in the lattice if and only if v� � v��

For two generalized cube views v� and v�� let v� � v� if and only if view v� can be de�ned using a single

block SELECT�FROM�GROUPBY query over view v� possibly joined with one or more dimension tables on the

foreign key� The v� � v� condition holds if

�� each group�by attribute of v� is either a groupby attribute of v�� or is an attribute of a dimension table

whose foreign key is a groupby attribute of v�� and
�� each aggregate function a�E� of v� either appears in v�� or E is an expression over the groupby attributes

of v�� or E is an expression over attributes of dimension tables whose foreign keys are groupby attributes

of v��

If the above conditions are satis�ed using dimension tables d�� � � � � dm� we will superscript the � relation as

�d������dm �

EXAMPLE ��� For our running retailing warehouse example� the following derives relationships exist

sCD sales �stores SID sales� SiC sales �items SID sales� sR sales �stores SID sales� sR sales

�stores sCD sales� and sR sales �stores SiC sales� SID sales is the top and sR sales is the bottom of the

lattice�

The query associated with an edge from v� to v� is obtained from the original query for v� by making the

following changes

The original WHERE clause is removed �it is not needed since the conditions already appear in v���

The FROM clause is replaced by a reference to v�� Further� if the � relation between v� and v� is

superscripted with dimension tables� these are joined into v�� �The dimension tables will go into the

FROM clause� and the join conditions will go into the WHERE clause��

The aggregate functions of v� need to be rewritten to reference the aggregate function results computed

in v�� In particular�

� A COUNT aggregate function needs to be changed to a SUM of the counts computed in v��

� If v� groups by an attribute A and v� computes SUM�A�� then SUM�A� will be replaced by SUM�A�Y ��

where Y is the result of COUNT��� in v�� Similarly COUNT�A� will be replaced by SUM�Y ��

�
� Making summary tables lattice�friendly

It is also possible to change the de�nitions of summary tables slightly so that the derives relation between

them grows larger� and we do not repeat joins along the lattice paths� The summary tables are changed by
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adding joins with dimension tables� adding dimension attributes� and adding aggregation functions used by

other summary tables�

Let us consider the case of dimension tables and dimension attributes� Are joins with dimension tables all

performed implicitly at the top�most view� or could they be performed lower down just before grouping by

dimension attributes� Because the joins between the fact table and the dimension tables are along foreign

keys&so that each tuple in the fact table joins with one and only one tuple from each dimension table&

either approach� joining implicitly at the top�most view or just before grouping on dimension attributes� is

possible�

Now� consider a dimension hierarchy� An attribute in the hierarchy functionally determines all of its de�

scendents in the hierarchy� Therefore� grouping by an attribute in the hierarchy yields the same groups as

grouping by that attribute plus all of its descendent attributes� For example� grouping by �storeID� is the

same as grouping by �storeID� city� region��

The above two properties provide the rationale for the following approach to �tting summary tables into a

lattice join the fact table with all dimension tables at the top�most point in the lattice� At each point in

the lattice� instead of grouping only by the group�by attributes mentioned at that point� we include as well

each dimension attribute functionally determined by the group�by attributes� For example� the top�most

point in the lattice of Figure ��� groups by �storeID� city� region� itemID� category� date��

The end result of the process can be to �t the generalized views into a regular cube �partially�materialized�

lattice where all the joins are taken once at the top�most point� and all the views have the same aggregation

functions�

EXAMPLE ��� For our running warehousing example� we can de�ne all four summary tables as a groupby

over the join of pos� items� and stores� computing COUNT���� SUM�qty�� and MIN�date� in each view� and

retaining some or all of the dimension attributes City� Region� and Category� The resulting lattice represents

a portion of the complete lattice shown in Figure ����

�
� Optimizing the lattice

Although the approach of Section ��� is always correct� it does not yield the most e�cient result� An

important question is where best to do the joins with the dimension tables� Further� assuming that some

of the dimension columns and aggregation functions have been added to the views just so that the view �ts

into the lattice� where should the aggregation functions and the extra columns be computed� Optimizing a

lattice means pushing joins� aggregation functions� and dimension columns as low down into the lattice as

possible�

There are two reasons for pushing down joins First� as one travels down the data cube� the number of tuples

at each point is likely to decrease� so fewer tuples need to be involved in the join� Second� joining with all

dimension tables at the top�most view results in very wide tuples� which require more room in memory and

on disk� For example� when computing the data cube in Figure ���� instead of joining the pos table with

stores and items to compute the �storeID� itemID� date� view� it may be better to push down the join with
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stores until the �city� itemID� date� view is computed from the �storeID� itemID� date� view� and to push

down the join with items until the �storeID� category� date� view is computed from the �storeID� itemID�

date� view�

EXAMPLE ��	 For the running retail warehousing example� optimization derives the lattice shown in

Figure ���� The lattice edges are labeled with the dimension join required when deriving the lower view� For

example� the edge from SID sales to SiC sales is labeled items to indicate that SID sales needs to be joined

with items to derive the SiC sales view� The view sCD sales is extended by adding the region attribute so

sRsales
(region)

         SiCsales
(storeID,category)

          SIDsales
(storeID,itemID,date)

stores

stores

items

      sCDsales
(city,region,date)

Figure �	 The V�lattice for the retail warehousing example

that the view sR sales may be derived from it without �re��joining with the stores table�

�
� Summary�delta lattice

Following the self�maintenance conditions discussed in Section ���� we assume that any view computing an

aggregation function is augmented with COUNT���� A view computing SUM�E�� MIN�E�� and'or MAX�E� is

further augmented with COUNT�E��

Given the set of generalized cube views in the partially�materialized V lattice� we would like to arrange the

summary�delta tables for these views into a partially�materialized lattice �the D� or delta� lattice�� The hope

is that we can then compute the summary�delta tables more e�ciently by exploiting the D lattice structure�

just as the views can be computed more e�ciently by exploiting the V lattice structure�

The following theorem follows from the observation that the queries de�ning the summary�delta tables

sd v �Section ���� are similar to the queries de�ning the views v� except that some of the tables in the FROM

clause are uniformly replaced by the prepare�changes table� The theorem gives us the desired D�lattice� �A

proof of the theorem appears in �Qua�����

Theorem ��� The D�lattice is identical to the V�lattice	 including the queries along each edge	 modulo a

change in the names of tables at each node�

Thus� each summary delta table can be derived from the summary�delta table above it in the partially�

materialized lattice� possibly by a join with dimension tables� followed by a simple groupby operation� The
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queries de�ning the topmost summary�delta tables in the D�lattice are obtained by de�ning a prepare�changes

virtual view �Section ����� For example� the summary�delta D�lattice for our warehouse example is the same

as the partially�materialized V�lattice of Figure ����

�
� Computing the summary�delta lattice

The beauty of our approach is that the summary table maintenance problem has been partitioned into two

subproblems & computation of summary�delta tables �propagation�� and the application of refresh functions

& in such a way that the subproblem of propagation for multiple summary tables can be mapped to the

problem of e�ciently computing multiple aggregate views in a lattice�

Propagation of changes to multiple summary tables involves computing all the summary�delta tables in the

D�lattice derived in Section ���� The problem now is how to compute the summary�delta lattice e�ciently�

since there are possibly several choices for ancestor summary�delta tables from which to compute a summary�

delta� It turns out that that this problem maps directly to the problem of computing multiple summary

tables from scratch� as addressed in �AAD�� a� SAG� �� We can use their solutions to derive an e�cient

propagate strategy on how to sort'hash inputs� what order to evaluate summary�delta tables� and which

of the incoming lattice edges �if there is more than one� to use to evaluate a summary�delta table� The

algorithms of �AAD�� a� SAG� � would be directly applicable but for the fact that they do not consider

join annotations in the lattice� However� it is a simple matter to extend their algorithms by including the

join cost estimate in the cost of the derivation of the aggregate view along the edge annotated with the join�

We omit the details here as the algorithms for materializing a lattice are not the focus of this chapter�

� Performance

We have implemented the summary�delta algorithm on top of a common PC�based relational database

system� We have used the implementation to test the performance improvements obtained by the summary�

delta table method over recomputation� and to determine the bene�ts of using the lattice structure when

maintaining multiple summary tables�

The implementation was done in Centura SQL Application Language �SAL� on a Pentium PC� The test

database schema is the same as the one used in our running example described in Section �� We varied

the size of the pos table from ������� tuples to ������� tuples� and the size of the changes from �����

tuples to ������ tuples� The pos table had a composite index on �storeID� itemID� date�� and each of the

summary tables had composite indices on their groupby columns� We found that the performance of the

refresh operation depended heavily on the number of updates'deletes vs� inserts to the summary tables�

Consequently� we considered two types of changes to the pos table

Update�Generating Changes� Insertions and deletions of an equal number of tuples over existing

date� store� and item values� These changes mostly cause updates amongst the existing tuples in

summary tables�

Insertion�Generating Changes� Insertions over new dates� but existing store and item values� These

changes cause only inserts into two of the four summary tables �for whom date is a groupby column��

and mostly cause updates into the other two summary�delta tables�
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�c� Varying change size for insertion�generating changes �d� Varying pos size for insertion�generating changes

Figure �
 Performance of Summary�Delta Maintenance algorithm

The insertion�generating changes are very meaningful since in many data warehousing applications the only

changes to the fact tables are insertions of tuples for new dates� which leads to insertions� but no updates�

into summary tables with date as a groupby column�

Figure  �� shows four graphs illustrating the performance advantage of using the summary�delta table

method� The graphs show the time to rematerialize �using the lattice structure�� and maintain all four

summary tables using the summary�delta table method �using the lattice structure�� The maintenance time

is split into propagate and refresh� with the lower solid line representing the portion of the maintenance time

taken by propagate when using the lattice structure� The upper solid line represents the total maintenance

time �propagate * refresh�� The time taken by propagate without using the lattice structure is shown with

a dotted line for comparison�
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Graphs  ���a� and  ���c� plot the variation in elapsed time as the size of the change set changes� for a �xed

size ��������� of the pos table� While  ���a� considers update�generating changes� graph  ���c� considers

insertion�generating changes� We note that the incremental maintenance wins for both types of changes�

but it wins with a greater margin for the insertion�generating changes� The di�erence between the two

scenarios is mainly in the refresh times for the views SID sales and sCD sales� The refresh time going down

by ��( in  ���c�� The graphs also show that the summary�delta maintenance beats rematerialization� and

that propagate bene�ts by exploiting the lattice structure� Further� the bene�t to propagate increases as

the size of the change set increases�

Graphs  ���b� and  ���d� plot the variation in elapsed time as the size of the pos table changes� for a �xed size

�������� of the change set� Graph  ���b� considers update generating changes� and graph  ���d� considers

insertion generating changes� We see that the propagate time stays virtually constant with increase in the size

of pos table �as one would expect� since propagate does not depend on the pos table�� However interestingly

the refresh time goes down for the update generating changes� A close look reveals that when the pos table

is small� refresh causes a signi�cant number of deletions in addition to updates to the materialized views�

When the pos table is large� refresh causes only updates to the materialized views� and this leads to a ��(

savings in refresh time�

� Related Work and Conclusions

Both view maintenance and data warehousing are active areas of research� and this chapter is in the in�

tersection of the two areas� proposing new view maintenance techniques for maintaining multiple summary

tables �aggregate views� over a star schema using a new summary�delta paradigm�

Earlier view maintenance papers �BLT� � CW��� QW��� GMS��� GL��� JMS��� ZGMHW��� CGL�� �

HZ� � Qua� � have all used the delta paradigm � compute a set of inserted and deleted tuples that are then

used to refresh the materialized view using simple union and di�erence operations� The new summary�delta

paradigm is to compute a summary�delta table that represents a summary of the changes to be applied to the

materialized view� The actual refresh of the materialized view is more complex than a union'di�erence in the

delta paradigm� and can cause updates� insertions� and'or deletions to the materialized view� Amongst the

above work on view maintenance algorithms� �GMS��� GL��� JMS��� Qua� � are the only papers that discuss

maintenance algorithms for aggregate views� �GMS��� GL��� Qua� � develop algorithms to compute sets of

inserted and deleted tuples into an aggregate view� while �JMS��� discusses the computational complexity of

immediately maintaining a single aggregate view in response to a single insertion into a chronicle �sequence

of tuples�� It is worth noting that the previous papers do not consider the problem of maintaining multiple

aggregate views� and are not as e�cient as the summary�delta table method�

A formal split of the maintenance process into propagate and refresh functions was proposed in �CGL�� ��

We build on the propagate'refresh idea here� extending it to aggregate views and to more complex refresh

functions� Our notion of self�maintainable aggregation functions is an extension of self�maintainability for

select�project�join views de�ned in �GJM� � QGMW� ��

�GBLP� � proposed the cube operator linking together related aggregate tables into one SQL query� and

started a mini�industry in warehousing research� The notion of cube lattices and dimension lattices was

proposed in �HRU� �� along with an algorithm to determine a subset of cube views to be materialized so as
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to maximize the querying bene�t under a given space constraint� Algorithms to e�ciently materialize all

or a subset of the cube lattice have been proposed by �AAD�� a� SAG� �� Next� we need a technique to

maintain these cube views e�ciently� and this chapter provides the summary�delta table method to do so�

In fact� we even map a part of the maintenance problem into the problem addressed by �AAD�� a� SAG� ��

Our algorithms are geared towards cube views� as well as towards generalizations of cube views that are

likely to occur in typical decision�support systems� We have developed techniques to place aggregate views

into a lattice� even suggesting small modi�cations to the views that can help generate a fuller lattice�

Finally� we have tested the feasibility and the performance gains of the summary�delta table method by

implementing it on top of a relational database� and doing a performance study comparing the propagate

and refresh times of our algorithm to the alternatives of doing rematerializations or using an alternative

maintenance algorithm� We found that our algorithm provides an order of magnitude improvement over the

alternatives� Another observation we made from the performance study is that our refresh function� when

implemented outside the database system� runs much slower than what we had expected �while still being

fast�� The right way to implement the refresh function is by doing something similar to a left outer�join of

the summary�delta table with the materialized view� identifying the view tuples to be updated� and updating

them as a part of the outer�join� Such a �summary�delta join� operation should be built into the database

servers that are targeting the warehousing market�
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Implementation and Performance

This section of the book contains seven chapters that discusse implementation and performance issues related

to materialized views�

The �rst four chapters discuss systems that have implemented materialied views in a variety of contexts� The

implementations span supporting materialized views inside a RDBMS� as a layer on top of the system� and

by enhancing a programming language to easily maintain views in an application context� The last chapter

contains a performance study of how maintenance of materialized views performs relative to recomputation�

Chapter � discusses materialized views in Oracle� snapshots� that in ���� �rst introduced support for incre�

mental maintenance of materialized views� Snapshots are implemented to support distributed applications

over replicated subsets of data� Snapshots support a wide range of functionality � simultaneous updates

from multiple users and con!ict resolution� constraints on snapshots� automatic periodic refresh and more�

In general they can be arbitrary queries but incremental maintenance� or 
fast refresh�� is supported for SP

views� The feature is widely used in the industry and has been enhanced to support more functionality that

is not described in this chapter due to con�dentiality constraints�

Chapter �� discusses EKS� a prototype deductive database system that was developed at ECRC� The system

is one of the earliest implementations of materialized views� particularly in a deductive framework� It includes

an update propagation facility that is used to implement view maintenance and integrity constraint checking�

The update propagation facility can deal with recursion� �recursive� aggregates� negation� and quanti�ers�

The chapter discusses the various issues encountered in implementing update propagation and the design

decisions made in EKS� To name a few� how to identify 
relevant� updates for interconnected views� how

to manipulate only 
changes� to views for e�ciency purposes� and how to compute the changes in a large

system�

Chapter �� describes how to implement incremental view maintenance using a production rule language�

The change�computing queries are expressed as rules and are generated automatically for views expressed

in a large subset of SQL that includes union� intersection� and di�erence queries� The production rule

system is implemented in the Starburst system at IBM� The rules make maintenance e�cient� by exploiting

information about the keys of relations�

Chapter �� describes the Heraclitus Database programming language that o�ers another approach for doing

view maintenance di�erent from relational� deductive� and production rule systems� Heraclitus extends the

C programming language with relational algebra� support for deltas as 
�rst�class citizens�� and operators to

manipulate relations and deltas� Deltas correspond to database updates� The system can be used to provide

e�cient support for materialized integrated views using deltas to determine when di�erent maintenence

rules �re� The system supports multiple other Database constructs like version control� speci�cation of

concurrency protocols� resolution of update con!icts� and multiple access methods to the deltas�

Chapter �� studies performance of incremental view maintenance by applying them to e�cienty compute

and maintain a join between two base relations in the presence of queries and udpates to the base relation�

Of the di�erent ways discussed in the chapter� two correspond to maintaining the join as a materialized view�

The paper studies the performance of materialized views relative to hash joins algorithms for computing

equi�joins in light of a variety of factors that in!uence the performance of incremental view maintenance � the
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frequency of update of the underlying relations� the size of the view �selectivity of the join� and the amount

of available memory� The chapter uses equi�join views to yield good insight into how general materialized

views will perform compared to rematerialization on demand�
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� Introduction

Most research on incremental maintenance of materialized views has focused on how complex views may

be e�ciently maintained when the base tables are updated �BBC��� BLT� � CW��� DT��� GL��� GM���

HD��� KSS��� LHM�� � NY��� QW��� Rou��� SI��� ZGMHW���� More recently� warehousing applications

are being emphasized wherein maintaining aggregates is especially important� The resulting algorithms

often are applicable to an environment where only a few views are incrementally maintained in a local

or a very reliable distributed environment� The Oracle RDBMS �rst introduced support for incremental

maintenance of materialized views in late ����� This feature� called Snapshots� was designed to address a

di�erent application domain�

Oracle believes that one of the most important uses for incremental view maintenance is to allow distributed

applications to work on a replicated subset of data� Let us illustrate the requirements using a simple sales

automation example� In our example� a mobile workforce of salesmen run sales automation software on laptop

computers� In general� communication between the laptops and the corporate repository at headquarters is

low�bandwidth and unreliable� making client�server software di�cult to use� Instead� each laptop locally runs

the sales automation software on top of a local copy of a small subset of the data stored at the corporate

repository� This approach is also appealing because the easiest way to distribute an existing single�site

application is to transparently replicate the data that the application uses� A laptop only stores data of

interest to its salesman� such as customers and warehouses in the sales region� If the salesman makes a sale

or a new customer contact� the salesman updates his copy of the database� The salesmen connects to the

main database server once or twice a day �e�g�� once at lunch and once at night� over a modem to exchange

updates for all snapshots in a way that maintains transactional consistency�

This example points out several characteristics that are di�erent from most research assumptions

There may be several incrementally maintained views �snapshots� per table�

The snapshots can be updated�

The update exchange� which Oracle calls a refresh� is driven from the snapshot side�

Multiple snapshots will need to be refreshed simultaneously in a manner that maintains transactional

consistency�

�





��� Chapter ��

Horizontal partitioning is used to keep the amount of data exchanged reasonable� but vertical parti�

tioning� set operations� and group functions are not really used�

In the following sections of this chapter� we discuss the design of Oracle� snapshots and how it satis�es all

these intended application domain characteristics� The intent of this chapter is to outline the architecture of

the actual implementation of materialized views in Oracle� and not to compare our maintenance algorithms

with those in existing research�

� Overview of Snapshots in Oracle�

A snapshot is a local materialization of a view on data stored at a master site� The snapshot can reside

in the same or di�erent database as the master� A snapshot can be periodically refreshed� after which the

snapshot will be a consistent�read instantiation of the view� A snapshot can be completely refreshed by

reinstantiating the view from scratch� or fast�refreshed by considering only the changes to the query�s base

table since the last refresh�

Oracle� snapshots allow fast refresh of only simple snapshots� Informally� each row in a simple snapshot is

based on a single row in a single table� A simple snapshot has a de�ning query with no distinct or aggregate

functions� GROUP BY or CONNECT BY clauses� subqueries� joins� or set operations� If a snapshot�s

de�ning query contains any of these clauses or operations� it is referred to as a complex snapshot�

Oracle� snapshots can be read�only or updatable� Read�only snapshots allow both horizontal and vertical

partitioning of master tables� Updatable snapshots only allow horizontal partitioning and must be simple

snapshots� Changes to updatable snapshots can be either synchronously or asynchronously propagated

to the master by using the same update�propagation method as used for Oracle�s peer�to�peer replication

facility �Dea��� Smi���� Because multiple snapshots can simultaneously update the same replicated data and

because the updates can be asynchronously propagated to the master� write�write con!icts are possible at

the master� Oracle allows masters to automatically resolve these con!icts using the same con!ict resolution

mechanism that is used in Oracle�s peer�to�peer replication facility �Dow���� No con!ict resolution is required

at the snapshot sites because the refresh will pull down the resolved rows from the master so that the snapshot

will once again be a consistent�read instantiation of the view after the refresh�

Oracle� has the concept of refresh groups in which multiple snapshots can have a consistent�read instantiation

of their views� Basically� the snapshots in the refresh group will share the same refresh transaction� Refresh

groups allow the referential integrity constraints between master tables to be applicable at the snapshot

site after a refresh has been completed �although Oracle��s statement�level referential integrity constraints

cannot be used on snapshots�� A refresh group can contain both simple and complex snapshots based

on tables from multiple master databases� Refresh groups can be scheduled to automatically refreshed at

user�de�ned intervals or they can be manually refreshed�

� System Architecture

Many database objects are created to enable the use of the features described above� Some of these objects

are created automatically while others have to be created by the user� In this section we describe the

architecture of the system using an example updatable snapshot that is de�ned on the �customer� table
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stored on the remote site �master�� The snapshot contains all rows of the customer table that correspond

to customers in �NY� state� Section ��� gives the exact SQL DDL for creating the example snapshot�

�
� Master�side Objects

Site �master� is the master�side in the above example because it contains the �customer� base table� Fig�

ure ��� shows the user�level master�side objects that are used to perform fast refreshes for the example

snapshot on table �customer��

Customer
  Table

c_id zip

Customer
   Log

row 
id

time−
stamp

Trigger

...

Figure �� Master Side Objects

A single log table is maintained for every master table that supports one or more simple snapshots� Changes

to the master table are recorded in the log by a trigger on the master table� The trigger on the master

table is built automatically when the log is created� The following DDL creates the log and trigger for the

example �customer� table

create snapshot log on customer�

The log table contains the rowids of the changed rows of the master and is shared by all fast�refresh snapshots

de�ned on that master table� The timestamp column is used to record the �rst time each log entry was

used in a fast refresh� Normally the master base tables �e�g�� customer� will be very large while the logs

will be fairly small� The log is not automatically created whenever someone creates a fast�refresh snapshot

because the master sites schema should not be automatically altered by snapshot sites� If a log is not

explicitly created on a master table then snapshots on that table cannot fast refresh because �incremental�

information is not available�

Oracle�s approach of using triggers to build the log of changes is di�erent from the �log sni�ng� approach

where the redo logs of the database are scanned to detect the changes made to a table� Oracle chose this

approach because of its potential for better performance and also to avoid interfering with the existing

logging mechanisms of the database system that have been built and tuned for other uses�

The master also stores information about the refresh times of di�erent snapshots so that the log can be

cleaned up periodically� This information is stored in a data dictionary table and is maintained transparently

by the Oracle kernel� If a row has already been used in fast�refreshes by all the snapshots� the row will be

deleted from the log� Thus� snapshot logs contain only those entries that are of use to at least one snapshot�
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�
� Snapshot�side Objects

Snapshots are created using SQL DDL as illustrated below for our example snapshot

create snapshot customer for update as select � from customer3master

where state 	 �NY��

The above snapshot contains a horizontal partition of the customer table at site �master�� Figure ��� shows

the user�level snapshot�side objects that are used to perform fast refreshes for the above updatable snapshot�

Trigger

c_id zip

   Customer
Snapshot Table

...

c_id zip

Customer
  View

...

*  indexed column

Tr
ig
ge
r

Updatable
Snapshot
  Log

rowid
master
rowid
  *

Update
propagation
mechanism

Figure �� Snapshot�side Objects

The above DDL results in the creation of a snapshot table that contains all the columns supposed to be in

the snapshot plus an additional column� namely the rowid of the master� Thus� each row in the snapshot

table is identi�ed by the rowid of the master row from which it was derived� The snapshot�table is created

when the snapshot creation DDL is issued �transparent to the user�� The snapshot de�ned by the user is

created as a view on this table where the view projects out the rowid column�

For updatable snapshots� a log table also is created on the snapshot table� Rowids of deleted and modi�ed

rows are inserted into the log table� Insertions into the snapshot table are assigned fake rowids and are not

logged� Insertions� deletions and updates are also sent to the update propagation mechanism that propagates

the changes to the master site� To handle these two separate actions� two triggers also are created � one to

insert deleted and updated rowids into the log table and the other to input insertions� deletions and updates

into the update propagation mechanism� Fake rowids for inserted rows are resolved when the snapshot is

refreshed�
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� Refresh Algorithm

After the logs and the snapshots are created� the snapshots are ready to be refreshed� A simple snapshot is

allowed to use a fast refresh as long as the log information predates the snapshot�s creation or last refresh�

Refreshes can be executed automatically or manually by using a simple command� The implementation of

the snapshot refresh algorithm uses a combination of Oracle�s distributed query capabilities and the remote

procedure call �RPC� capabilities provided by Oracle�s programmatic SQL language� PL'SQL� A refresh

has multiple distinct phases update propagation� log set�up� the main transaction to update the snapshots�

and log purging� The following is an outline of the fast refresh algorithm

For each updatable snapshot in the refresh group

If the replication method is asynchronous then

Propagate local modi�cations to the master

Acquire an exclusive lock on the snapshot table

For each snapshot in the refresh group

If the snapshot is fast�refreshable then

Issue the set up RPC

Begin the main refresh transaction

For each snapshot in the refresh group

Validate the timestamp of the snapshot log at the master

If the snapshot is not fast�refreshable or log validation failed then

If the complete refresh option is speci�ed then

Delete all rows from the snapshot table

Reinstantiate the snapshot using �INSERT AS SELECT�

Else

Raise error �cannot fast refresh�

Else

Select the rowid of rows from master table to delete

For each row selected

Delete the row from the snapshot table

If the snapshot is updatable then

Delete locally inserted rows from the snapshot table

Select the rows from the master to insert or modify

For each row selected

snapshot table as appropriate

Commit main refresh transaction

For each snapshot in the refresh group

the snapshot if fast�refreshable then

Issue the wrap up RPC

Since Oracle�s read�consistent concurrency model does not require remote locks� Oracle�s transparent two�

phase commit ��PC� is not used during the refresh� The set up and wrap up RPCs actually perform

master�site modi�cations to manage snapshot logs� These modi�cations are performed in separate single�

site transactions� Master�side transactions are serialized by locking the log�s row in the data dictionary at
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the master site� Snapshot�side transactions are serialized by locking a snapshot�s row in the data dictionary

at the snapshot site� The master tables are not locked during fast refreshes�

The algorithm can tolerate untimely crashes� Crashes that occur before the set up RPC or between the

set up RPC and the commit of the main refresh transaction just means that the next fast refresh will have

to start over� The set up RPC is idempotent� Crashes that occur after the refresh but before the wrap up

RPC just means that the snapshot logs cannot be purged at this time and will be purged in a later refresh�

In the following subsections� we discuss details of each of the phases of the fast refresh algorithm�

�
� Updatable Snapshot Propagation

Each updatable snapshot in a refresh group must have its snapshot table exclusively locked for the length

of the refresh� If the snapshot uses asynchronous replication to propagate to the master� the following steps

are taken before the main refresh transaction begins

�� The local updates are propagated to the master site�

�� The snapshot table is locked in exclusive mode�
�� If the more local updates need to be propagated �i�e�� a snapshot is updated before the exclusive lock

is acquired�� repeat steps � and ��

The updates are propagated before the lock is obtained to minimize the time that the snapshot table is

locked�

�
� Set up RPC

Each snapshot uses a low�watermark timestamp to determine which rows in the snapshot logs should be

considered during the fast refresh� To ensure that rows inserted into a snapshot log are not assigned a

timestamp until after the rows are committed� the log triggers initially assign a null value to each row�

When the set up RPC is executed at the master� all null timestamps are reset to the master�s current time

and the new timestamp is returned to the snapshot site� The set up RPC performs all updates in a separate

transaction that does not involve �PC� If the refresh is successful� the new timestamp �plus the smallest

time increment� will become the snapshot�s new low�watermark� All timestamps used during fast refresh

are generated at the master site�

Although the low�watermark ensures forward progress for snapshot refreshes� it does not guarantee that a

row in the log is not considered twice� Rows inserted into the log between the set up RPC and the start of

the main refresh transaction will not have their null timestamp updated� but they will still be considered

during refresh� Considering a row more than once does not result in invalid snapshots�

�
� Main Refresh Transaction

The main refresh transactions can be further broken down into four phases

�� Validate the timestamp of the snapshot log at the master site and ensure that the log can be used for

a fast refresh�
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�� Delete the rows that should no longer be in the snapshot�

�� For updatable snapshots� delete the rows that were inserted at the snapshot site�

�� Update or insert the rows from the master table that have been modi�ed since the last refresh of the

snapshot�

Phase one is performed by issuing an RPC to the master site which returns a timestamp indicating the age

of the log� This timestamp is then compared to the last refresh date of the snapshot� If the last refresh

date of the snapshot is older than the log timestamp� the snapshot may not use the log for a fast refresh�

Snapshots that fail log validation must perform a complete refresh before they are able to fast refresh again�

In phase two� the tuples that should no longer be in the snapshot are deleted� The tuples to be deleted

are determined by entries in the log at the master site for which the snapshot de�nition query selects no

corresponding row from the master table� The fast refresh algorithm only considers entries in the log that

have timestamps later than that of the last refresh time of the snapshot or that have a null timestamp

�see section ����� The snapshot site deletes tuples based on the rowids retrieved from the master site by a

distributed query� The following is an example of the distributed query that returns the rowids

select distinct log�rowid from customer log3master log

where log�rowid not in

�select a�rowid

from �select customer columns

from customer3master where state 	 4NY�� cust

where cust�rowid 	 log�rowid�

and ��log�entry timestamp � last refresh time�

or �log�entry timstamp is null��

Updatable snapshots need to delete the rows that were inserted at the snapshot site� This is due to the fact

that rows inserted at the snapshot site do not map to existing rows in the master table� If the snapshot�site

modi�cations are propagated to the master� the insertions will be reapplied to the snapshot in the last phase

of the main refresh transaction� If the inserted rows resulted in errors during propagation or if they were

ignored by the master during con!ict resolution� then the rows should not remain in the snapshot�

In the last phase of the main transaction� the row that were modi�ed at the master since the last refresh

are applied to the snapshot� This application is performed in two steps� First the snapshot site attempts to

update a modi�ed row� If the update results in no rows being process� the modi�ed row is inserted into the

snapshot table� The following is an example of the distributed query that return the modi�ed rows

select customer columns� log�rowid

from customer log3master log�

�select customer columns

from customer3master where state 	 4NY�� cust

where�cust�rowid 	 log�rowid�

and ��log�entry timestamp � last refresh time�

or �log�entry timestamp is null��

The fast refresh queries are optimized so that the following is true
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The above example queries are actually processed at the master site� minimizing the amount of data

pulled over the network�

The remote query is driven by the snapshot log thus requiring only a scan of the log table� which is

usually small� Master tables are accessed by the rowids recorded in the snapshot log�

Data pulled over the network is batched to reduce network round trips�

�
� Wrap up RPC

The main task of the wrap up RPC is to purge the entries in the snapshot log that are no longer needed�

Each successfully refreshed snapshot passes its refresh timestamp to the master� The master site keeps

track of the refresh timestamps associated with all snapshots using each log� If the calling snapshot is the

least�recently�refreshed snapshot� wrap up purges all log entries with timestamps older than the timestamp

associated with the next�most�recently�refreshed snapshot�

For example� a master table� M�� has two snapshots� S� and S�� that were last refreshed at time T� and

T�� respectively� When snapshot S� is refreshed at time T�� the master site�s log entries with timestamps

younger than T� are no longer needed� These entries are deleted by the wrap up RPC during the refresh of

snapshot S� in a separate transaction that does not involve �PC�

Time

T1

T2

T3

log entries in this 
range are purged when 
S1 is refreshed at T3

last refresh of 
snapshot S1

last refresh of 
snapshot S2

refresh of 
snapshot S1

Figure �� Purging Unused rows in the Snapshot Log

� Conclusions

Oracle snapshots satisfy all the requirements of the application domain discussed in the introduction

Multiple snapshots can e�ciently share the same table and log at the master site� Each log at the

master site is maintained at a minimal �xed�cost for each row updated at the master so that OLTP

transactions do not su�er severe response time delays� Fast refreshes do not require full�table scans of

the master tables and pull only changed rows over the network�
Updates to snapshots can be propagated either synchronously or asynchronously to the master� Con�

!icting updates are resolved by the master�
Snapshot sites initiate refreshes� Refreshes can be scheduled to occur automatically by user�de�ned

functions or manually�
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Refresh groups allow multiple snapshots to be consistently refreshed in a manner that can be used to

maintains a master�s referential integrity relationships at the snapshot site�
Both read�only and updatable snapshots support fast refreshes of horizontally partitioned data� Read�

only snapshots also support fast refreshes of vertically partitioned data�

The combination of Oracle�s peer�to�peer replication technology and Oracle Snapshots provides the most

complete distributed and replication solutions in the commercial database market� Oracle snapshots continue

to be enhanced to address the needs of new applications�
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ABSTRACT

EKS is a prototype deductive database system which was developed at ECRC in ���� and ����� Its

architecture includes in particular an update propagation facility� In EKS� this generic and unique facility

is used to implement the veri�cation of generalized integrity constraints or the maintenance of materialized

predicates� it could also be used for the monitoring of conditions associated with alerters�

Given a transaction adding and'or deleting �base� facts� the task of this facility is to determine the e�ect of

the transaction over the set of derived facts derivable from the database� This update propagation facility

is able to deal with recursion� �recursive� aggregates� negation and quanti�ers� This chapter discusses the

various issues we have encountered and the solutions and'or design decisions we have adopted�

� Introduction

EKS is a prototype deductive database system �GMN��� developed at ECRC in ���� and ���� �EKS stands

for ECRC Knowledge Base Management System� see also �BLV��� VBKL����� The primary objective of

the project was to convey the maturity and the practical interest of deductive database systems EKS has

been demonstrated in a number of technical conferences and commercial shows� in Europe and in the United

States� it has been used as a support for teaching in several universities� it is a a key technology source for

the VALIDITY Deductive and Object�Oriented Database system under development �FGVL���� FLV� ��

EKS presents a number of features� many of which will not be covered in this chapter� Amongst the features

relevant to the present chapter� one can note

�� Integrity constraints are very general the logical formula expressing a constraint may refer to recursively

de�ned predicates� or to predicates de�ned by means of aggregate operations� This allows the expression

of cardinality constraints and of acyclicity constraints�

�� Rules may include aggregate operations� in particular intertwined with recursion� Such recursive ag�

gregates allow bill of materials queries to be expressed �Lef����

�	
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�� Derived predicates can be speci�ed as materialized� In this case� an explicit copy of the derived facts

is automatically maintained by the system� We illustrate the interest of this functionality to e�ciently

handle inclusion queries in geometrical applications�

This chapter focuses on one particular aspect of EKS� its update propagation facility� Update propagation is

complementary to fact derivation fact derivation is used to derive the set of answers to a query� methods

for fact derivation �BR��� CGT��� LV��� Lau��� work in a goal�oriented fashion in order to focus on the

data relevant to the query� The aim of update propagation is di�erent� Its task is to determine the changes

induced by a set of �explicit� updates over the set of facts derivable from the database�

Update Propagation is a generic facility� used in EKS for both checking general integrity constraints and

maintaining the extensions of materialized predicates� It can also be used for the e�cient monitoring of the

conditions associated with alerters�

At the time EKS was developed� the genericity of update propagation had rarely been noted �except� e�g��

in �BC��� BCL��� BM��b��� although it is usable for integrity checking �BB��� BDM��� DW��� Dec� �

Kuc��� LST��� MB��� Nic��� SK���� materialized predicates handling �BCL��� Kuc��� NY���� and alerter

monitoring �BC��� DBB���� HD���� Update propagation had been studied mainly in the context of integrity

checking in deductive databases �see �BDM��� BM��b� DW��� Dec� � LST��� MB��� SK���� following

earlier contributions �BB��� Nic����� And� indeed� these works had laid down the basic principles of update

propagation� A �rst step towards a uniform presentation of these basic principles is made in �BM��b�

BMM���� See also �Kuc��� Oli��� ��Kuc��� reports on an alternative study for EKS��

Since the initial version of this chapter was written �VBK���� this topic has become a much more actively

researched area� In section �� we will shortly compare our work with those more recent works�

To be e�ective� an update propagation method must incorporate solutions to the following issues�

First� it must focus on the changes actually induced by the updates� It is expected that� in most current

cases� the set of induced changes will remain �very� small in comparison with the set of all derivable facts�

As the volume of the data manipulated is a key factor for e�ciency� an update propagation procedure should

try to manipulate only data directly or indirectly related to the updates� A natural way to address this

issue �as adopted in the early works �Dec� � SK���� is to design an update�driven� bottom�up method to

propagate both additions and deletions through rules� Although such a method bears similarity with a

semi�naive execution of a �xed�point procedure �BR� �� it has to address a more general setting� as it has

to propagate not only fact additions but also fact deletions�

As a second issue� it must avoid doing irrelevant propagation� i�e�� propagation through rules on which no

constraint and no materialized predicate depends� A blind bottom�up propagation of updates is likely to

perform irrelevant propagation �as noted in �BDM��� GL����� Some kind of top�down reasoning from the

constraints and the materialized predicates must identify the relevant propagations�

In EKS� we have developed an original and e�ective solution to ful�ll these two requirements� A top�down

analysis is carried out� at compile�time� when the set of constraints� rules and materialized predicates is

de�ned or updated� this analysis generates a so�called set of relevant propagation rules which contains all

the �and only those� propagation rules modeling relevant propagations� The activation of these propagation
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rules at transaction commit time performs exactly the relevant propagations� This is done by taking full

advantage of the EKS query evaluator kernel� deriving from DedGin� �LV���� This evaluator is a top�down

set�oriented evaluator and permits an elegant task�driven implementation of update propagation�

Third� the testing policy of an update propagation method must be designed with care to achieve both

correctness and e�ciency� A testing policy determines when and what derivability tests must be performed�

To understand the role of derivability tests� consider the following examples� Let head �� b� and head �� b�

be two rules� Suppose that b� belongs to the database before a transaction adds b�� then� an update

propagation method will detect that� via the second rule� a new proof for head has been added� head is not

really new� as it was already derivable using the �rst rule� Similarly� supppose that both b� and b� belong

to the database before a transaction deletes b�� then an update propagation will detect that� via the �rst

rule� a proof of head has been deleted� however� head is not really deleted as it is derivable using the second

rule� In the �rst case� a derivability test checks whether head was derivable from the old database� In the

�rst case� it checks whether head is still derivable from the new database�

In general� derivability tests are expensive to perform� and the testing policy �what tests should be performed�

and when�� may have important impacts on performance� We argue that a minimal requirement for an

update propagation method is to return a complete set of safe updates� the manipulation of safe updates

requires particularly few derivability tests� We have developed �and implemented� a testing policy �tting

with this minimal requirement�

Counting�based methods �NY��� GMS��� address this third issue in a di�erent way� The idea is keep a count

of the proofs for each derived fact� The role of the update propagation method is to generate an increment or

a decrement to this count� corresponding to the number of proofs added or deleted by a transaction� On the

down side� a systematic use of counting in the presence of negation forces the materialization of predicates

appearing negatively in the body of rules�

Section � presents background on EKS� de�nitions and examples� In section �� a synthetic model of update

propagation is developed� The concept of safe updates and the adapted testing policy are discussed in section

�� Section � de�nes relevant propagation rules� while section  is devoted to their management� In section

�� earlier work is discussed� Section � is the conclusion�

� Background

�
� EKS

EKS uses a basic deductive data model� with no function symbols and no type constructors �set� list� bag�

arguments of facts are atomic values �strings or numbers�� The predicate symbols of the EKS language are

partitioned into base� derived and external predicates� Facts for base predicates are explicitly stored in the

database� facts for derived predicates are derived by means of derivation rules� facts for external predicates

are computed by means of procedures associated to the predicate�

The user language of EKS is based on Datalog and is used to write deduction rules and constraints� It is

purely declarative �assertional� in the sense that the user does not need to know how rules and constraints
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are evaluated� Updates and transactions are required to leave the database consistent with respect to the

integrity constraints� This language includes the logical connectives and� or� �� and quanti�ers forall�

exists� Constraints are closed �rst�order formulae� while general formulae can appear in the body of rules�

Full Datalog recursion and strati�ed negation are supported� Aggregate semantics is provided in �Lef����

Functionally� EKS is a fully persistent deductive database system� Its compile�time components are writ�

ten in the MegaLog system �Boc���� which is a Prolog system integrating access to the BANG �le sys�

tem �Fre���� The initial system was single�user ������� The query evaluator of EKS implements a version

of Query'SubQuery �Lau��� and derives from DedGin� �LV���� The VALIDITY industrial e�ort mentioned

in the introduction is a multi�user system�

�
� De�nitions

The general expressions of the user language are rewritten into an internal extended Datalog form where

quanti�ers and disjunctions are removed� Both fact derivation and update propagation work on this internal

form� and this chapter will focus on this version of the language�

A term is either a variable or a constant� We follow Prolog for the syntax of variables and constants� A

positive literal has the form pred�t�� ���� tn	 where ti is a term� A negated literal has the form not lit�

where lit is a positive literal� A rule has the form

lit� �� lit�� ���� litn

where lit� �the head of the rule� is a positive literal and lit�� ���� litn �the body of the rule� are positive

or negative literals�

EKS supports a query�dependent version of range�restriction� The rule

p�X	 �� not q�X	

is accepted in EKS� with the provision that the only queries which can be run on p are those with its

argument instantiated� This feature of EKS is not marginal as it allows a smooth integration of negation�

quanti�ers and of those external predicates which require some arguments to be bound� For the purpose of

this chapter� however� we will focus on the classical version of range�restriction any variable appearing in

the head of a rule or in a negated literal of its body must occur in a positive literal of its body�

Constraints are expressed as denials �SK���

inc�constraint�id �� lit�� ���� litn

where constraint�id is an identi�er of the constraint �inc stands for inconsistent�� Formally� the distinc�

tion of several versions of inconsistent does not make sense� this is done here for simplicity� The database

is consistent if inc�constraint�id is not derivable for any constraint�

Updates are either additions or deletions on base predicates� A transaction is abstracted as a set of additions

and a set of deletions� We consider the net e�ect of transactions and suppose that the same fact is not both an

addition and a deletion� We do not consider rule updates� We denote by OLD�DB �respectively� NEW�DB�

the database before �respectively after� a transaction�
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Any derived predicate may be declared as materialized� In this case� the set of facts derivable for this

predicate �its extension� is automatically maintained by the system� We always assume that� in OLD�DB�

this extension contains all �and only those� facts actually derivable� We do not consider duplicate facts�

A proof of a fact F over a database DB is a tree whose root is labeled by F and built as follows

Let F be a base positive fact contained in DB� then there is a proof �of F� reduced to a single node

labeled by F�
Let F be a �base or derived� fact for which no proof over DB can be constructed� then there is a proof

�of not F� reduced to a single node labeled by not F�
Let Ti be a proof of Fi over DB �Fi may be negative� i�e�� be not F� for some F�� or positive�� let

F �� F�� ��� Fn be a ground instance of a rule in DB� then there is a proof �of F� over DB the direct

subtrees of which are exactly the Ti�s�

A derived fact is actually added by a transaction if it is derivable from NEW�DB but not from OLD�DB� A

derived fact is actually deleted by a transaction if it is derivable from OLD�DB but not from NEW�DB�

We suppose known the notion of substitution and of most general uni�er �mgu� �see� e�g�� �CGT�����

�
� Motivating examples

EXAMPLE ��� Consider the constraint The owner of a car must hold a driving license� This can be

written in denial form as

inc�� �� owns�car�Driver� Car	� not licensed�Driver	

To check whether the insertion of owns�car��John�� �Lincoln�	 violates the constraint	 it is su�cient to

check whether �John� has a driving license� No full scan of the licensed facts is needed� Also	 note that

licenced insertions and owns�car deletions can not a�ect the constraint� �

EXAMPLE ��� As a second constraint	 assume that there may not be cycles in a part�subpart hierarchy�

This constraint may appear in bill�of�material databases and its veri�cation requires ad�hoc development in

current systems� It is expressed with the help of the transitive closure part�subpart of the base relation

assembly

RULES� part�subpart�Part� SubPart	 �� assembly�Part� SubPart	

part�subpart�Part� SubPart	 �� assembly�Part� InterPart	

and part�subpart�InterPart� SubPart	

CONSTRAINT� inc�� �� part�subpart�Part� Part	

�

EXAMPLE ��	 As an example of a materialized predicate	 we de�ne a predicate modeling the minimal

enclosing box of a polygon� After a transaction	 the system recomputes only the minimal enclosing boxes of

the polygons modi�ed or de�ned during the transaction�
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min�max�box�Polygon�Id� Xmin� Xmax� Ymin� Ymax	 ��

agg� polygon�points�Polygon�Id� X� Y	

group�by �Polygon�Id�

where �Xmin is min�X	� Xmax is max�X	�

Ymin is min�Y	� Ymax is max�Y	�

	

The materialization of the minimal enclosing boxes is a potentially essential factor for the e�cient support

of	 e�g�	 inclusion queries Which are the polygons containing a given point� Such a query can be modeled

as	 �rst	 a range query to �nd the enclosing boxes containing the point and	 then	 as an exact inclusion test

on the polygons returned by the �rst phase� This query is modeled by the following rule	 where the predicate

check�polygone implements the inclusion test and is omitted here�

encl�polygone�Polygone� X�� Y�	 ��

min�max�box�Polygone� Xmin� Xmax� Ymin� Ymax	 and

X� �� Xmin and X� �� Xmax and

Y� �� Ymin and Y� �� Ymax and

check�polygone�Polygone� X�� Y�	�

If the minimal enclosing boxes were not materialized	 then the exact test would have to be performed on every

polygon in the database	 as it is very di�cult to transform a selection criteria on X� and Y� on a selection

criteria on polygons� Performance tests indicate a factor �� improvement when materialization is performed�

In this example	 materialization and range queries can be seen as modeling specialized structures and algo�

rithms �see �Ore����� �

� Basic Notions of Update Propagation

�
� Transactions Add or Delete Proofs

A transaction can be seen as adding and deleting proofs of derived facts a proof over NEW�DB is said to

be added by a transaction if it could not be constructed over OLD�DB� a proof over OLD�DB is said to be

deleted by a transaction if it can not be constructed over NEW�DB�

As a more precise characterization� a proof over NEW�DB is added by the transaction if one of its leaves is

labeled either by a positive base fact added by the transaction or by a negated �base or derived� fact not F

and F is actually deleted by the transaction� Similarly� a proof over OLD�DB is deleted by the transaction

if one of its leaves is labeled by a positive base fact deleted by the transaction or by a negative �base or

derived� fact not F and F is actually added by the transaction�

The addition �resp� deletion� of a proof of a derived fact does not imply that this fact is actually added

�resp� actually deleted� by the transaction other proofs may have existed before �resp� may exist after�� A

fact for which a proof is added� is actually added if and only if it was not derivable from OLD�DB� a fact

for which a proof is deleted� is actually deleted if and only if it is not derivable from NEW�DB�
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�
� Propagating Updates

The explicit manipulation of proofs in a database system is complex as it requires the implementation of

tree structures� while data managers are usually designed to manipulate !at records� In order to avoid

manipulating proofs� one focuses instead on the derived facts for which proofs are added or deleted� This is

achieved without materializing their proofs� by propagating the updates through the rules�

We �rst consider propagation through positive body literals�

Let R be a rule and L be a positive literal in the body of R� Let Side be the body literals other than L in R

�the side literals�

R H �� L� Side�

Consider a fact F uni�able with L �mgu �� and suppose that the transaction adds or deletes a proof for F�

The propagation of this update through the rule R via the body literal L� consists in evaluating Side� and

in producing instances of H for which proofs are added or deleted� Let � be the overall substitution resulting

from the uni�cation of F and L and from the evaluation of Side�� The following properties can easily be

checked by the reader

If the transaction adds a proof for F and if Side� is derivable from NEW�DB� then the transaction adds

a proof for H��

If a transaction deletes a proof for F and if Side� was derivable from OLD�DB� then the transaction

deletes a proof for H��

We now consider propagation through negative body literals�

Let R be a rule of the form

R H �� not L� Side�

The update considered now is an actual update� i�e�� the actual addition or actual deletion of a fact F uni�able

with L �mgu ��� Actual updates are required here instead of mere additions or deletions of proofs because

the de�nition of added'deleted proofs require negated leaves to be labeled by actual updates� Hence� we

have

If F is actually deleted by a transaction� and if Side� is derivable from NEW�DB� then the transaction

adds a proof for H��

If F is actually added by a transaction� and if Side� was derivable from OLD�DB� then the transaction

deletes a proof for H��

As a �nal remark� the above properties have indicated an important asymmetry when deriving facts for

which proofs are added� side literals are evaluated over NEW�DB� when deriving facts for which proofs are

deleted� the side literals are evaluated over OLD�DB�
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�
� Summary and Propagation Rules

It is convenient to model update propagation by means of meta�rules �BDM��� SK���� called here propagation

rules� Let the unary meta�predicates

added�proof�for� deleted�proof�for�

actual�add� actual�del�

new� old

respectively hold of a fact F if F has an added proof� has a deleted proof� is actually added� is actually

deleted� is derivable from NEW�DB or is derivable from OLD�DB� In addition� the meta�predicates new and

old will also apply to conjunctions� The various results of this section can be written as follows�

Given the rule

R H �� L� Side�

Propagation through the positive literal L

if added proof for�L� and new�Side� then added proof for�H�

if deleted proof for�L� and old�Side� then deleted proof for�H�

Given the rule

R H �� not L� Side�

Propagation through the negative literal not L

if actual add�L� and old�Side� then deleted proof for�H�

if actual del�L� and new�Side� then added proof for�H�

Derivation of actual updates from added and deleted proofs

if added proof for�L� and not old�L� then actual add�L�

if deleted proof for�L� and not new�L� then actual del�L�

A construct of the form type�L� where type is a unary meta�predicate and L is a literal is called a propagation

literal� The propagation literal after if �resp� then� is called the body update �resp� head update� of the

propagation rule� Hence� in general� a propagation rule has the form �state is either old or new� and C is a

conjunction � potentially empty � of literals�

if body�update and �not� state�C� then head�update

� Testing Policy

From the previous section� it is clear that it is sometimes necessary to perform derivability tests� i�e�� to test

whether a fact for which a proof is deleted �respectively added� is derivable from NEW�DB �respectively from

OLD�DB�� However� these tests may be expensive as they may invoke several �if not many� derivation rules�
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In this section� we discuss a testing policy which minimizes the number of these tests without endangering

the correctness of update propagation�

This testing policy has two main characteristics� First� a method applying this policy may produce so�

called safe updates besides actual updates� the de�nition of safe updates guarantees the correctness of the

procedure� Second� this policy leads to fewer tests than it would be implied by the previous section� for

instance� when applying this policy� no test is performed when propagating actual additions through negative

body literals�

�
� Safe Updates

We say that an update propagation method is correct if and only if it returns a set of updates on derived

predicates such that

the returned set of updates contains all actual updates�

all returned additions are safe� i�e�� they all correspond to facts which are derivable from NEW�DB�

all returned deletions are safe� i�e�� they all correspond to facts which are not derivable from NEW�DB�

Note that the notion of a safe update is rather permissive a fact may 
safely� be deleted� although it has

never been derivable from the database� a fact may 
safely� be added� although no new proof has been added

for it� This permissivity may be confusing at �rst� but its interest is to allow a reduction of the number of

derivability tests�

This notion of correctness is a practical notion for integrity checking� if inconsistent is returned as a

safe addition� then it derives from NEW�DB and the database is inconsistent� for materialized predicates�

redundant insertions �as it may happen when performing safe additions� or une�ective deletions �as it may

happen when performing safe deletions� do not harm�

�
� Derivability Tests for Safe Updates

Safety of updates is an asymmetrical notion in the sense that OLD�DB and NEW�DB do not play the same

role in the de�nition� This is unlike the notions de�ned in section � which were all symmetrical in OLD�DB

and NEW�DB� The reason for this asymmetry is practical it is the result of the transaction� i�e�� NEW�DB�

which is of interest� not the state before� This asymmetry is re!ected in the testing policy which we describe

now�

Additions returned by the procedure are required to be derivable from NEW�DB but not necessarily to be

actual additions� This indicates a �rst decision for the testing policy
Do not check that added derived facts were derivable from OLD�DB�

As a next step� the testing policy for deletions must guarantee that returned deletions are safe and must be

coherent with the �rst decision above� As we show below� the following design decision will do
Check whether a potentially deleted fact is not derivable from NEW�DB in two cases before prop�

agating this fact through a negative literal and when it is to be returned as output of the procedure�
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The �rst case is needed to guarantee that only safe additions be manipulated� the second case is needed to

guarantee the correctness of the update propagation method�

This strategy is formalized by the following rules� where safe�add� safe�del� any�del are unary predicates

holding of a fact if this fact can 
safely� be added� deleted or is regarded as a potential deletion �
potential�

is not given any formal meaning here��

Propagation through a positive literal

if safe�add�L� and new�Side� then safe�add�H�

if any�del�L� and old�Side� then any�del�H�

Propagation through a negative literal

if safe�add�L� and old�Side� then any�del�H�

if safe�del�L� and new�Side� then safe�add�H�

Testing the safety of actual deletions

if any�del�L� and not new�L� then safe�del�L�

Finally� check whether deletions are safe before returning a deletion as output of the procedure� i�e��

when the deletion is of the form 
remove inconsistent�� or 
delete a fact from the extension of a

materialized predicate��

An easy proof by induction on the number of rules applied to generate an addition� shows that all additions

are safe� The last point of the strategy guarantees that the deletions returned by the procedure are safe�

Note that an update propagation method working along this strategy may internally manipulate unsafe

deletions�

We leave the reader convince himself that all actual upates are returned by a procedure implementing this

strategy�

EXAMPLE 
�� This example illustrates the permissivity of the notion of safe updates� Consider the

following set of rules�

p �� q

p �� r

s �� not p

t �� not s

r

Assume that a transaction adds q� The propagation of this addition through the �rst rule produces the actual

�thus safe� addition of p� By propagating this addition through the literal not p of the third rule	 one obtains

�This case will never occur if only relevant propagation is performed � see section ��
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the actual deletion of s� Before propagating this deletion through the body literal not s in the fourth rule	

the derivability of s from NEW�DB is tested� As this test fails	 the deletion of s is considered to be safe and

is propagated through the fourth rule� This results in the actual �safe� addition of t�

Two points are worth noting s is regarded as being �safely� deleted	 though it was not derivable� similarly	

t is regarded as being �safely� added	 whereas no proof has been added� �

� Relevant Propagation Rules

In this section� we de�ne the set of propagation rules associated with a set of user rules� constraints and

materialized predicates� This de�nition guarantees that only relevant propagations are performed� and that

update propagation is complete� This is achieved by making sure that this set contains all the propagation

rules modeling relevant propagations� and only them�

Which derived updates are relevant can be decided on the following basis�

�� The addition �but not the deletion� of inconsistent is relevant�

�� Both additions and deletions on materialized predicates are relevant�

�� Recursively� the relevance of an update on a literal H implies the relevance of a corresponding update

on the literals in the body of the rules de�ning H

if additions on H are relevant� then additions �resp� deletions� on positive �resp� negative� body

literals are relevant�

if deletions on H are relevant� then deletions �resp� additions� on positive �resp� negative� body

literals are relevant�

Further� the above criteria can be re�ned to take into account constants� or multiple occurrences of a variable

in a literal� As an example� consider the denial

inc�ic �� p�a�X�X	� not q�X	

then only additions of facts matching p�a�X�X	 are relevant� The corresponding bindings can be used to

generate more restricted propagation rules� ,From the rule

p�X�Y�X	 �� r�X�Y�X	

one may generate the propagation rule

if safe�add�r�a	X	X�� then safe�add�p�a	X	X��

However� some care must be taken when generating these more restricted propagation rules more general

updates may be needed elsewhere� For instance� another denial may be

inc�ic� �� p�X�Y�Z	� not s�X�Y�Z	

In this case� only the more general propagation rule below should be included in the set

if safe�add�r�X	Y	Z�� then safe�add�p�X	Y	Z��
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�
� The Set of Propagation Rules

We say that a set S� of propagation rules is less general than a set S� of propagation rules if for each rule

R� in S�� there is a rule R� in S� and a substitution � such that R� is identical to R��� up to body literal

reordering� The set of propagation rules associated with a set of derivation rules� of integrity constraints and

of materialized predicates is the smallest and less general set such that

�� It contains the following initial propagation rules 

�a� for each constraint of identi�er id�

if safe�add�inc�id� then set��ag�inc�id�

�b� for each materialized predicate pred of arity n

if safe�add�pred�X�	��	Xn�� then insert�pred�X�	��	Xn��

if safe�del�pred�X�	��	Xn�� then delete�pred�X�	��	Xn��

�� If type�Lit� �type may be safe�add or any�del� appears as body update of a propagation rule� if Lit

is uni�able �mgu �� with the head H of a rule R� H �� Body� then there must be a propagation rule of

head update type�H�� such that H� subsumes H� for each literal L in Body� There are four cases

�a� type is safe�add and L appears positively in the body of R

if safe�add�L�� and new�Side�� then safe�add�H��

�b� type is safe�add and L appears negatively in the body of R

if safe�del�L�� and new�Side�� then safe�add�H��

�c� type is any�del and L appears positively in the body of R

if any�del�L�� and old�Side�� then any�del�H��

�d� type is any�del and L appears negatively in the body of R

if safe�add�L�� and old�Side�� then any�del�H��

�� Whenever safe�del�Lit� appears as body update� there must be a propagation rule of the form given

below� such that L subsumes Lit

if any�del�L� and not new�L� then safe�del�L�

�set��ag�inc�id� sets a "ag indicating that the constraint of identi�er id has been violated�
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�
� Examples
EXAMPLE ��� IC
� inc�
 �� p�a	

p�X	 �� q�X�Y	� not r�Y�X	

�

In this example� additions on q or deletions on r not uni�able with q�a�Y	 and r�Y�a	 do not need to be

propagated� and the propagation rules generated are

���C� if safe�add�inc�
� then set��ag�inc�
�

����� if safe�add�p�a�� then safe�add�inc�
�

����� if safe�add�q�a	Y�� and not r�Y	a� then safe�add�p�a��

����� if safe�del�r�Y	a�� and q�a	Y� then safe�add�p�a��

The system ensures that only the �relatively� most general propagation rules exist in the database� For

instance� if the following second constraint is added to the database

IC� inc� �� p�X	

then the rules ����� and ����� will be removed� and the following rules will be added

���C� if safe�add�inc��� then set��ag�inc���

����� if safe�add�p�X�� then safe�add�inc���

����� if safe�add�q�X	Y�� and not r�Y	X� then safe�add�p�X��

����� if safe�del�r�Y	X�� and q�X	Y� then safe�add�p�X��

EXAMPLE ��� �Continued� The propagation rules generated for the acyclicity constraint are

if safe�add�inc��� then set��ag�inc���

if safe�add�part�subpart�P	P�� then safe�add�inc���

if safe�add�assembly�P	 IP�� and part�subpart�IP	 SP�

then safe�add�part�subpart�P	 SP��

if safe�add�assembly�P	 SP�� then safe�add�part�subpart�P	 SP��

if safe�add�part�subpart�IP	SP�� and assembly�P	IP�

then safe�add�part�subpart�P	SP��

Note �rst that the propagation rules are recursive� like the initial Datalog rules� Second� the mutual bindings

between the two variables of part�subpart in the second propagation rule have disappeared in the propagation
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rules associated with the rules de�ning part�subpart� Indeed� even if� eventually� only facts of the form part�

subpart�Y	Y� can violate the constraints� intermediate facts of the more general form part�subpart�X	Y�

can also lead �in several steps� to a violation� Hence� most general additions for part�subpart need to be

propagated�

�
� Propagation Rules for Aggregate Operations

EKS provides both non�recursive and recursive aggregate facilities �see �Lef����� We discuss here only non�

recursive aggregate rules� and extend the propagation rules framework to deal with them� Their general

form� together with an example� is as follows

H �� agg� Subgoal� Group�variables� List�of�agg�operations	

avg�sal�Dep� AvgSal	 ��

agg� employee�Dept� Name� Salary	�

�Dept��

�Avgsal is avg�Salary	�

	

The example ��nd the average salary by department� should su�ce to explain the meaning of the aggregate

construct Subgoal �employee� indicates the input of the aggregate operation� Group�variables ��Dept�� is the

list of grouping attributes� and List�of�agg�operations is the list of aggregate operations to perform �of the

form �Var is op�In Var���� We refer to �Lef��� for more details�

In general� both additions and deletions over Subgoal can imply both additions and deletions over H� For

instance� the addition of an employee to the 
toy� department with a given Salary� will change the average

salary of the 
toy� department� i�e�� will remove the old value and add the new value� In the case of a

deletion� the situation is symmetrical�

Whenever type�L� appears as Body�update in a propagation rule �L and H being uni�able� mgu ��� there

must exist propagation rules of head type�H�� �H� subsumes H��� There are two cases

�� Type is safe�add

if safe�add�Subgoal�� and H� then safe�add�H��

if any�del�Subgoal�� and H� then safe�add�H��

�� Type is any�del

if safe�add�Subgoal�� and old�H�� then any�del�H��

if any�del�Subgoal�� and old�H�� then any�del�H��

The nature of the side literals �here the head of the initial rule� is di�erent from the case of a normal Datalog

rule� Here� the addition and deletion of a fact over Subgoal only serves as a trigger for the re�evaluation of

the aggregate function� however restricted to the corresponding grouping values�
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� Managing Propagation Rules

�
� Maintenance

The set of propagation rules has to be updated when a constraint or a materialized predicate is added

or removed� The algorithms to maintain this set re!ect the de�nitions given in the previous section if an

initial propagation rule is added or removed� then other propagation rules are added or deleted in a top�down

fashion�

The main di�culty is to take care of the propagation rules subsumed by other propagation rules� Upon

additions� propagation rules previously in the set of propagation rules may have to be removed because

they are subsumed by the new ones� this will maintain the minimality of the set of propagation rules�

Upon deletions� it is necessary to add to the set of propagation rules those propagation rules which were

previously subsumed by the propagation rules being deleted� this will maintain the completeness of the set

of propagation rules�

Example ��� provides an illustration of this issue� When adding ����� and ������ ����� and ����� had to be

removed� Similarly� if the constraint IC�� is removed later� then ����� and ����� are deleted� but ����� and

����� need to be added�

Adding Propagation Rules

The addition process is triggered by the insertion of one initial propagation rule �point � of the de�nition in

section ����� Its body update is passed as the argument to the addition procedure given below�

This addition procedure takes as input a propagation literal of the form safe�del�L�� safe�add�L� or any�

del�L�� Its main purpose is to make sure that the set of propagation rules contains all the rules necessary

to generate updates instance of the propagation literal passed as input�

Addition Procedure

�� The argument is of the form safe�del�L��

If there is a propagation rule whose head update subsumes safe�del�L�� do nothing� otherwise

�a� remove the propagation rules whose head updates are subsumed by safe�del�L��

�b� insert the propagation rule

if any�del�L� and not new�L� then safe�del�L�

�c� call recursively the addition procedure with any�del�L� as argument�

�� The argument is of the form type�L�� where type is either safe�add or any�del�

For each Datalog rule R� H �� Body such that H and L are uni�able �mgu ��� and for each literal L� in

Body� do

If there is a propagation rule for the same Datalog rule R and the same body literal L� whose head

update subsumes type�H��� do nothing� otherwise
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�a� remove the propagation rules whose head update are subsumed by type�H���

�b� generate a propagation rule according to the de�nition in ����

�c� insert this propagation rule�

�d� call recursively the addition procedure with the body update of this propagation rule as argument�

The following remark applies both to the addition process and to the deletion process� The subsumption

test is not performed on whole propagation rules� but on their head updates� this is su�cient� as propagation

rules are compared only if they correspond to the same Datalog rule and to the same body literal� and as

only variables appearing in their head may be bound� The cost of this subsumption test is thus limited

�subsumption is NP�complete in general��

Deleting Propagation Rules

The deletion process is triggered by the removal of one initial propagation rule �point � of the de�nition in

section ����� Its body update is passed as the argument of the deletion procedure de�ned below�

This addition procedure takes as input a propagation literal of the form safe�add� safe�del�L� or any�

del�L�� It proceeds in two phases �rst� delete all propagation rules which are connected to the initial

propagation rule being removed� second� add all the propagation rules which were previously subsumed and

thus not present in the database� The second phase starts from the propagation literals a�ected by the �rst

phase �they are collected in a list �initially empty�� called remember�list here��

Deletion Procedure

�� Let the argument of the procedure be type�L��

For each existing propagation rule whose head update subsumes type�L� do

�a� remove this propagation rule�

�b� add its body update to remember�list�

�c� call recursively the deletion procedure with its body update as argument�

�� For each update literal type��L�� in remember�list� if it uni�es �mgu �� with the body update of a

propagation rule still present� call the addition procedure with type��L��� as argument�

�
� Activation

The activation of propagation rules in a database context involves both optimization and compilation aspects

and run�time execution� In order to avoid duplication� the optimization� compilation and execution of

propagation rules must use the system�s components for basic query optimization� compilation and execution�

In this section� we shortly indicate how the EKS core rule evaluator �designed for fact derivation� is used

for propagation rules�
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Mapping Propagation Rules onto Datalog Rules

The query evaluation kernel of EKS derives from the DedGin� prototype �LV���� This kernel is made up of

a rule optimizing compiler and of a query evaluator� It implements the QSQ execution model �Lau���� which

extends top�down by sharing the evaluation of subqueries� thus guaranteeing completeness and termination�

All manipulations of data are performed in a set�oriented way�

The propagation rules are rewritten in such a way that the top�down activation of the rewritten rules

simulates the bottom�up activation of the initial propagation rules� Our generic propagation rule

if Body�update and state�Side� then Head�update

is rewritten as

Body�update � � state�Side� and Head�update

Implementation wise� new internal predicates are introduced to code propagation literals� For instance�

safe�add�pred�X�Y		 may become sa�pred�X�Y	� and the propagation of explicit additions on pred is

triggered by issuing a query on sa�pred�

Only minor changes had to be done to the rule optimizing compiler and to the query evaluator for supporting

propagation rules� They concerned ��� the evaluation of �sub�queries over the old state� ��� the systematic

selection of Head�update as the last literal from rewritten propagation rules� ��� the unfolding of some

rewritten propagation rules� to handle non�locally range�restricted rules �this is beyond the scope of this

chapter� and ��� allowing some side�e�ects �strictly controlled by the system�� e�g�� for updating materialized

predicates�

Finally� note that recursion and aggregates are handled normally by the query evaluation kernel� The control

of recursion avoids several propagations of the same update through the same propagation rule�

Run�Time Coordination

Propagation rules represent a uniform framework for integrity checking and for materialized predicates

handling� But the coordination of their execution must comply with di�erent requirements ��� the violation

of only one integrity constraint is su�cient for a transaction to be invalid� as soon as such a violation is

detected� the remaining propagation rules do not need to be activated� ��� to be complete� the maintenance

of materialized predicates must activate all possible propagation rules�

As a consequence� the strategy used to coordinate the activation of propagation rules must be chosen

with care� For integrity checking� a 
depth��rst� coordination strategy is recommended� as it allows early

detection of inconsistency while avoiding redundant work� For materialized predicates� where saturation is

always needed� there is no such clear winner�

The query evaluator of EKS �see �LV���� was designed to support both a depth��rst and a breadth��rst

strategy� While DedGin� systematically applied depth��rst� EKS systematically applies breadth��rst� This
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choice was made for simplicity� however� this induces redundant work for yes'no queries and integrity

violation detections� Dynamic switching between depth��rst and breadth��rst� although initially planned�

has not been implemented�

� Discussion and Previous Work

�
� Pattern Propagation

The Role of Side Literal Evaluation

Let us return for a short moment to the context of section � and consider the propagation of an update on

L through one of the following rules Consider the following rule

R H �� L� Side�

R� H �� not L� Side�

In this context� the goal of propagation is to �nd out the derived facts for which proofs have been added

or deleted by a transaction� In this case� the evaluation of the side literals Side serves two purposes ��� it

permits deriving the instances of H for which proofs are added and deleted� but ��� it also ensures that these

instances are actually derivable either from NEW�DB or from OLD�DB�

When the focus changes from added and deleted proofs to safe updates� as in sections � and following�

the role of side literal evaluation is changed accordingly� On one hand� it remains important to guarantee

that facts regarded as added are actually derivable from NEW�DB �safe additions�� On the other hand� it

becomes unnecessary to guarantee that facts regarded as deleted were actually derivable from OLD�DB �we

require only that they are not derivable from NEW�DB��

As a consequence� not all side literals need to be evaluated when generating deletions one needs only to

evaluate su�ciently many side literals to produce ground instances of H� The remaining side literals can be

regarded as additional tests on the deletion being induced if their evaluation fails� the potential deletion

does not need to be propagated� These tests are thus of the same nature as derivability tests� and a consistent

strategy would be to leave them out��

As an example� consider the rule

s�X�Y	 �� p�X�Z	� q�Z�Y	� r�X�Z	

Suppose that q�a�b	 is deleted� In order to provide bindings for s� only one of the two side literals �p�X�Z	

or r�X�Z	� needs to be evaluated� The evaluation of the remaining literal is optional�

More radically� one can envisage evaluating even fewer side literals� and generate non�ground instances of H�

These non�ground instances represent update patterns� as they indicate that some of their instances may be

added or deleted� These patterns can be propagated in a similar way as ground updates� Consider the rule

R H �� L� Side�

and an update pattern P uni�able with L �mgu ��� then the propagation of P through R generates the update

�We could have done so in EKS	 but the current implementation evaluates all of them�
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pattern H� on H �if no side literal at all is evaluated�� H� may be more restricted than H or be as general as

H� H� can be further propagated through rules�

Patterns carry less information than �ground� updates some bindings are missing and no speci�c derivability

�from NEW�DB� OLD�DB� information is available� Bindings can be regenerated by evaluating the patterns

either as stand�alone queries or integrated within larger queries�

It is even possible to mix the propagation of update patterns and ground updates� Suppose that� in the

above example� one propagates the pattern P through the rule R by evaluating the whole expression 
L��

Side�� �over OLD�DB or NEW�DB� depending on the type of P�� As a result� from an update pattern on

L� one generates ground updates on H� Further� if these updates are additions� then they are guaranteed to

be derivable from NEW�DB� for the whole body of the rule has been evaluated� Note that the evaluation of


L�� Side�� di�ers from the evaluation of side literals considered so far because of the presence of L��

As a result� a wide range of possibilities exists� We discuss below two methods which can be interpreted as

combining pattern and �ground� update propagation�

We did not retain such an approach in EKS for the following reason� The propagation of patterns does

not focus on induced updates a pattern is a very loose piece of information and regenerating bindings by

re�evaluation will in general regenerate more data than when directly generating ground updates �a similar

point is made in �BDM�����

On Constraint Simpli�cation

The simpli�cation method �Nic���� initially developed for relational databases� has been rather in!uential

and several authors have extended it for deductive databases �BDM��� Dec� � LST���� Both the initial

method and the extension presented in �LST��� can be understood as the following combination of pattern

and ground update propagation

�� Propagate patterns until the body of a denial is reached�

�� Unify the pattern with the corresponding literal of the denial�

�� Evaluate the resulting instance of the denial�

As an example� consider the following constraint �the simpli�cation method works with �rst�order formulas�

forall X� �p�X	 �� exists Y� � q�X�Y	 and r�Y	 	�

In EKS� as in �LT���� this constraint is rewritten as

inconsistent �� p�X	� not tmp�X	

tmp�X	 �� q�X�Y	 � r�Y	

As a result of this update'pattern propagation strategy� the body of the following instances of the denial

needs to be evaluated upon the updates addition of p�a	� deletion of q�a�b	� deletion of r�b	
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inconsistent �� not tmp�a	

inconsistent �� p�a	� not tmp�a	

inconsistent �� p�X	� not tmp�X	

In the �rst case� constraint simpli�cation is equivalent to the method presented here� In the second and

third cases� our propagation procedure evaluates the side literals in the rule de�ning tmp �resp� r and q�

to produce updates over tmp� More propagation work is done� but the method focuses better on induced

changes�

Another Combination

As an example of another design� in the method presented in �DW���� side literals are evaluated when

generating additions and are not evaluated when generating deletions� In other words� patterns are generated

for deletions� while updates are generated for additions� The rationale for this design might be presented as

follows ��� the evaluation of side literals on the old state may be expensive� ��� derivability tests are needed

in any case when generating deletions hence� why not simply re�derive the facts matching the patterns�

We took the view that ��� evaluation on the old state can be e�ciently implemented� and ��� the 
focus on

induced changes� is a practical requirement�

�
� Combination of Top�down and Bottom�up

Requirements

Some authors �BDM��� Kuc��� Oli��� have assumed a top�down activation of �the equivalent of our� prop�

agation rules� rather than the bottom�up activation advocated here� The main rationale for this approach

�BDM��� was to avoid the irrelevant propagations performed by a blind bottom�up propagation of updates

�recall that this is avoided here by the de�nition of the set of relevant propagation rules��

In this top�down approach �mainly studied in the context of integrity checking�� the activation of propagation

rules is triggered by asking the query �� safe�add�inc�id� for every constraint� This query is then to be

answered by the standard query evaluator�

A �rst issue in this approach is to ask these queries only for the constraints which may be a�ected by the

update� This is addressed in �BDM��� by using a dependency graph linking base updates to constraints� A

second issue is to avoid the activation of irrelevant propagation rules� i�e�� of propagation rules not connected

to the updates this issue thus generalizes the �rst one� A third issue is to use the bindings provided by the

updates to actually focus on the induced changes� �Kuc��� addresses these issues by adding a 
dependency�

literal in the body of the propagation rules� A full comparison between the approach reported here and the

one presented in �Kuc��� remains to be done�
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�
� Basic Work on Update Propagation

A couple of basic contributions �BDM��� Dec� � SK��� have isolated the main aspects of update propagation�

as we presented in section � evaluation over old and new states and derivability tests� Let us recall the

tentative uniform view presented in �BMM��� BM��b�� The in!uence of these basic works on the design of

EKS should be clear�

�SK���� followed by �MB���� deal with a uniform representation of expressions as rules and denials� �SK���

and �Dec� � propagate updates in bottom�up manner � our scheme is close to their� however� none of them

tackle the issue of avoiding irrelevant propagations� as noted in �BDM���� �BDM��� Dec� � combine update

propagation and constraint simpli�cation� it is now recognized that a uniform view should be adopted

�SK��� BM��b� BMM���� as we have done here� �BDM��� provides a �rst approach to avoiding irrelevant

propagation �see above��

More recent presentations of these basic principles include �Kuc��� Oli���� �Kuc��� presents in an overview

various classes of changes for derived predicates that can be obtained using various update propagation

schemes�

�LST��� combines pattern propagation and constraint simpli�cation� Works including only detection of

irrelevant checks have been proposed in �BCL���� these proposals fully evaluate a constraint once it has been

detected as relevant�

�
� Counting�like Methods

Counting methods implement an interesting alternative� as they permit avoiding derivability tests� These

methods basically work as follows the number of proofs for each materialized derived fact is stored together

with the derived fact� After each transaction� the number of proofs added or removed by the transaction

is computed along a mechanism similar to the one described in section �� The number of proofs added to

removed by the transaction thus permits maintaining the extensions of materialized predicates�

As a shortcoming� counting methods need special tricks to handle negation�

The �rst attempt for a counting method was in the BDGEN prototype �NY��� �without negation�� Counting

has been considerably improved in �GMS���� The work presented in �GL��� is related to counting� and

addresses the issue not from a deductive setting but from a bag algebra setting�

�
� Miscellaneous

Ceri and Widom �see �CW��� and papers pointed there�� concentrate on the generation of production rules

to handle update propagation and on the adequacy of these production rules to extended relational systems�

Harrison and Dietrich �HD��� develop an update propagation approach that they� in particular� apply to

condition monitoring in active database systems�
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When checking general integrity constraints� update propagation has to be performed at the end of the

transaction �so�called deferred mode�� In some simpler cases� it is possible to do otherwise �check before

or after the update� so�called immediate mode in SQL databases�� In particular� generating pre�conditions

has been addressed several works �see �Sto��� BB����� While the interest of the immediate mode is obvious�

in EKS� only the most general case is considered and update propagation is performed at the end of a

transaction�

 Conclusion

In this chapter� we have stressed the genericity of update propagation� as a way to support both integrity

checking and materialized predicates� we believe that it can also be used to monitor the conditions associated

with alerters� We have developed an original and an e�ective solution to combine the two main requirements

of update propagation focus on induced changes and avoid irrelevant propagations� We have justi�ed and

developed a testing policy which aims at minimizing the number of derivability tests� These techniques

have been implemented in the EKS system which supports generalized integrity checking and materialized

predicates handling�

As an obvious limitation� EKS does not o�er an update primitive to modify tuples �to modify a fact� one

must perform a deletion and then an insertion�� An explicit update facility sometimes allows gains for

update propagation� Consider the rule

p�X�Y	 �� q�X�Y�Z	

Modi�cations of the third attribute of q�facts do not induce changes on p� If tuple modi�cations are performed

by one deletion followed by an insertion� the absence of induced changes is di�cult to detect� Techniques

for update propagation can easily be generalized to support such an update primitive�

Acknowledgements

The design and the development of the update propagation component of EKS have largely bene�ted from

the high level of expertise previously acquired within the KB group at ECRC by our fellow researchers

Francois Bry� Hendrik Decker� Rainer Manthey and Mark Wallace� We acknowledge the advice of Rainer

Manthey� This chapter is a revised version of �VBK���� written while the �rst author was an employee of

Ecole Nationale des Ponts et Chauss1ees� Paris� France�



��
DERIVING PRODUCTION RULES

FOR INCREMENTAL VIEW MAINTENANCE

Stefano Ceri� Jennifer Widom

ABSTRACT

It is widely recognized that production rules in database systems can be used to automatically maintain

derived data such as views� However� writing a correct set of rules for e�ciently maintaining a given view

can be a di�cult and ad�hoc process� We provide a facility whereby a user de�nes a view as an SQL

select expression� from which the system automatically derives set�oriented production rules that maintain

a materialization of that view�

The maintenance rules are triggered by operations on the view�s base tables� Generally� the rules perform

incremental maintenance the materialized view is modi�ed according to the sets of changes made to the

base tables� which are accessible through logical tables provided by the rule language� However� for some

operations substantial recomputation may be required� We give algorithms that� based on key information�

perform syntactic analysis on a view de�nition to determine when e�cient maintenance is possible�

� Introduction

In relational database systems� a view is a logical table derived from one or more physical �base� tables�

Views are useful for presenting di�erent levels of abstraction or di�erent portions of a database to di�erent

users� Typically� a view is speci�ed as an SQL select expression� A retrieval query over a view is written

as if the view were a physical table� the query�s answer is logically equivalent to evaluating the view�s

select expression� then performing the query using the result� There are two well�known approaches to

implementing views� In the �rst approach� views are virtual queries over views are modi�ed into queries

over base tables �Sto���� In the second approach� views are materialized they are computed from the base

tables and stored in the database �BLT� �KP���SI���� Di�erent applications favor one or the other approach�

In this chapter we consider the problem of view materialization�

Production rules in database systems allow speci�cation of data manipulation operations that are executed

automatically when certain events occur or conditions are met� e�g� �DE���MD���SJGP���WF���� Clearly�

production rules can be used to maintain materialized views when base tables change� rules are triggered

��
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Figure �� Rule derivation system

that modify the view�� Writing a correct set of rules for e�ciently maintaining a given view can be a

di�cult process� however� The rules could simply rematerialize the view from the base tables� but this

can be very ine�cient� E�ciency is achieved by incremental maintenance� in which the changed portions

of the base tables are propagated to the view� without full recomputation� We have developed a method

that automatically derives incremental maintenance rules for a wide class of views� The rules produced are

executable using the rule language of the Starburst database system at the IBM Almaden Research Center

�WCL����

Figure ��� shows the structure of our system� which is invoked at compile�time when a view is created�

Initially� the user enters the view as an SQL select expression� along with information about keys for

the view�s base tables�� Our system then performs syntactic analysis on the view de�nition� this analysis

determines two things ��� whether the view may contain duplicates ��� for each base table referenced in

the view� whether e�cient view maintenance rules are possible for operations on that table� The user is

provided with the results of this analysis� The results may indicate that� in order to improve the e�ciency

of view maintenance� further interaction with the system is necessary prior to rule generation� In particular

Views with duplicates cannot be maintained e�ciently� as explained in Section ���� Hence� if the system

detects that the view may contain duplicates� then the user should add distinct to the view de�nition�

�In SQL� distinct eliminates duplicates��

If the system detects that e�cient maintenance rules are not possible for some base table operations�

this may indicate to the user that not all key information has been included� or the user may choose to

modify the view de�nition�

�Production rules also can be used to implement virtual views	 as shown in �SJGP�
�
�Key information is essential for view analysis	 as we will show� Functional dependencies could be speci�ed as

well	 but we assume that keys are more easily understood and speci�ed by the user! in normalized tables	 functional

dependencies are captured by keys anyway�
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If changes are made� view analysis is repeated� In practice� we have discovered that e�cient rules are possible

for most views and operations once all key information is provided� However� there are cases when certain

base table operations cannot be supported e�ciently� If these operations are expected to occur frequently�

view materialization may be inappropriate� The responsibility for considering these trade�o�s lies with the

user� our system provides all necessary information�

Once the user is satis�ed with the view de�nition and its properties� the system generates the set of view�

maintaining rules� Rules are produced for insert� delete� and update operations on each base table

referenced in the view� The rule language we use is set�oriented� meaning that rules are triggered after arbi�

trary sets of changes to the database �Section ��� For those operations for which the system has determined

that e�ciency is possible� the maintenance rules modify the view incrementally according to the changes

made to the base tables� These changes are accessible using the rule system�s transition table mechanism

�Section ��� For those operations for which e�ciency is not possible� rematerialization is performed�

Note that the view must be computed in its entirety once� after which it is maintained automatically� The

frequency of view maintenance depends on the frequency of rule invocation� which is !exible� see Section ��

Our method is directly applicable for simultaneous maintenance of multiple views� see Section ��

�
� Related Work

Most other work in incremental view maintenance di�ers from ours in two ways ��� It takes an algebraic

approach� considering a restricted class of views and operations� In contrast� we consider a practical class

of views speci�ed using a standard query language� and we consider arbitrary database operations� ��� It

suggests view maintenance mechanisms that must be built into the database system� In contrast� we propose

view maintenance as an application of an existing mechanism� In addition� our system provides interaction

whereby the user can modify a view so the system will guarantee e�cient maintenance�

In �BLT� �� views are speci�ed as relational algebra expressions� Algorithms are given for determining when

base table changes are irrelevant to the view and for di�erentially reevaluating a view after a set of insert and

delete operations� �Han��� extends this work to exploit common subexpressions and proposes an alternative

approach using RETE networks� �Han��� also includes algorithms for incremental aggregate maintenance� In

�RCBB���� an algebra of 
delta relations� is described� including a 
changes� operator that can be applied

to views� There is a suggested connection to the production rules of HiPAC �MD���� but rule derivation

is not included� In �SP��b�� incremental maintenance of single�table views is considered� with emphasis on

issues of distribution�

Our work here is loosely related to that reported in �CW���� where we gave a method for deriving production

rules that maintain integrity constraints� Our solutions to the two problems di�er considerably� but the

approaches are similar In both cases we describe a general compile�time facility in which the user provides

a high�level declarative speci�cation� then the system uses syntactic analysis to produce a set of lower�level

production rules with certain properties relative to the user�s speci�cation�
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�
� Outline

Section � de�nes our SQL�based syntax for view de�nition and Section � provides an overview of our produc�

tion rule language� Section � motivates our approach it gives an informal overview of view analysis� explains

incremental maintenance� and describes certain di�culties encountered with duplicates and updates�� Sub�

sequent sections contain the core technical material� formally describing our methods for view analysis and

rule generation� We consider top�level table references in Section �� positively nested subqueries in Section  �

negatively nested subqueries in Section �� and set operators in Section �� In each of these sections we describe

how view analysis can guarantee certain properties� and we show how these properties are used to determine

if e�cient maintenance is possible� Section � addresses system execution� showing that the generated rules

behave correctly at run�time� Finally� in Section �� we conclude and discuss future work�

Due to space constraints� some details have been omitted� For further details and additional examples see

�CW����

� View De�nition Language

Views are de�ned using a subset of the SQL syntax for select expressions� The grammar is given in

Figure ��� and should be self�explanatory to readers familiar with SQL �SC�����
 Several examples are given

in subsequent sections� Our view de�nition language is quite powerful� but� for brevity and to make our

approach more presentable� the language does include certain restrictions

Disjunction in predicates is omitted� �There is little loss of expressive power since or usually can be

simulated using union��

Subqueries are limited to one level of nesting�

Set operators union and intersect may not be mixed� set operator minus is omitted�

Comparison operators using all are omitted�

The reader will see that our method could certainly be extended to eliminate these restrictions� but the

details are lengthy� Note also that we have omitted aggregates� Incremental methods for maintaining

aggregates have been presented elsewhere �Han���� these techniques can be adapted for our framework�

� Production Rule Language

We provide a brief but self�contained overview of the set�oriented� SQL�based production rule language used

in the remainder of the chapter� Further details and numerous examples appear in �WF���WCL���� Here

we describe only the subset of the rule language used by the view maintenance rules�

Our rule facility is fully integrated into the Starburst database system� Hence� all the usual database

functionality is available� in addition� a set of rules may be de�ned� Rules are based on the notion of

�Note that we are not dealing with the view update problem	 which addresses how updates on views are propagated

to updates on base tables� We are considering how updates on base tables are propagated to updates on views�

We include multi�column in �grammar productions �� and ���	 which is not standard in all SQL implementations�
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�� View�Def 	 de�ne view V �Col�List�

View�Exp

�� View�Exp 	 Select�Exp j Set�Exp

�� Select�Exp 	 select �distinct� Col�List

from Table�List

�where Predicate�

�� Set�Exp 	 Select�Exp� union distinct

Select�Exp� union distinct

� � � Select�Expn

�� j Select�Exp� intersect

Select�Exp� intersect

� � � Select�Expn

 � Col�List 	 Col�� � � �� Coln j �

�� Col 	 �T ��C j �Var��C

�� Table�List 	 T� �Var��� � � �� Tn �Varn�

�� Predicate 	 Item Comp Item

��� j exists �Simple�Select�

��� j not exists �Simple�Select�

��� j Item in �Simple�Select�

��� j Item not in �Simple�Select�

��� j Item Comp any �Simple�Select�

��� j Predicate and Predicate

� � Item 	 Col j hCol�Listi j constant

��� Comp 	 � j � j �� j � j �� j ��

��� Simple�Select 	 select Col�List from Table�List

�where Simple�Pred�

��� Simple�Pred 	 Item Comp Item

��� j Simple�Pred and Simple�Pred

Figure �� Grammar for View De	nitions

transitions� which are database state changes resulting from execution of a sequence of data manipulation

operations� We consider only the net e�ect of transitions� as in �BLT� �WF���� The syntax for de�ning

production rules is�

create rule name

when transition predicate

then action

�Rules also may contain conditions in if clauses	 but these are not needed for view maintenance�
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� precedes rule�list �

Transition predicates specify one or more operations on tables inserted into T� deleted from T� or

updated T� A rule is triggered by a given transition if at least one of the speci�ed operations occurred

in the net e�ect of the transition� The action part of a rule speci�es an arbitrary sequence of SQL data

manipulation operations to be executed when the rule is triggered� The optional precedes clause is used to

induce a partial ordering on the set of de�ned rules� If a rule R� speci�es R� in its precedes list� then R�

is higher than R� in the ordering� When no ordering is speci�ed between two rules� their order is arbitrary

but deterministic �RAL����

A rule�s action may refer to the current state of the database through top�level or nested SQL select

operations� In addition� rule actions may refer to transition tables� A transition table is a logical table

re!ecting changes that have occurred during a transition� At the end of a given transition� transition table


inserted T� refers to those tuples of table T in the current state that were inserted by the transition�

transition table 
deleted T� refers to those tuples of table T in the pre�transition state that were deleted

by the transition� transition table 
old updated T� refers to those tuples of table T in the pre�transition

state that were updated by the transition� and transition table 
new updated T� refers to the current

values of the same tuples� Transition tables may be referenced in place of tables in the from clauses of

select operations�

Rules are activated at rule assertion points� There is an assertion point at the end of each transaction� and

there may be additional user�speci�ed assertion points within a transaction�� We describe the semantics of

rule execution at an arbitrary assertion point� The state change resulting from the user�generated database

operations executed since the last assertion point �or start of the transaction� create the �rst relevant

transition� and some set of rules are triggered by this transition� A triggered rule R is chosen from this set

such that no other triggered rule is higher in the ordering� R�s action is executed� After execution of R�s

action� all other rules are triggered only if their transition predicate holds with respect to the composite

transition created by the initial transaction and subsequent execution of R�s action� That is� these rules

consider R�s action as if it were executed as part of the initial transition� Rule R� however� has already


processed� the initial transition� thus� R is triggered again only if its transition predicate holds with respect

to the transition created by its action� From the new set of triggered rules� a rule is chosen such that no other

triggered rule is higher in the ordering� and its action is executed� At an arbitrary time in rule processing�

a given rule is triggered if its transition predicate holds with respect to the �composite� transition since the

last time at which its action was executed� if its action has not yet been executed� it is considered with

respect to the transition since the last rule assertion point or start of the transaction� When the set of

triggered rules is empty� rule processing terminates�

For view maintenance� it sometimes is necessary for a rule to consider the entire pre�transition value of a

table �see� e�g�� Section ����� Currently there is no direct mechanism in the rule language for obtaining this

value� but it can be derived from transition tables� In the action part of view maintenance rules� we use


old T� to refer to the value of table T at the start of the transition triggering the rule� old T is translated

to

�T minus inserted T minus new updated T	

�Currently	 assertion points are at transaction commit only� We will soon extend the system with a "exible

mechanism that supports additional points �WCL���
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union deleted T union old updated T

This expression may seem rather complex� but one should observe that in most cases the transition tables

are small or empty�

� Motivation

�
� View Analysis

Initially� the user de�nes a view using the language of Section �� and the user speci�es a set of �single�

or multi�column� keys for the view�s base tables� All known keys for each table should be speci�ed� since

this provides important information for view analysis� Using the key information� during view analysis the

system considers each list of table references in the view de�nition� For each list� it �rst computes the


bound columns� of the table references� Based on the bound columns� it then determines for each table

reference whether the reference is 
safe�� When a table reference is safe� incremental view maintenance

rules can be generated for operations on that table� as described in Section ���� The system also uses the

bound columns for the top�level tables to determine if the view may contain duplicates� Formal de�nitions

for bound columns and safety are based on the context of table references and are given in Sections ����

�
� Incremental Maintenance

The de�nition of a view V can be interpreted as an expression mapping base tables to table V � That is�

V 	 Vexp�T�� ��� Tn�� where T�� ��� Tn are the base tables appearing in V �s de�nition� E�cient maintenance

of V is achieved when changes to T�� ��� Tn can be propagated incrementally to V � without substantial

recomputation� Consider any table reference Ti in V � and assume for the moment that Ti appears only

once in V �s de�nition� If view analysis determines that Ti is safe� then changes to Ti can be propagated

incrementally to V � More formally� changes to Ti �sets of insertions� deletions� or updates�� denoted �Ti�

produce changes to V � denoted �V � that can be computed using only �Ti and the other base tables

�V 	 V �
exp�T�� ����Ti� ��� Tn�� where V �exp is an expression derived from Vexp� Table V is then modi�ed

by inserting or deleting tuples from �V as appropriate� We assume that �Ti is small with respect to Ti
and �V is small with respect to V � hence� safe table references result in e�cient maintenance rules� If Ti
appears more than once in V �s de�nition� we separately analyze each reference� If all references are safe�

then changes to Ti can be propagated incrementally to V � If any reference is unsafe� changes to Ti may

cause rematerialization�

�
� Duplicates

Our method does not support e�cient maintenance of views with duplicates� The main di�culty lies in

generating rule actions in SQL that can manipulate exact numbers of duplicates� As an example� the SQL

delete operation is based on truth of a predicate� hence� if a table contains four copies of a tuple �say��

there is no SQL operation that can delete exactly two copies� To correctly maintain views with duplicates�

such partial deletions can be necessary� �BLT� � also considers the problem of duplicates in views� proposing
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two solutions� In the �rst solution� an extra column is added in the view table to count the number of

occurrences of each tuple� We choose not to use this approach because rule generation can become quite

complex and the result is not transparent to the user� �The user must reference duplicates in the view

through the extra column�� The second solution proposed in �BLT� � ensures that a view will not contain

duplicates by requiring it to include key columns for each of the base tables� We have essentially taken this

approach� however we have devised algorithms that allow us to loosen the key requirement considerably� yet

still guarantee that a view will not contain duplicates�

�
� Update Operations

When update operations are performed on a view�s base tables� we would like to consequently perform an

update operation on the view� In many cases� however� this is not the semantic e�ect� As a simple example�

consider two tables T��A�B	 and T��C�D	where T� contains tuples �x�y	� �z�y	� and �u�v	� and T� contains

tuples �x�z	 and �v�x	� Consider the following view

define view V�A	� select T��A from T�� T�

where T��B � T��C

Initially� V contains only one tuple� �u	� Now suppose the following two update operations are performed

on table T�

update T� set C � u where D � x �

update T� set C � y where D � z

The e�ect of the �rst update is to remove tuple �u	 from view V� while the e�ect of the second update is to

add tuples �x	 and �z	 to V� There is no way to re!ect the update operations on base table T� as an update

operation on view V� rather� the updates must be re!ected as delete and insert operations on V� There do

exist some cases in which update operations on base tables can be re!ected as updates on views� However�

for general and automatic rule derivation� in our approach update operations on base tables always result

in delete and'or insert operations on the view�

� Top�Level Table References

Assume now that the user has de�ned a view and has speci�ed key information for the view�s base tables�

Assume that the view does not include set operators union or intersect� views with set operators are

covered in Section �� The system �rst analyzes the top�level table references� i�e�� those references generated

from the Table�List in grammar production � of Figure ���� This analysis reveals both whether the view

may contain duplicates and whether e�cient maintenance rules are possible for operations on the top�level

tables� Consider a view V with the general form	

de�ne view V �Col�List�

select C�� ��� Cn from T�� ��� Tm where P

where T�� ��� Tm are the top�level table references� C�� ���Cn are columns of T�� ��� Tm� and P is a predicate�

	For clarity and without loss of generality	 we omit the use of table variables here�
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�
� Bound Columns

View analysis relies on the concept of bound columns� The bound columns of the top�level table references

in view V are denoted B�V � and are computed as follows

De�nition ��� �Bound Columns for Top�Level

Table References�

�� Initialize B�V � to contain the columns C�� ��� Cn projected in the view de�nition�

�� Add to B�V � all columns of T�� ��� Tm such that predicate P includes an equality comparison between

the column and a constant�

�� Repeat until B�V � is unchanged

�a� Add to B�V � all columns of T�� ��� Tm such that predicate P includes an equality comparison

between the column and a column in B�V ��

�b� Add to B�V � all columns of any table Ti� � � i � m� if B�V � includes a key for Ti� �

Bound columns can be computed using syntactic analysis and guarantee the following useful property

�Lemma ��� below� If two tuples in the cross�product of top�level tables T�� ��� Tm satisfy predicate P

and di�er in their bound columns� then the tuples also must di�er in view columns C�� ���Cm� Let Proj�t�

C�� ���Cj� denote the projection of a tuple t onto a set of columns C�� ���Cj �

Lemma ��� �Bound Columns Lemma for Top�Level Tables� Let t� and t� be tuples in the cross�

product of T�� ��� Tm such that t� and t� both satisfy P � By de�nition� columns C�����Cn are in B�V �� If

D�� ���Dk are additional columns in B�V � such that t� and t� are guaranteed to di�er in C�� ��� Cn� D�� ���Dk�

i�e� Proj�t�� C�� ���Cn�D�� ���Dk� �	 Proj�t�� C�� ���Cn�D�� ���Dk�� then t� and t� also are guaranteed to di�er

in C�� ���Cn� i�e� Proj�t�� C�� ���Cn� �	 Proj�t�� C�� ��� Cn��

Proof Suppose� for the sake of a contradiction� that Proj�t�� C�� ��� Cn� 	 Proj�t�� C�� ���Cn�� Then there

must be some Di in D�� ���Dk such that Proj�t�� Di� �	 Proj�t�� Di�� We show that this is impossible�

Consider any column Di in D�� ���Dk� Since Di is in B�V �� by the recursive de�nition of B�V � and since t�
and t� both satisfy predicate P � the value of column Di in both t� and t� must either

�� satisfy an equality with a constant k� or

�� satisfy an equality with a column Cj in C�� ��� Cn� or

�� be functionally dependent on a constant k or column Cj � �This is the case where Di was added to B�V �

because a key for Di�s table was present� recall that all columns of a table are functionally dependent

on any key for that table��

In the case of a constant� Proj�t�� Di� and Proj�t�� Di� are both equal to or functionally dependent on the

same constant� so Proj�t�� Di� 	 Proj�t�� Di�� In the case of a column Cj � Proj�t�� Cj� 	 Proj�t�� Cj� by

our supposition� so Proj�t�� Di� 	 Proj�t�� Di�� �
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�
� Duplicate Analysis

If V �s de�nition does not include distinct� then our system performs duplicate analysis� If this analysis

reveals that V may contain duplicates� then the user is noti�ed that maintenance rules cannot be generated

for V unless V �s de�nition is modi�ed to include distinct� �The system does not add distinct automatically

since it may change the view�s semantics�� Once the bound columns for top�level table references have been

computed� duplicate analysis is straightforward

Theorem ��	 �Duplicates� If B�V � includes a key for every top�level table� then V will not contain

duplicates�

Proof Let t� and t� be two di�erent tuples in the cross�product of the top�level tables in V such that t�
and t� both satisfy predicate P � We must show that t� and t� cannot produce duplicate tuples in V � i�e�

Proj�t�� C�� ��� Cn� �	 Proj�t�� C�� ��� Cn�� By the theorem�s assumption� there must be additional columns

D�� ���Dk in B�V � such that C�� ���Cn�D�� ���Dk include a key for every top�level table� Then t� and t� must

di�er in C�� ���Cn�D�� ���Dk� Consequently� by Lemma ���� Proj�t�� C�� ��� Cn� �	 Proj�t�� C�� ���Cn�� �

�
� Safety Analysis

Safety of top�level table references is similar to duplicate analysis

De�nition ��
 �Safety of Top�Level Table References� Top�level table reference Ti is safe in V if

B�V � includes a key for Ti� �

The following three theorems show that if table reference Ti is safe� then insert� delete� and update

operations on Ti can be re!ected by incremental changes to V �

Theorem ��� �Insertion Theorem for Top�Level Tables� Let Ti be a safe top�level table reference in

V and suppose a tuple t is inserted into Ti� If v is a tuple in the cross�product of the top�level tables using

tuple t from Ti� and v satis�es predicate P so that Proj�v� C�� ��� Cn� is in view V after the insertion� then

Proj�v� C�� ���Cn� was not in V before the insertion�

Proof Suppose� for the sake of a contradiction� that there was a tuple v� in V before the insertion

such that Proj�v�� C�� ���Cn� 	 Proj�v� C�� ��� Cn�� Let D�� ���Dk be additional bound columns so that

C�� ���Cn�D�� ���Dk includes a key for Ti� �We know such columns exist since Ti is safe�� Since v and v�

include di�erent tuples from Ti� then Proj�v� C�� ���Cn�D�� ���Dk� �	 Proj�v�� C�� ���Cn�D�� ���Dk�� Hence�

by Lemma ���� Proj�v� C�� ���Cn� �	 Proj�v�� C�� ���Cn�� �

The practical consequence of this theorem is that if a set of tuples �Ti are inserted into Ti� then the tuples

�V that should be inserted into V can be derived from the cross�product of the top�level tables using �Ti
instead of Ti� This exactly corresponds to the de�nition of incremental maintenance in Section ���� and is

implemented in the rules given below�
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Similar theorems with similar consequences apply for delete and update operations� The proofs are omitted

since they also are similar �CW����

Theorem �� �Deletion Theorem for Top�Level Tables� Let Ti be a safe top�level table reference in

V and suppose a tuple t is deleted from Ti� If v is a tuple in the cross�product of the top�level tables using

tuple t from Ti� and v satis�es predicate P so that Proj�v� C�� ��� Cn� was in view V before the deletion� then

Proj�v� C�� ���Cn� is not in V after the deletion� �

Theorem ��� �Update Theorem for Top�Level Tables� Let Ti be a safe top�level table reference in

V and suppose a tuple t is updated in Ti� Let vO be a tuple in the cross�product of the top�level tables using

the old value of tuple t from Ti� where vO satis�es P so that Proj�vO� C�� ���Cn� was in view V before the

update� Let vN be a tuple in the cross�product of the top�level tables using the new value of tuple t from

Ti� where vN satis�es P so that Proj�vN � C�� ���Cn� is in V after the update� Finally� let v be a tuple in the

cross�product of the top�level tables not using t� where v satis�es P so v is in V both before and after the

update� Then Proj�vO� C�� ���Cn� �	 Proj�v� C�� ���Cn� and Proj�vN � C�� ���Cn� �	 Proj�v� C�� ���Cn�� �

�
� Rule Generation

We describe how maintenance rules are generated for the top�level tables� We �rst consider safe table

references� then unsafe references� Initially� for each table reference we generate four rules&one triggered by

inserted� one by deleted� and two by updated� Subsequently we explain how some rules can be combined

and how the entire rule set is ordered�

Let Ti be a safe top�level table reference in view V de�ned as above� If tuples are inserted into Ti� then

we want to insert into V those tuples produced by the view de�nition using inserted Ti instead of Ti in

the top�level table list� By Theorem ���� these insertions cannot create duplicates in the view� However�

if a similar rule is applied because tuples also were inserted into a di�erent top�level table� then duplicates

could appear� Hence� before inserting a new tuple� the rule must ensure that the tuple has not already

been inserted by a di�erent rule� This is checked e�ciently using transition table inserted V� The rule for

inserted is

create rule ins�Ti�V

when inserted into Ti

then insert into V

�select C�����Cn

from T�����inserted Ti����Tm

where P and �C�����Cn� not in inserted V	

If tuples are deleted from Ti� then we want to delete from V those tuples produced by the view

de�nition using deleted Ti instead of Ti in the top�level table list� By Theorem 
�	� we know that

these tuples should no longer be in the view� Again� however� we must remember that other tables

in the top�level table list may have been modi�ed� Hence� to identify the correct tuples to delete



��� Chapter �	

from V � we must consider the pre�transition value of all other tables� obtained using the old feature

described in Section �� For predicate P � let P �old denote P with all table references T replaced by

old T� The rule for deleted is�

create rule del�Ti�V

when deleted from Ti

then delete from V

where �C�����Cn� in

�select C�����Cn

from old T�����deleted Ti����old Tm

where P�old	

As explained in Section ���� update operations on base tables always cause delete and�or insert

operations on views� In fact� we generate two separate rules triggered by updated one to perform

deletions and the other to perform insertions� They are similar to the rules for deleted and inserted�

and their correctness follows from Theorem 
��

create rule old�upd�Ti�V

when updated Ti

then delete from V

where �C�����Cn� in

�select C�����Cn

from old T�����old updated Ti����old Tm

where P�old	

create rule new�upd�Ti�V

when updated Ti

then insert into V

�select C�����Cn

from T�����new updated Ti����Tm

where P and �C�����Cn� not in inserted V	

If a table appears more than once in the top�level table list� then rules are generated for each

reference� Rules with identical triggering operations whose actions perform the same operation

�either insert or delete� are merged into one rule by sequencing or combining their actions� Once

the entire set of rules is generated �including those for nested table references� described below��

they are ordered by adding precedes clauses so that all rules performing deletions precede all rules

performing insertions��

Now consider the case when a top�level table reference Ti is unsafe� so the properties guaranteed

by the theorems may not hold� For insertions� incremental maintenance is still possible� the only

�This is why we merge only rules with the same action operation and why we create two separate rules for

updated�for ordering	 we cannot generate rule actions that perform both deletions and insertions�
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di�erence from the safe case is that all new tuples must be checked against V itself to guarantee

that duplicates are not produced� If V is indexed� this can be performed e�ciently�

create rule ins�Ti�V

when inserted into Ti

then insert into V

�select C�����Cn

from T�����inserted Ti����Tm

where P and �C�����Cn� not in V	

Delete and update operations are more di�cult� and this is where recomputation must occur� If a

tuple is deleted from Ti� without Theorem 
�	 we cannot determine whether corresponding tuples

should be deleted from V those tuples still may be produced by other base table tuples that have

not been deleted� a similar problem occurs with update� The only solution is to reevaluate the view

expression itself� Since this is equivalent to rematerializing the view� we choose to create a single

distinguished rule that performs rematerialization� This rule will be triggered by all operations for

which e�cient maintenance is impossible� �As mentioned above� if these operations are expected to

occur frequently� then materialization may be inappropriate for this view�� The rematerialization

rule with triggering operations for Ti is�

create rule rematerialize�V

when deleted from Ti�

updated Ti

then delete from V�

insert into V

�select C�����Cn from T�����Tm where P	�

deactivate�rules�V	

This rule will have precedence over all other rules for V � Since execution of the �rst two rule actions

entirely rematerializes V � the rule�s �nal action� deactivate�rules�V�� deactivates all other rules

for V until the next rule assertion point�� Note that when a triggering operation appears in the

rematerialization rule� any other rules triggered by that operation can be eliminated�

�
� Examples

We draw examples from a simple airline reservations database with the following schema�

flight �FLIGHT�ID� flight�no� date	

res �RES�ID� psgr�id� flight�id� seat	

psgr �PSGR�ID� name� phone� meal� ffn	

ff �FFN� miles	

�This feature is not included in the current rule system but can easily be simulated using rule conditions! see

�Wid��� We intend to add this feature in the near future�
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Most of the schema is self�explanatory� with res denoting reservation� ff denoting frequent �ier�

and ffn denoting frequent �ier number� Primary keys for each table are capitalized� other keys are

�flight�no�date� for table flight� �psgr�id�flight�id� or �flight�id� seat� for table res�

and ffn for table psgr�

Consider the following view� which provides the seat numbers and meal preferences of all passengers

on a given �ight �FID� who have ordered special meals�

define view special�meals�seat� meal	�

select res�seat� psgr�meal

from res� psgr

where res�flight�id � FID

and res�psgr�id � psgr�psgr�id

and psgr�meal �� null

Using De�nition 
��� we determine that the bound columns of top�level table references res and

psgr are� projected columns res�seat and psgr�meal� column res�flight�id since it is equated

to a constant in the predicate� all remaining columns of res since �flight�id�seat� is a key� and

psgr�psgr�id since it is equated to bound column res�psgr�id� Since the bound columns include

keys for both top�level tables� the view will not contain duplicates� and incremental maintenance

rules can be generated for both tables� The rules triggered by operations on table res are given

here� the rules for table psgr are similar�

create rule ins�res�special�meals

when inserted into res

then insert into special�meals

�select res�seat� psgr�meal

from inserted res� psgr

where res�flight�id � FID

and res�psgr�id � psgr�psgr�id

and psgr�meal �� null

and �seat�meal� not in

inserted special�meals	

create rule del�res�special�meals

when deleted from res

then delete from special�meals

where �seat�meal� in

�select res�seat� psgr�meal

from deleted res� old psgr

where res�flight�id � FID

and res�psgr�id � psgr�psgr�id
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and psgr�meal �� null	

create rule old�upd�res�special�meals

when updated res

then delete from special�meals

where �seat�meal� in

�select res�seat� psgr�meal

from old updated res� old psgr

where res�flight�id � FID

and res�psgr�id � psgr�psgr�id

and psgr�meal �� null	

create rule new�upd�res�special�meals

when updated res

then insert into special�meals

�select res�seat� psgr�meal

from new updated res� psgr

where res�flight�id � FID

and res�psgr�id � psgr�psgr�id

and psgr�meal �� null

and �seat�meal� not in

inserted special�meals	

As a second example� consider the following view� which provides the frequent �ier numbers of all

passengers currently holding reservations�

define view ff�res�ffn	�

select psgr�ffn

from psgr� res

where psgr�psgr�id � res�psgr�id

The bound columns are all columns of table psgr �since ffn is a key� and column res�psgr�id�

Since the bound columns do not include a key for table res� the view may contain duplicates� and

distinctmust be added� Table reference psgr is safe� so the rules for operations on psgr are similar

to those in the previous example� Table reference res is unsafe� however� so the following rules are

generated�

create rule ins�res�ff�res

when inserted into res

then insert into ff�res

�select distinct psgr�ffn

from psgr� inserted res

where psgr�psgr�id � res�psgr�id

and ffn not in ff�res	
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create rule rematerialize�ff�res

when deleted from res�

updated res

then delete from ff�res�

insert into ff�res

�select distinct psgr�ffn from psgr� res

where psgr�psgr�id � res�psgr�id	�

deactivate�rules�ff�res	

� Positively Nested Subqueries

A positively nested subquery is a nested select expression preceded by exists� in� or Comp any�

where Comp is any comparison operator except ��� We �rst describe safety analysis and rule

generation for table references in exists subqueries� Similar methods apply for the other positively

nested subqueries and are explained in Section 	��� Consider a view V as follows� where N�� ��� Nl

are the table references under consideration�

de�ne view V �Col�List�

select C�� ���Cn from T�� ��� Tm

where P � and exists

�select Cols from N�� ���Nl where P�

�
� Bound Columns and Safety Analysis

To analyze nested table references we introduce the concept of columns that are bound by correlation

to the bound columns of the top�level tables� We assume that set B�V � of top�level bound columns

already has been computed� Correlated bound columns are denoted C�V �� and for exists they are

computed as follows�

De�nition 
�� �Correlated Bound Columns for Exists�

�� Initialize C�V � to contain all columns of N�� ��� Nl such that predicate P includes an equality

comparison between the column and a column in B�V ��

�� Add to C�V � all columns of N�� ��� Nl such that predicate P includes an equality comparison

between the column and a constant�

�� Repeat until C�V � is unchanged�

�a� Add to C�V � all columns ofN�� ��� Nl such that predicate P includes an equality comparison

between the column and a column in C�V ��
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�b� Add to C�V � all columns of any table Ni� � � i � l� if C�V � includes a key for Ni� �

Correlated bound columns for exists guarantee the following property�

Lemma 
�� �Bound Columns Lemma for Exists� Consider four tuples� t� and t� in the cross�

product of T�� ��� Tm and n� and n� in the cross�product of N�� ��� Nl� such that t� and t� satisfy

predicate P �� n� satis�es nested predicate P using t� for the top�level cross�product� and n� satis�es

P using t� for the top�level cross�product� Let D�� ��� Dk be columns of N�� ��� Nl in C�V � such that

n� and n� are guaranteed to di�er in D�� ��� Dk� i�e� Proj�n�� D�� ��� Dk� 	# Proj�n�� D�� ��� Dk�� Then

t� and t� are guaranteed to di�er in C�� ��� Cn� i�e� Proj�t�� C�� ��� Cn� 	# Proj�t�� C�� ��� Cn��

Proof� Suppose� for the sake of a contradiction� that Proj�t�� C�� ��� Cn� # Proj�t�� C�� ��� Cn�� By

supposition there is some Di in D�� ��� Dk such that Proj�n�� Di� 	# Proj�n�� Di�� Di is in C�V �� so

by the recursive de�nitions of C�V � and B�V �� since t� and t� satisfy P �� and since n� with t� and

n� with t� both satisfy predicate P � the value of column Di in both n� and n� must either

�� satisfy an equality with a constant k� or

�� satisfy an equality with a column Cj in C�� ��� Cn� or

�� be functionally dependent on a constant k or column Cj�

As in Bound Columns Lemma 
��� in all cases Proj�n�� Di� # Proj�n�� Di�� �

Safety analysis and rule generation for positively nested subqueries is similar to top�level tables�

De�nition 
�� �Safety of Table References for Exists� Table reference Ni in an exists sub�

query is safe in V if C�V � includes a key for Ni� �

The following three theorems show that if Ni is safe� then insert� delete� and update operations on

Ni can be re�ected by incremental changes to V � We include a proof for the insertion theorem only�

the other proofs follow by analogy�

Theorem 
�� �Insertion Theorem for Exists� Let Ni be a safe table reference in an exists

subquery in V and suppose a tuple ni is inserted into Ni� Let v be a tuple in the cross�product of

the top�level tables such that v satis�es P � and there is a tuple n in the cross�product of the nested

tables using ni such that n satis�es P using v� so Proj�v� C�� ��� Cn� is in view V after the insertion�

Then Proj�v� C�� ��� Cn� was not in V before the insertion�
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Proof� Suppose� for the sake of a contradiction� that Proj�v� C�� ��� Cn� was in V before the insertion�

Then there must have been a tuple n� in the cross�product of the nested tables before the insertion

and a tuple v� in the top�level cross�product such that Proj�v�� C�� ��� Cn� # Proj�v� C�� ��� Cn�� v�

satis�es P �� and n� satis�es P using v�� Let D�� ��� Dk be correlated bound columns of N�� ��� Nl such

that D�� ��� Dk includes a key for Ni� Since n and n
� use di�erent tuples from Ni� Proj�n� D�� ��� Dk�

	# Proj�n�� D�� ��� Ck�� Then� by Lemma 	��� Proj�v�� C�� ��� Cn� 	# Proj�v� C�� ��� Cn�� �

Theorem 
�	 �Deletion Theorem for Exists� Let Ni be a safe table reference in an exists

subquery in V and suppose a tuple ni is deleted from Ni� Let v be a tuple in the cross�product

of the top�level tables such that v satis�es P � and there is a tuple n in the cross�product of the

nested tables using ni such that n satis�es P using v� so Proj�v� C�� ��� Cn� was in view V before the

deletion� Then Proj�v� C�� ��� Cn� is not in V after the deletion� �

Theorem 
�
 �Update Theorem for Exists� Let Ni be a safe table reference in an exists

subquery in V and suppose a tuple ni is updated in Ni� Let vO be a tuple in the cross�product

of the top�level tables such that vO satis�es P
� and there is a tuple nO in the cross�product of the

nested tables using the old value of ni such that nO satis�es P using vO� so Proj�vO� C�� ��� Cn� was

in view V before the update� Let vN be a tuple in the cross�product of the top�level tables such

that vN satis�es P
� and there is a tuple nN in the cross�product of the nested tables using the new

value of ni such that nN satis�es P using vN � so Proj�vN � C�� ��� Cn� is in V after the update� If

Proj�vO� C�� ��� Cn� 	# Proj�vN � C�� ��� Cn�� then Proj�vO� C�� ��� Cn� is not in V after the update and

Proj�vN � C�� ��� Cn� was not in V before the update� �

�
� Rule Generation

Consider safe table references� The properties guaranteed by Theorems 	���	�	 allow incremental

maintenance to be performed just as for safe top�level table references� Ni is replaced by inserted

Ni in the inserted rule� by deleted Ni in the deleted rule� and by old updated Ni and new

updated Ni in the two updated rules� In the rules that perform insertions� we must check that

tuples have not already been inserted by another rule� in the rules that perform deletions we must

use the old value of other tables� If a table appears more than once in N�� ��� Nl� or if a table in

N�� ��� Nl also appears elsewhere in the view de�nition� then rules are merged as previously described�

Unsafe table references also are handled similarly to top�level tables� If nested table reference Ni is

unsafe� triggering operations deleted from Ni and updated Ni are included in the distinguished

rematerialization rule for V � The inserted rule is similar to the safe rule� except �not in V� is

added to the predicate rather than �not in inserted V��
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�
� Other Positively Nested Subqueries

Safety analysis and rule generation for subqueries preceded by �any� ��any� �any� and ��any is

identical to exists� The method for �any and in �which are equivalent� also is identical to exists�

except the set of correlated bound columns may be larger� Consider a view V of the form�

de�ne view V �Col�List�

select C�� ���Cn from T�� ��� Tm

where P � and hD�� ���Dji in

�select E�� ��� Ej from N�� ���Nl where P�

De�nition 	�� of correlated bound columns is modi�ed to include the case�

Add to C�V � every column Ei such that corresponding column Di is in B�V �� � � i � j�

The reader may note that view V above is equivalent to view V ��

de�ne view V ��Col�List�

select C�� ���Cn from T�� ��� Tm
where P � and exists

�select � from N�� ���Nl where P

and D� 	 E� and ��� and Dj 	 Ej�

As expected� the correlated bound columns of view V � using De�nition 	�� for exists are equivalent

to the correlated bound columns of V using the extended de�nition for in���

�
� Example

Using the airline reservations database introduced in Section 
�
� the following view provides the

ID�s of all passengers with more than 
����� frequent �ier miles�

define view many�miles�id	�

select psgr�id from psgr

where psgr�ffn in

�select ffn from ff where miles � ������	

All columns of top�level table psgr are bound since psgr�id is a key� Using our extended de�nition

for in� ff�ffn is a correlated bound column� Since ffn is a key� nested table reference ff is safe�

The inserted and deleted rules for table ff follow� the updated rules are similar�
��The reader may also note that select expressions with positive subqueries often can be transformed into equivalent

select expressions without subqueries	 as in �CG��	Kim��� By considering the actual transformations	 we see that

the maintenance rules produced for any transformed view are equivalent to the maintenance rules produced for the

original view�
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create rule ins�ff�many�miles

when inserted into ff

then insert into many�miles

�select psgr�id from psgr

where psgr�ffn in

�select ffn from inserted ff

where miles � ������	

and psgr�id not in inserted many�miles	

create rule del�ff�many�miles

when deleted from ff

then delete from many�miles

where psgr�id in

�select psgr�id from old psgr

where psgr�ffn in

�select ffn from deleted ff

where miles � ������		

� Negatively Nested Subqueries

A negatively nested subquery is a nested select expression preceded by not exists� not in� or ��any�

We describe safety analysis and rule generation for table references in not exists subqueries� Similar

methods apply for the other negatively nested subqueries� see �CW���� Consider a view V of the

form�

de�ne view V �Col�List�

select C�� ���Cn from T�� ��� Tm
where P � and not exists

�select Cols from N�� ���Nl where P�

With negatively nested subqueries� insert operations on nested tables result in delete operations on

the view� while delete operations on nested tables result in insert operations on the view�

�
� Safety Analysis

For a negatively nested table reference Ni� we de�ne two notions of safety� I�safety indicates that

insert operations on Ni can be re�ected by incremental changes to V � and DU�safety indicates that

delete and update operations on Ni can be re�ected by incremental changes to V � The de�nition

of I�safety is somewhat di�erent from previous safety de�nitions correlated bound columns are not

used� and all nested table references are considered together� Assume that set B�V � of top�level

bound columns already has been computed�
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De�nition ��� �I�Safety of Table References for Not Exists� Table references N�� ��� Nl in a

not exists subquery are I�safe in V if predicate P refers only to columns of Ni� � � i � l� columns

in B�V �� and constants� �

Using this notion of safety� we prove the following theorem for insertions�

Theorem ��� �Insertion Theorem for Not Exists� Let Ni be an I�safe table reference in a

not exists subquery in V and suppose a tuple ni is inserted into Ni� Let v be a tuple in the

cross�product of the top�level tables such that v satis�es top�level predicate P � and there is a tuple

n in the cross�product of the nested tables using ni such that n satis�es nested predicate P using v�

Then Proj�v� C�� ��� Cn� is not in V after the insertion�

Proof� Suppose� for the sake of a contradiction� that Proj�v� C�� ��� Cn� is in V after the insertion�

Then there must be a tuple v� other than v in the cross�product of the top�level tables such that

Proj�v�� C�� ��� Cn� # Proj�v� C�� ��� Cn�� v� satis�es P �� and there is no tuple n� in the cross�product

of the nested tables such that n� satis�es P using v�� We show that there is such an n�� namely n� By

De�nition 
�� of B�V �� since v and v� both satisfy P � and Proj�v�� C�� ��� Cn� # Proj�v� C�� ��� Cn��

v and v� are equivalent in all columns of B�V �� Since Ni is I�safe and since n satis�es P using v� by

De�nition �� of safety� n also satis�es P using v�� �

For deletes and updates� we combine our new notion of I�safety with the previous notion of safety

using keys� Correlated bound columns for negatively nested table references are de�ned as for

positive references �De�nition 	���� and Bound Columns Lemma 	�� still holds�

De�nition ��� �DU�Safety of Table References for Not Exists� Table reference Ni in a not

exists subquery is DU�safe in V if it is I�safe and C�V � includes a key for Ni� �

Theorem ��� �Deletion Theorem for Not Exists� Let Ni be a DU�safe table reference in a

not exists subquery in V and suppose a tuple ni is deleted from Ni� Let v be a tuple in the cross�

product of the top�level tables such that v satis�es P � and there is a tuple n in the cross�product of

the nested tables using ni such that n satis�es P using v� Then� ��� Proj�v� C�� ��� Cn� was not in

V before the deletion� ��� Proj�v� C�� ��� Cn� is in V after the deletion�

Proof� The proof of ��� is analogous to the proof of Insertion Theorem ��� For ���� suppose� for

the sake of a contradiction� that Proj�v� C�� ��� Cn� is not in V after the deletion� Then there must

be a tuple n� in the cross�product of the nested tables such that n� satis�es P using v� Let D�� ��� Dk

be correlated bound columns of N�� ��� Nl such that D�� ��� Dk includes a key for Ni� Since n and n
�

use di�erent tuples from Ni� Proj�n� D�� ��� Dk� 	# Proj�n�� D�� ��� Ck�� Then� by Lemma 	��� Proj�v�

C�� ��� Cn� 	# Proj�v� C�� ��� Cn�� which is impossible� �
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Theorem ��	 �Update Theorem for Not Exists� Let Ni be a DU�safe table reference in a

not exists subquery in V and suppose a tuple ni is updated in Ni� Let vO be a tuple in the cross�

product of the top�level tables such that vO satis�es P
� and there is a tuple nO in the cross�product

of the nested tables using the old value of ni such that nO satis�es P using v� Let vN be a tuple

in the cross�product of the top�level tables such that vN satis�es P � and there is a tuple nN in the

cross�product of the nested tables using the new value of ni such that nN satis�es P using v� If

Proj�vO� C�� ��� Cn� 	# Proj�vN � C�� ��� Cn� then� ��� Proj�vN � C�� ��� Cn� is not in V after the update�

��� Proj�vO� C�� ��� Cn� was not in V before the update� ��� Proj�vO� C�� ��� Cn� is in V after the

update�

Proof� Analogous to Theorems �� and ��� �

�
� Rule Generation

If nested table reference Ni is I�safe� then� using Theorem ��� the following incremental rule is

generated�

create rule ins�Ni�V

when inserted into Ni

then delete from V

where �C�����Cn� in

�select C�����Cn from T�����Tm

where P� and exists

�select Cols

from N�����inserted Ni����Nl

where P		

Notice that the subquery�s �not exists� is converted to �exists�� this conversion occurs in the

deleted and updated rules as well� If Ni is not I�safe� then the view expression would need to be

reevaluated to determine which tuples should be deleted� Hence in the unsafe case� inserted into

Ni is included in the rematerialization rule for V �

If Ni is DU�safe� then� using Theorems �� and �
� the following incremental rule for deleted is

generated� The rules for updated correspond to the inserted and deleted rules as previously�

create rule del�Ni�V

when deleted from Ni

then insert into V

�select C�����Cn from T�����Tm

where P� and exists

�select Cols

from old N�����deleted Ni����old Nl
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where P	

and �C����Cn� not in inserted V	

If table reference Ni is not DU�safe� updated Ti is included in the rematerialization rule for V � For

deleted� however� incremental maintenance still can be performed as previously� for the unsafe

case the rule above is modi�ed to use �not in V� rather than �not in inserted V��

�
� Example

Using the airline reservations database introduced in Section 
�
� the following view provides the

ID�s of all reservations whose flight�id is not in table flight�

define view bad�flight�res�id	�

select res�id from res

where not exists

�select � from flight

where flight�flight�id � res�flight�id	

By De�nitions �� and ��� nested table reference flight is both I�safe and DU�safe� The inserted

and deleted rules for table flight follow� the updated rules are similar�

create rule ins�flight�bad�flight

when inserted into flight

then delete from bad�flight

where res�id in

�select res�id from res

where exists

�select � from inserted flight

where flight�flight�id �

res�flight�id		

create rule del�flight�bad�flight

when deleted from flight

then insert into bad�flight

�select res�id from res

where exists

�select � from deleted flight

where flight�flight�id �

res�flight�id	

and res�id not in inserted bad�flight	
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 Set Operators

Finally� consider views with set operators� A view de�nition may include either union distinct or

intersect� For these views� view analysis and rule generation initially is performed independently

on each component select expression� The rules are then modi�ed to incorporate the set operators�


� Union Views

Consider a view V of the form�

de�ne view V �Col�List�

select Cols� from Tables� where P�
union distinct ���

union distinct select Colsk from Tablesk where Pk

First� duplicate analysis is performed on each select expression as in Section 
��� if any select

expression may contain duplicates� the user is required to add distinct to that select expression�

For each select expression� an initial set of view�maintaining rules is generated using the methods of

the preceding sections� The rules� actions are then modi�ed to incorporate union� In actions that

perform insert operations� if �not in inserted V� has been added to predicate Pi due to a safe

table reference� it is changed to �not in V�� this ensures that duplicates are not added by di�erent

select expressions� If the rule already includes �not in V� due to an unsafe table reference� it

remains unchanged� Modi�cations for delete operations are more complicated� If a tuple no longer

is produced by one of the select expressions� it should be deleted from V only if it is not produced

by any of the other select expressions� Without loss of generality� consider a delete operation in

the action of a rule generated from the �rst select expression in V � The following conjunct must

be added to the delete operation�s where clause�

and �Cols� not in

�select Cols� from Tables� where P�	

and ���

and �Cols� not in

�select Colsk from Tablesk where Pk	

Clearly� such conjuncts may cause considerable recomputation� depending on the complexity of the

select expressions� For rules in which the recomputation cost appears large� the user may choose

to move the triggering operation to the rematerialization rule for V �

As usual� rules with common triggering and action operations are merged� and rules whose triggering

operations also appear in the rematerialization rule are eliminated�



Production Rules for View Maintenance �		


� Intersect Views

A view V with intersect operators is handled similarly to views with union operators� In rule

modi�cation� however� all rules performing delete operations remain unchanged� �If a tuple is

deleted from any select expression� then it always should be deleted from V �� Modi�cations for

insert operations are similar to the modi�cations for delete operations in union views� If a tuple

is newly produced by one of the select expressions� it should be inserted into V only if it also is

produced by all the other select expressions� Consider an insert operation in the action of a rule

generated from the �rst select expression in V � The following conjunct must be added to the where

clause of the insert operation�s select expression�

and �Cols� in

�select Cols� from Tables� where P�	

and ���

and �Cols� in

�select Colsk from Tablesk where Pk	

Again� if the select expressions are su�ciently complex� the user may decide that rematerialization

is more appropriate�

� System Execution

So far� we have described only the compile�time aspects of our facility� View de�nition� view analysis�

and rule generation all occur prior to database system execution� We still must ensure that� at run�

time� derived rules will behave as desired� i�e�� views will be maintained correctly� Suppose our

facility has been used to derive sets of maintenance rules for several views� The system orders the

set of rules for each view so that all delete operations in rule actions precede all insert operations�

No ordering is necessary between rules for di�erent views the action part of each rule modi�es only

the view itself� so rules for di�erent views have no e�ect on each other�

Consider the set of rules for a given view V � and suppose an arbitrary set of changes has been

made to V �s base tables� If the rematerialization rule for V is triggered� the view certainly is

maintained correctly� V is recomputed from its base tables� all other rules for V are deactivated�

so V cannot be modi�ed until the base tables change again� Suppose the rematerialization rule is

not triggered� During rule processing� �rst some rules delete tuples from V � then other rules insert

tuples into V � Consider the deletions� For each type of table reference� our theorems guarantee

that the generated delete operations never delete tuples that should remain in V � Furthermore�

these operations always delete all tuples that should no longer be in V � Consider the insertions�

First� notice that all generated insert operations use nested select expressions based on the view

de�nition itself� Since we know the view de�nition cannot produce duplicates� the set of tuples in

insert operations never includes duplicates� Furthermore� our theorems �along with the �not in
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inserted V� clauses� guarantee that tuples already in V are never inserted� Finally� in each case

the insert operations produce all tuples that should be added to V �

We must consider that other production rules in addition to view�maintaining rules may be de�ned

in the system� Although these rules cannot modify views� they can modify base tables� Our view�

maintaining rules behave correctly even in the presence of other rules� and no additional rule ordering

is necessary� Recall the semantics of rule execution �Section ��� a rule is considered with respect to

the transition since the last time its action was executed� if its action has not yet been executed�

it is considered with respect to the transition since the last rule assertion point �or start of the

transaction�� Hence� the �rst time a view�maintaining rule R is triggered during rule processing� it

processes all base table changes since the last assertion point� Suppose that� subsequently during rule

processing� the base tables are changed by a non�view�maintaining rule� Then R will be triggered

again and will modify the view according to the new set of changes� When rule processing terminates�

no rules are triggered� so all view�maintaining rules will have processed all relevant changes to base

tables�

�� Conclusions and Future Work

We have described a facility that automatically derives a set of production rules to maintain a

materialization of a user�de�ned view� This approach both frees the view de�ner from handling

view maintenance and guarantees that the view remains correct� Through analysis techniques based

on key information� incremental maintenance rules are generated whenever possible� Our facility

allows the user to interact with the system� view de�nitions and key information can be modi�ed to

guarantee that the system produces e�cient maintenance rules for frequent base table operations� In

practice� e�cient rules are possible for a wide class of views e�ciency relies on safe table references�

and it can be seen from our criteria for safety that table references routinely fall into this class� In

those cases where e�ciency is not possible for the user�s desired view� our system provides recognition

of this fact� the user either may use the rules produced for automatic rematerialization or may decide

that query modi�cation is more appropriate�

We plan to implement our facility using the Starburst Rule System� then conduct experiments to

evaluate the run�time e�ciency of our approach on a variety of views� Meanwhile� we want to extend

view analysis and rule generation so that the full power of SQL select statements can be used in

view de�nitions� �We have started this and expect it to be tedious but not di�cult�� Currently� the

biggest drawback of our approach is that views with duplicates are not handled� we will consider

ways to remove this restriction� We would like to add automatic rule optimization as a post�rule�

generation component in our system� The rules produced by our method have a standard form� and

in some cases can be optimized as in �CW���� In addition� rules for di�erent views could be merged

and common subexpressions could be exploited as in �Han��� Finally� the properties guaranteed by
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our algorithms are useful in other areas �such as query optimization�� and we intend to explore this

connection�
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ABSTRACT

The database programming language Heraclitus�Alg�C� is an extension of the C programming language that

supports the relational algebra and novel constructs related to the speci�cation of these semantics� In

particular� the language supports deltas as 
�rst�class citizens� � these are values corresponding to database

updates� which may or may not be applied� Unlike previous work on di�erential �les and hypothetical

relations� Heraclitus supports operators for combining deltas� and also alternative implementations that

incorporate the impact of deltas into conventional database operators �e�g�� join��

This chapter describes the design and preliminary implementation of Heraclitus�Alg�C�� Two strategies for

providing access to deltas have been implemented� one hash�based and the other sort�based� Initial evaluation

of system performance demonstrates the feasibility of the language�

A key issue in active database systems� i�e�� database systems that incorporate automatic �ring of rules�

concerns understanding alternative semantics of rule application� This chapter shows how deltas can be

used in representing the e�ect of rule �rings� and for representing virtual database states� as they arise

in the speci�cation of these semantics� The chapter also describes how Heraclitus can be used to provide

e�cient support of materialized integrated views� More generally� the Heraclitus framework appears useful

in connection with hypothetical database access� version control� specifying concurrency protocols� and the

resolution of update con!icts�

� Introduction

�Active� databases generally support the automatic triggering of updates as a response to user�

requested or system�generated updates� Many active database systems� e�g�� �CCCR����Coh�	�
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and by ARPA under grants NAG����� �adminstered through NASA� and ������RT�AAS �administered by the Army

Research O#ce��
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MD���Han���dMS���SJGP���WF���ZH���� use a paradigm of rules to generate these automatic

updates� in a manner reminiscent of expert systems� Active databases have been shown useful for

constraint maintenance �Mor��� CW���HJ���� incremental update of materialized views �CW����

query rewriting �SJGP���� database security �SJGP���� and hold the promise of providing a new

family of solutions to the view and derived data update problem �CHM��� and issues in heterogeneous

databases �CW��b�� Active database technology will also play an important role in the development

of �mediators� �Wie��� for supporting database interoperation�

As discussed in Section � �see also �HJ���HW���Sto����� each of the active database systems de�

scribed in the literature uses a di�erent semantics or �execution model� for rule application� The

variety of alternatives found in active database systems highlights the fact that the �knowledge�

represented in them stems from two distinct components� the rule base and the execution model

�Abi���� It appears that di�erent execution models will sometimes be appropriate even within a

single database� and that a �xed collection of choices is unlikely to su�ce� There is a need for

high�level constructs that permit database designers and programmers to specify and implement

system modules using customized execution models�

The Heraclitus project �HJ���JH���GHJ��� is focused on the development of database programming

language constructs and techniques that can be used to specify and implement alternative� inter�

changeable execution models for active database systems� Our current focus is to provide language

constructs that support �a� the use of multiple virtual states in rule conditions and �b� a wide variety

of semantics for applying rules and combining their e�ects� This chapter focuses on developing the

Heraclitus paradigm in connection with the pure relational model �no duplicates or tuple�ids�� Re�

search has also been performed on extending the Heraclitus paradigm to object�oriented databases

�BDD��
�DHDD�
�DHR�	��

The basic novelty in the Heraclitus framework is to elevate deltas� i�e�� values corresponding to data�

base updates� which may or may not be applied� to be ��rst�class citizens� in database programming

languages� Operators are provided for explicitly constructing� accessing and combining deltas� Of

particular importance is the when operator that permits hypothetical expression evaluation� expres�

sion E when � evaluates to the value that E would have if the value of � were applied to the current

state� This allows deltas to be used to represent virtual states� and also supports hypothetical

database access�

We have implemented Heraclitus�Alg�C�� a database programming language �DBPL� that extends

C to incorporate the relational algebra and deltas and their operators� The implementation has two

primary components� a pre�processor and HERALD �HEraclitus Relational ALgebra with Deltas��

a library of functions supporting relational and delta operators� Of particular interest is the support

of �hypothetical� relational operators� which correspond to the traditional relational operators �e�g��

select� join� evaluated under a when� HERALD was initially implemented �GHJ��� on the Wisconsin

Storage System �WiSS� �CDKK�
�� and has now been ported to the Exodus system �CDRS�	��
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HERALD currently supports two strategies for incorporating the e�ect of deltas on the relational

operators� one hash�based and the other sort�based�

This chapter describes the design and preliminary implementation of Heraclitus�Alg�C�� and some

applications in connection with active databases and data integration� Section � discusses the

conceptual underpinnings of deltas and their use in specifying active database execution models

and other database applications� Section � introduces Heraclitus�Alg�C�� presenting both algebraic

operators and language constructs� Section � describes the current implementation of the language�

along with analysis of the expected running times for the various algebraic operators� Section 
 shows

that Heraclitus�Alg�C� can be used to conveniently implement rules and their execution model for

the maintenance of materialized derived data� Brief conclusions are o�ered in Section 	�

� Deltas� Virtual States� and Active Database Execution

Models

This section lays a conceptual framework for understanding much of the current research in active

databases� In particular� we show how access to both deltas and virtual states are useful in the

context of active databases� and illustrate how the Heraclitus paradigm can be used to provide this

access� Some of this material also appears in �HJ���� and is included here to make the current chapter

more self�contained� At the end of the section we brie�y sketch other database applications where

this paradigm may be useful� and compare our deltas with related work on hypothetical relations

and di�erential �les�

�
� Active databases

A wide range of active database systems have been proposed in the literature� The most crucial

di�erences between their execution models stem from choices concerning �a� how and when rules

should be �red� �b� the expressive capabilities of the rules� and �c� how the e�ects of rule �rings

should be combined� With regards to �a�� three approaches have been proposed� �i� transaction

boundary rule �ring� which occurs only at the end of the user transaction �e�g�� Starburst� RDL��

LOGRES� AP
�� �ii� interleaved rule �ring� where rule application is interleaved with the atomic

commands of a user transaction �e�g�� POSTGRES �SJGP���� among others �Han���KDM���MP���

MD����� and �iii� concurrent rule �ring �e�g�� �MD���BM����� in which rules may spawn concurrent

processes in a recursive fashion� The Heraclitus paradigm can be used to specify many of these

design choices� in this subsection we focus on transaction boundary rule �ring� and brie�y discuss

interleaved rule �ring�
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Supplier Part

Trek frame

Campy brakes

Campy pedals

Suppliers

Part Quantity Supplier Expected

frame ��� Trek �'��'��

brakes ��� Campy �'�'��

Orders

Figure �� Relations for Inventory Control Example

Under transaction boundary rule �ring� rule application constructs a sequence of �virtual states�

Sorig � Sprop � S�� S�� � � � � Scurr

of the database� where Sorig is the �original� state and Sprop is the result of applying to Sorig
the set of user�proposed updates collected during the transaction� The subsequent virtual states

result from a sequence of rule �rings according to the execution model� Scurr denotes the �current�

virtual state that is being considered by the execution model� Execution terminates either when the

execution model reaches a �xpoint� in which case the �nal virtual state replaces Sorig � or aborts the

transaction� Prominent systems following this paradigm include the Starburst Rule System �WF���

CW���� RDL� �dMS���� LOGRES �CCCR���� and AP
 �Coh�	�ZH���� and also expert systems

such as OPS
 �BFKM�
�� �Other paradigms shall be considered below��

As a simple example� consider a relational database for inventory control in manufacturing� Figure

��� shows two relations used by a hypothetical bicycle manufacturer� The Suppliers relation holds

suppliers and the parts they supply� and the Orders relation shows currently un�lled orders for

parts� Other relations� not shown here� might hold information about the parts usage of di�erent

bicycle models� and the expected demand for these parts based on the production schedule of the

company�

Consider now the referential integrity constraint stating that if there is an order for part p from

supplier s� then the pair �s� p� should be in relation Suppliers� A possible rule for enforcing this

might be written as

R� � if Orders�part� qty� supp� exp� and not Suppliers�supp� part�

then �Orders�part� qty� supp� exp�

In the pidgen syntax used for this rule we follow the style of many active database systems� In

particular� �a� the �if� part� or condition� is a boolean expression � the rule can ��re� only if this

expression evaluates to true� �b� the �then� part� or action is an imperative command that executes

when the rule �res� and �c� it is implicit which virtual state�s� are being considered by the conditions

and actions� In typical active database systems� if at some point in the application of rules the state
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Scurr satis�es the condition of R� for some assignment of variables� then the action may be �red�

depending on the presence of other rules whose condition is true� We say that rule R� uses a �one�

state� logic� because the rule condition examines a single state� namely the �current� one� RDL��

LOGRES� and most expert systems �e�g�� OPS
 �BFKM�
�� support only a one�state logic�

In the context of databases� a problem with rule R� is that the appropriate response to a constraint

violation may depend on how the violation arose� Rule R� below deletes all violating orders if a pair

is deleted from the Suppliers relation� but if the violation is the result of an update to Orders�

then R� undoes that individual update and transmits a warning�

R� � if �Suppliers�supp� part�

then �Orders�part� �� supp� ��

R� � if %Orders�part� qty� supp� exp� and not Suppliers�supp� part�

then �Orders�part� qty� supp� exp� and send warning

The signed atoms in the conditions of these rules refer to proposed updates� rather than any database

state� The action of R� uses �wildcards� �denoted )���� these match any value�

In essence� the conditions of rules R� and R� make explicit reference to the delta between two virtual

states� Of course� some design choice needs to be made about which pair of virtual states should be

considered� The AP
 system focuses on the delta between Sorig and Scurr�

Sorig � Sprop � S�� S�� � � � � Scurr

&

Assuming this semantics for a moment� note that a one�state execution model cannot simulate the

e�ect of rules R� and R� without using �scratch paper relations� that essentially duplicate the

contents of Sorig � Another natural semantics for rule conditions supporting explicit access to a

delta would be to use the delta between Sprop and Scurr� The Starburst Rule System is even more

intricate� it uses the delta between virtual states Si and Scurr � where i is determined by the rule

under consideration and the history of previous �rings of that rule�

Consider �nally the rule

R� � if the �ring of rules results in a ��* drop in orders

then inventory warning��

Here we need to consider the change in orders between Sprop and Scurr �

Sorig � Sprop � S�� S�� � � � � Scurr
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While this could be expressed using explicit access to a delta� it is much easier to express it in terms

of the virtual states� i�e�� to write�

R�� � if
count�Orders� �in Scurr�

count�Orders� �in Sprop�
� ��

then inventory warning��

In current DBPL�s there is no mechanism to write expressions such as the condition of R��� because

they do not provide explicit access to virtual states� The Heraclitus paradigm provides this by using

deltas and the special when operator� As mentioned in the introduction� the expression E when �

evaluates an arbitrary side�e�ect free expression E in the state that would arise if the value of �

were applied to the existing database state� Evaluation of such an expression does not change the

existing database state� One way to express rule R�� in the Heraclitus paradigm is to construct

deltas corresponding to the virtual states Sprop and Scurr as follows�

Sorig � Sprop � S�� S�� � � � � Scurr

&curr

&prop

Rule R�� can be expressed within the Heraclitus paradigm as�

R��� � if
count�Orders� when &curr

count�Orders� when &prop
� ��

then inventory warning��

We now describe how the Heraclitus paradigm can specify a large family of execution models that use

transaction boundary rule �ring� During execution� the database state will remain untouched� and

deltas will be constructed to represent the virtual states needed for evaluating rule conditions� �An

alternative would be to update the database state with each rule �ring� and maintain �negative�

deltas that simulate previous virtual states in the sequence�� Rules are represented as functions

that have as input zero or more deltas �corresponding either to virtual states or deltas between

them�� and produce as output a delta corresponding to the e�ect of the rule �ring� The rules

might also invoke additional procedures such as inventory warning��� Although not done here�

triggers �which are logically a part of the condition� but whose value can typically be determined

in a very e�cient manner� can also be incorporated into the framework� Rules can be arranged

to provide either �tuple�at�a�time� or �set�at�a�time� operation �WF���� Algebraic operators are
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provided in Heraclitus for manipulating deltas� so that deltas corresponding to new virtual states

can be constructed from previous deltas and rule outputs� Using this approach� the execution models

of AP
� RDL�� LOGRES and the Starburst Rule System can be speci�ed within Heraclitus�Alg�C�

�see also �HJ����� Variations on this theme can be developed� As a simple example� a rule�base can

be �strati�ed�� and the execution model can �re each layer to a �xpoint before moving to the next

layer� More complex �ring patterns subsuming the rule algebra of �IN��� are easily expressed�

Returning now to the full range of design choices for active database execution models� the Heraclitus

paradigm can also specify interleaved rule �ring� In this case� the user transaction and the rule

actions are broken into a sequence of atomic updates� and rules are invoked immediately upon a

condition becoming true� There is the possibility of intricate recursive rule �ring� and it is hard to

associate an intuitive meaning to the sequence of virtual states constructed� As a result� the rule

conditions in these systems typically give explicit access to the �old� and �new� values of certain

tuples� but not to multiple virtual states� Heraclitus also permits �hybrid� execution models� which

combine aspects of both interleaved and transaction boundary rule �ring� At present� the primary

focus of the Heraclitus project is on sequential processing� incorporation of concurrent rule �ring is

a subject of future research�

Heraclitus gives broad latitude with regards to dimensions �b� and �c� mentioned above� For this

reason� the Heraclitus paradigm� and Heraclitus�Alg�C� in particular� can serve as a �exible platform

for specifying a wide variety of execution models for active databases� We expect this to be useful

both in developing customized execution models� and in comparing them� both experimentally and

analytically�

�
� Other applications

We now brie�y outline a few other applications of the Heraclitus paradigm� We feel that the

Heraclitus paradigm will be useful in implementing and understanding a variety of database issues�

including ��� hypothetical database access� ��� version control� ��� concurrency protocols� and ���

update con�ict resolution� With regards to ���� it is possible within Heraclitus to specify deltas that

have meanings such as �Add � weeks to the Expected value for all orders with quantity � 
���

or �Cancel all orders with Expected in the month of October�� Queries are now easily speci�ed

against hypothetical states using arbitrary combinations of these deltas and the when operator �see

Subsection ����� With regards to ���� alternative versions might be represented using deltas� Because

Heraclitus provides explicit access to deltas� it can provide both a �exible platform for developing

customized version control frameworks� and for experimentally comparing them� Turning to ����

deltas appear especially useful in connection with long transactions� For example� protocols could

be developed in which certain short transactions can be executed during the running of a long

transaction� and a delta recording the impact of the short transaction could be stored and applied

after the long transaction �nishes� This kind of �soft commit� could increase concurrent access to
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databases� Finally� ��� addresses situations in which multiple con�icting updates are presented to a

database system� This could arise� for example� in managing a forest �re� where di�erent observers

give con�icting information about current status of the �re� One approach to �nding a coherent

update is to extend active database techniques� so that rule conditions can explicitly access multiple

deltas corresponding to the di�erent proposed updates�

�
� Related techniques

This section concludes with a brief comparison of the Heraclitus paradigm with related techniques�

Di�erential �les �SL	� are a low�level implementation technique that support e�cient representation

of multiple versions of a database� Unlike di�erential �les� deltas in the Heraclitus framework

are manipulated directly by constructs in the user�level programming language� Furthermore� we

support a family of operators for explicitly constructing and combining deltas� in addition to those

for explicitly and hypothetically accessing them�

A version of hypothetical relations is introduced in �WS���� While the work there describes carefully

crafted implementation strategies for such relations� it cannot easily be extended to provide the full

generality of delta usage supported in the Heraclitus framework�

It has been suggested that a reasonable approach to support the basic functionality of the when

operator would be to augment existing concurrency control mechanisms� using the following steps�

�a� evaluate E when � by applying � it to the database �but don�t commit�� �b� evaluate E in

the context of the new database� and �c� rollback the transaction in order to undo �� While this

rollback technique will be useful in some contexts� it is just one of several feasible implementation

strategies that warrant investigation� In the case of complex algebraic expressions involving several

not necessarily nested deltas� it may be more e�cient to incorporate optimization of when into the

conventional optimization of the other algebraic operators� rather than relegating it to the orthogonal

rollback mechanism� Also� the use of rollbacks to support hypothetical database access may cause

unacceptable delays in the concurrency system� complicate the transaction protocols� and degrade

the performance of the system�

� Heraclitus�Alg�C�

This section describes the language Heraclitus�Alg�C� from a user�s perspective� The discussion

begins with an abstract perspective on deltas� then presents a speci�c realization for the relational

model of deltas and their algebraic operators� and �nally describes how this is embedded into the C

language�



Heraclitus DBPL �
�

�
� The abstract perspective

The foundation of the Heraclitus paradigm is the notion of delta values� sometimes called simply

deltas� these are functions that map database states to database states� Intuitively� a delta can be

thought of as a �delayed update�� i�e�� a command that can be used to update a given database

state� but is not necessarily applied� Three operations are fundamental to deltas� applying them to

the current database state to obtain a new one� composition� and when� The when operator provides

hypothetical expression evaluation� the value of E when � in state DB is the value of expression E

evaluated in the state resulting from the application of the value of delta expression � on DB�

The notion of delta and these basic operators provide a powerful paradigm for supporting a wide

variety of database applications� across a wide spectrum of database models� In the �rst phase of

the Heraclitus project we are focusing on the development of a comprehensive realization of this

paradigm and its application for the pure relational model� we plan to extend the paradigm to an

object�oriented database model in the near future�

Several factors a�ect the speci�c realization of the Heraclitus paradigm� Obviously� we expect that

all deltas considered are computable� Furthermore� the family of deltas that can created should be

closed under composition� Even in this case� there is a trade�o� between the expressive power of the

family of deltas incorporated� and the e�ciency with which they can be stored� manipulated� and

accessed� In Heraclitus�Alg�C� we provide a natural tabular representation for a restricted family of

deltas that permits e�cient manipulation� Importantly� the family of deltas supported is su�cient

to specify a wide variety of active database execution models�

�
� The algebraic perspective

To understand the family of deltas supported in Heraclitus�Alg�C�� we �rst describe the tabular

representation used for them� and the function that each represents�

A signed atom is an expression of the form % � reln�name � � tuple � or � � reln�name � �

tuple�� intuitively these correspond to �insertions� and �deletions�� respectively� In the context of

Heraclitus�Alg�C�� a delta� is represented as a �nite set of signed atoms �referring to relations in the

current database schema� which does not include both positive and negative versions of the same

atom� An example is�

&� #

����
���
%Suppliers�Shimano� brakes��

%Suppliers�Trek� frame��

�Orders�brakes� ���� Campy� ��������

%Orders�brakes� ���� Shimano� �������

����
��

We also include a special delta value fail� that corresponds to inconsistency�
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Supplier Part

Trek frame

Campy brakes

Campy pedals

Shimano brakes

Suppliers

Part Quantity Supplier Expected

frame ��� Trek �'��'��

brakes ��� Shimano �' '��

Orders

Figure �� Result of applying $�

For non�fail delta &� we set
&� # fA j %A � &g
&� # fA j �A � &g

The consistency requirement on deltas states that &� �&� # 	� & represents the function which

maps a database state � DB to �DB � &�� � &�� which� due to the consistency requirement� is
equal to �DB � &�%� � &�� Speaking informally� applying & has the a�ect of adding tuples of

& preceded by a )%�� and deletes tuples preceded by a )���

The result of applying &� to the instance of Figure ��� is shown in Figure ���� Because we are

working with the pure relational model� the signed tuple %Suppliers�Trek� frame� can be viewed

as a �no�op� in this context� it has no impact when apply is used on the instance of Figure ����

Deletes are �no�ops� if the associated tuple is not present in the underlying instance� A mechanism

to express �modi�es� is also incorporated� see Subsection ���

We call the composition operator for these deltas smash� denoted )!�� The smash of two delta values

is basically their union� with con�icts resolved in favor of the second argument� For example� given

&� #

����
���
%Suppliers�Cat Paw� light��

�Suppliers�Campy� pedals��

�Orders�brakes� ���� Shimano� ��������

%Orders�brakes� ���� Shimano� ��������

����
��

then &�!&� equals �����������
����������

%Suppliers�Shimano� brakes��

%Suppliers�Trek� frame��

%Suppliers�Cat Paw� light��

�Suppliers�Campy� pedals��

�Orders�brakes� ���� Campy� ��������

�Orders�brakes� ���� Shimano� ��������

%Orders�brakes� ���� Shimano� ��������

�����������
���������

�In this context	 we view the database state to be a set of atoms	 e�g�	 f Suppliers�Trek� frame�	 Suppliers�Campy�

brakes�	 � � �	 Orders�frame� 
��� Trek� ������	 � � �g�
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Formally� for non�fail &� and &� their smash is de�ned by

�&� ! &��
� # &�

� � �&
�
� �&

�
� �

�&� ! &��� # &
�
� � �&

�
� �&

�
� �

It is easily veri�ed that smash realizes function composition for the family of deltas�

Most active database systems use smash when combining the impact of di�erent rule �rings� In

contrast� AP
 uses a special �merge� operator� The merge� denoted )"�� of two non�fail deltas &�

and &� is given by�

�&� " &�� #

�
&� � &� if this is consistent

fail otherwise

Thus� the merge of the two deltas of the previous example is fail� The use of merge yields a more

declarative �avor than smash� this has been exploited in �ZH��� to obtain su�cient conditions on

rule�bases to ensure consistent termination of rule �ring sequences�

Several other binary operators for combining deltas can be de�ned� for example� weak�merge� i�e��

union but deleting all con�icting pairs of signed atoms �cf� �SdM���CCCR������ or union giving

priority to inserts in the case of con�ict� At present Heraclitus�Alg�C� provides explicit constructs

for smash� merge and weak�merge� other binary operators can be built up from more primitive

Heraclitus�Alg�C� constructs�

�
� Embedding into C

We now describe how relational deltas and the algebraic operators described above are embedded

into C� The primary focus is on Heraclitus�Alg�C� expressions for �a� creating deltas� �b� combining

deltas� and �c� accessing deltas�

Heraclitus�Alg�C� supports the manipulation of both persistent and transient relations and deltas�

Suppose that Suppliers and Orders are persistent relations as de�ned in the previous section� The

following declares two variables for these� and a variable for transient relation Big�

relation Supp� Ord� Big�

Supp � access
relation� Suppliers ��

Ord � access
relation� Orders ��

Big � empty
relation�Part�char���	� Qty�int�

Sup�char���	� Exp�int��

Signatures for variables Supp and Ord are taken from the corresponding persistent relations� The

signature for transient relation variable Big must be speci�ed explicitly upon initialization� While

coordinate names may be associated with relation types as indicated here at present the algebra is
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based on coordinate positions� However� most of our examples will use coordinate names to simplify

the exposition� �We assume that Ord has the same �eld names as Big� and that Supp has �eld names

Sup and Part�� In Subsection ��� we use pure Heraclitus�Alg�C� syntax�

The algebra used is essentially the standard relational algebra� except that system� and user�de�ned

scalar functions can be used in projection target lists� and in selection and join conditions �e�g��

project��Part� Qty!�	� select� ffoo�Sup��Qtyg� Orders�� for user�de�ned function foo��

Deltas are supported in Heraclitus�Alg�C� by the type delta� Deltas can be created using atomic

commands� such as

delta D�� D��

D� � �del Supp� Campy � pedals �	�

D� � �ins Big� brakes ����� Shimano �  ������� �	�

After execution D� has f�Suppliers�Campy� pedals�g and D� has

f%temp���brakes� 
��� Shimano� ��������g� where temp�� is the relation identi�er chosen during

program execution for the transient relation Big� The bulk operator can be used to construct a

�large� delta from data currently in the database� For example�

bulk�ins Big�Part� Qty� Sup� Exp�� select��Qty � ���� Ord��

evaluates in the context of Figure ��� to�
%temp���frame� ���� T rek� ��������

�

More generally� the �rst argument to bulk must be� what amounts to� an atomic delta expression

containing scalar expressions built up from column names and scalar values� These names are

assigned possible values by the second argument to bulk� which must be a relation expression� Thus�

a bulk operator can be viewed as a composition of relational projection followed by parallel creation

of atomic delta expressions�

Heraclitus�Alg�C� also supports atomic modify expressions� such as

�mod Ord� brakes �����  Campy �  �������  brakes � ����  Shimano �  ��"��� �	� Eval�

uation of this expression depends on the current state� if �brakes� �
�� Campy� ������� is present in

Orders �as it is in Figure ���� this expression evaluates to�
�Orders�brakes� �
�� Campy� ��������
%Orders�brakes� �
�� Shimano� ��	����




On the other hand� if �brakes� �
�� Campy� ������� is not present in Orders �as in Figure ���� then

the expression evaluates to the empty delta� We have experimented with permitting explicit modi�es
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inside of delta values� on an equal footing with deletes and inserts� However� as reported in �GHJ����

the semantics for consistency and for smash become quite cumbersome in that framework� This has

lead us to the compromise that they can be written explicitly� but their value depends on the state�

Regardless of this decision� the presence of modify expressions in a program may give the compiler

opportunities for optimization �e�g�� by avoiding two traversals of an index��

Heraclitus�Alg�C� also permits �wildcards� in delete and modify commands� Wildcards� denoted

by )!�� match any value� Evaluation of expressions with wildcards again depends on the current

database state�

Deltas may be combined using smash ���� merge ���� and weak�merge explicitly� A fourth operator�

compose� is also supported� this is described shortly�

We now turn to the four operators for accessing deltas� The �rst is apply� the command apply ��

�rst evaluates � and applies the resulting delta value to the current state� Hypothetical expression

evaluation is supported by the when operator� As a simple example�

Big � select��Qty � ���� Ord� when

��mod Ord� brakes ����� Shimano � ��"��� �

 brakes ����� Shimano � ������� �	 �

�ins Ord� light ����� Cat Paw � ������ �	��

when evaluated in Figure ��� yields f�frame� ���� T rek� ��������� �brakes� 
��� Shimano� ��������g�
Importantly� side�e�ect free functions can be called within the context of a when� Nesting of when�s

is also permitted � it is easily veri�ed that

�E when ��� when �� � E when ��� � ��� when ����

This plays a key role in the implementation of delta expressions consisting of nested when�s�

The �nal operators for accessing deltas are peeking expressions� these permit the programmer to

directly inspect a delta� The expression peekins�R� �� evaluates to the relation containing all

tuples that are to be inserted into R according to the value of �� and the expression peekdel�R� ��

evaluates analogously� For example� peekdel�Supp��del � Campy �!�	� evaluates in Figure ��� to

f�Campy� brakes�� �Campy� pedals�g�

The compose operator� denoted )��� has the property that the command

apply ��� � ��� is equivalent to �apply ��� apply ����� Compose is de�ned in terms of smash

and when� by �� � �� # �� � ��� when ���� This de�nition indicates the di�erence between smash

and compose� In �� � ��� both �� and �� are evaluated with respect to the current state� then

smashed� and then applied to the current state� In �� � ��� �� is evaluated in the state resulting

from the application of �� to the current state� This is reminiscent of the �phantom� problem in

database transaction processing� It is straightforward to verify that compose is associative�
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Compose is especially useful in the context of hypothetical database access� We present an example

involving two functions� The �rst function builds a delta that has the e�ect of canceling all October

orders�

delta cancel
Oct
orders��

�return bulk�del Ord�Part�Qty�Sup�Exp��

select��in
Oct�Exp��Ord���

The second one builds a delta that delays the expected date by two weeks of all orders with Qty �


���

delta delay
big
orders��

�return bulk�mod Ord�Part�Qty�Sup�Exp�

Part�Qty�Sup� add
two
weeks�Exp���

select��Qty � ���� Ord���

Suppose that the function total brakes on order computes the total number of brakes on order�

Then the expression

total
brakes
on
order�� when

cancel
Oct
orders�� � delay
big
orders��

performs a hypothetical evaluation of total brakes on order� assuming that �rst the October

orders where canceled� and then the big orders were delayed� Note the value resulting from the call to

delay big orders takes into account the updates proposed by the value of cancel Oct orders� The

following performs the hypothetical evaluation� but with the application of the two delta functions

reversed�

total
brakes
on
order�� when

delay
big
orders�� � cancel
Oct
orders��

In general these two expressions will evaluate to di�erent values�

�
� Active database examples

This subsection provides a brief indication of how Heraclitus�Alg�C� can be used to specify� and

thereby implement� a variety of active database execution models� To simplify� we omit consideration

of �triggers�� and assume rules to have the form�

if �condition� then �action�

Because Heraclitus�Alg�C� provides explicit peeking� triggers can easily be incorporated into the

syntax�
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Recall the discussion of Subsection ���� We adopt here the convention for this discussion that the

original database state remains unchanged during rule �ring� and that appropriate virtual states are

represented and manipulated using deltas� We now specify in Heraclitus�Alg�C� the rules R� and R�

of Subsection ���� It is assumed that deltas corresponding to Sprop and Scurr are maintained by the

execution model� Both rules will be functions with two arguments� although R� uses only the delta

corresponding to Scurr�

In Heraclitus�Alg�C�� coordinate positions are indicated using the )#� symbol� Typing information is

also included here to simplify the task of pre�processing into C� given the fact that relation signatures

can change over the lifetime of a program� Thus� in the rule rule R�� #c� refers to the �rst coordinate

of the output of the peekdel� which has type character string�

delta rule
R��prop�curr�

delta prop�curr�

� return bulk�del Ord�#c��!�#c��!�� peekdel�Supp�curr��� 

delta rule
R��prop�curr�

delta prop�curr�

� if � �count�Ord� when curr� � �count�Ord� when prop� � �$ �

inventory
warning���

return empty
delta� 

Suppose now that a total of �
 rules are written to capture the purchasing policy for this application�

all using input variables corresponding to Sprop and Scurr � They can be combined into an array of

delta functions as follows�

delta �!policy���	����

policy��	 � rule R��

policy��	 � rule R��
���

policy���	 � rule R���

The following function speci�es an execution model that takes in a delta corresponding to a user�

requested update and applies the rules according to a speci�c algorithm� Here we use the copy

�)���� operator� )curr �� prop�� copies the signed atoms associated with delta variable prop into

the delta variable curr� The assignment temp � empty delta initializes temp as a transient delta

holding the empty delta� The expression curr ��� temp� is equivalent to curr �� curr � temp��

and analogously for ���� The boolean dequiv checks equality of deltas�

boolean apply
policy�prop�

delta prop

�
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delta curr� prev� temp�

if �prop �� fail� return �false��

curr �� prop�

do � prev �� curr�

temp � empty
delta�

for �i��� i���� i%%�

� temp ��� �!policy�i	��prop�curr� �

curr ��� temp� 

while � curr �� fail �� �dequiv�prev�curr���

if �curr �� fail�

� return �false�� 

else

� apply curr�

return �true�� �



Here� the inner loop corresponds to a single� independent �set�oriented� application of each rule in

policy� and combines the results using merge� Note that in the inner loop� each rule is evaluated

on prop and curr� and the resulting deltas are accumulated in variable temp� The outer loop

repeatedly performs the inner loop� using smash to fold the results of each iteration into the value

of curr already obtained� The outer loop is performed until either a �xpoint is reached� or the

inner loop produces the delta fail �either because one of the rules explicitly called for an abort

by producing fail� or because in some execution of the inner loop� two rules produced con�icting

deltas��

Suppose now that there is a second array keys of rule functions capturing key constraints� and that

the above execution model is to be modi�ed so that after each execution of the inner loop the rules

in keys are to be �red until a �xpoint is reached� Suppose further that these rules use only a single

input delta� corresponding to Scurr� Now let function apply rules have the following signature

delta apply
rules�curr� rule
base� size�

delta curr�

delta �!rule
base�	����

int size�

and suppose that it applies the rules in rule base until a �xpoint is reached� Then the desired

modi�cation to apply policy can be accomplished by adding

curr ��� apply
rules�curr�keys�����

as the last line of the inner loop� This very brie�y indicates the kind of �exibility that Heracli�

tus�Alg�C� provides in specifying active database execution models�
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We are currently implementing in Heraclitus�Alg�C� the �kernel of the� execution models of the

Starburst Rule System� AP
� and POSTGRES systems� Speci�cations for Starburst and AP
 in

Heraclitus pseudo�code were presented in �HJ����

� The Implementation of Heraclitus�Alg�C�

The implementation of Heraclitus�Alg�C� has two components� HERALD� a library of relational and

delta operators built on top of Exodus� and a pre�processor that maps Heraclitus�Alg�C� programs

into C programs with calls to HERALD� We discuss the pre�processor �rst�

�
� The Pre�Processor

We mention here only of several signi�cant aspects of the Heraclitus�Alg�C� pre�processor� namely�

the implementation of when�s�

Consider the expression join� � cond � � R� S� when D� This cannot be evaluated in the

traditional bottom�up manner� because the relationships of D with R and S are lost if the join is

performed� Instead� the when must be �pushed� inwards� through the join operator� to directly

modify the relations� A naive approach to this problem is to have the compiler �replace� the above

expression by join� �cond�� R when D� S when D�� before passing it to HERALD� A complication

arises� however� because Heraclitus�Alg�C� permits functions that reference the database state to be

called in the context of a when� e�g�� goo�u�v� when D� This means that essentially any expression

may have to be evaluated hypothetically� but the relevant delta is known only at runtime� In the

current implementation we maintain a �runtime when stack�� During the execution of a program

the top of the stack holds a delta that re�ects the full e�ect of all deltas relevant to the evaluation

of the expression currently under consideration� This has the same impact as pushing when�s to the

leaves of the syntax tree�

As an aside� we note that in the context of database programming languages such as Heracli�

tus�Alg�C�� queries are generally accessible only at runtime due to the presence of function calls�

This highlights one of the key di�erences between query processing in conventional databases� where

the full query tree is available at compile time� and query processing in database programming

languages�

�
� HERALD

A central aspect of the HERALD system is to combine the evaluation of when�s with evaluation

of the algebraic operators� in a manner reminiscent of the traditional relational optimization of

combining selects and projects with joins� For example� HERALD provides a hypothetical join
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function join when� that evaluates the expression join� �cond�� R when D� S when D�� without

materializing R when D or S when D� HERALD currently supports two strategies for obtaining

access to deltas in connection with the hypothetical algebraic operators and other delta operators�

one based on hashing and the other on a sort�merge paradigm�

Conceptually� HERALD represents a delta as a collection of pairs �R�
�� R

�
��� specifying the proposed

inserts and deletes for each relation variable R in the program� Here� R�
� and R

�
� are called sub�

deltas� and are stored as relations �actually� �les� in Exodus� Hash�based access is best suited for

the situation where a subdelta pair �R�
�� R

�
�� �ts into main memory� and sort�based access is better

when a subdelta pair is bigger than main memory�

In the remainder of the section we discuss hash�based and sort�based access to deltas�

Hash�based access to deltas

When sub�deltas are small enough to �t in main memory� HERALD maintains a hash index on each

sub�delta� The hash index key value to address this hash table is composite and computed based

on the values of all �elds �or attributes� of a record� This implementation technique is e�ective as

long as a delta �ts in main memory� We now describe the low�level algorithms for two representative

delta operators� namely select when and join when�

Select when� The input arguments of this operator are� a relation R� a selection condition� a

delta &� and an output relation� Logically� this operator selects tuples of R that satisfy the selection

condition in the hypothetical state proposed by & and stores the resulting tuples in the output

relation� Its implementation is as follows�

�� open a scan on R

�� get the �rst tuple of R �say t�

�� while not EOF�R� do

a� evaluate the selection condition for t� If the tuple does not qualify go to step e�
b� probe the hash index of R�

� with t for a matching tuple� if found go to step e�
c� probe the hash index of R�� with t for a matching tuple� if found go to step e�
d� insert t into the output relation�
e� get the next tuple t in R�

�� for each tuple t of R�
� do

a� evaluate the selection condition for t� If t satis�es this condition� then insert t into the

output relation�

Note that we probe the hash index only if the tuple satis�es the selection condition� This minimizes

the number of disk accesses because probing the hash index may result in a disk read operation�
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We brie�y analyze the expected I�O costs of the implementation of select when� Suppose that

R�
�� R

�
� are small enough to �t into main memory� and that s* of the tuples in R satisfy the

selection condition� Assuming that s � �� the algorithm will call for the following I�Os�

�a� scan R

�b� scan hash tables for R�
�� R

�
��

�c� probe R�� for s* of R

�d� probe R�
� for s* of R

�e� scan R�
�

�f� write output relation

Thus� the expected overhead in I�O is roughly equal to the number of pages of the hash tables for

R�
� and R

�
�� and the number of pages of R

�
� and R

�
� that are read during parts �b� and �c�� �An

additional scan of all of R�
� and R

�
� is needed if hash tables are not maintained�� This was con�rmed

in our benchmarking experiments�

Join when� In the current implementation� the binary relational operators use sort�based imple�

mentations� In the case of hash�based delta access� a key subroutine for all of them is sort when�

Suppose that R is unsorted� The conventional approach to sorting R is to use heap�sort on short

�e�g�� ��� page� segments of R� and then to perform n�way merges of these segments� In sort when�

the impact of a delta is incorporated into the heap�sort� For example� on relation R� as portions of R

are read in for heap�sorting� a hash�table for R�� is probed� and the matching tuples are not placed

into the heap� Also redundant tuples in R�
� are marked� to prevent later duplication� After R is

completely read� the remainder of R�
� is also processed by the heap sort to provide additional sorted

segments� Then one or more merges is invoked to create a sorted �le� In the current implementation

for join with hash�based delta access� sort when is used to sort R �as impacted by R�
�� R

�
�� and S

�as impacted by S�� � S
�
��� and then a binary merge is used to create the join� Although not currently

implemented� this could be optimized by combining the �nal merge with the separate merges inside

the two calls to sort when�

When using hash�based delta access for these operators� there is an important interaction between

the amount of bu�er space used by the heap vs� the hash tables� To illustrate� suppose in the

abstract that the total available bu�er pool consists of ��� frames �and so the heap�sort can perform

����way merges�� Moreover� assume that R consists of ���� pages� R� has about �� pages that will

be probed during a pass of R �termed �hitting� pages�� and R� is empty� In this case a ���page heap

could be established� and R�R� would be broken into roughly ��� �or fewer� sorted segments� Now

a single ����way merge will yield a sorted version of apply�R�R��� total cost is �jRj% jR�j� Suppose

now that R has ���� pages� R� has about �� �hitting� pages� and R� is empty� It is now optimal to

devote �� pages to the heap�sort and the other �� to hash probing� �Fewer pages for the heap�sort

results in more merge passes� and fewer pages for the hash probing may result in thrashing�� Thus�

providing optimal support for hash�based delta access requires the ability to dynamically partition
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the bu�er pool between these two tasks� This capability is supported by Exodus� and we plan to

investigate these trade�o�s in our future research�

Sort�based access to deltas

A delta may be so large that it does not �t in main memory� in which case the hash�based implemen�

tation will thrash� To remedy this� we have designed and implemented algorithms that access deltas

using a sort and merge technique� We now present the low level algorithm for the select when

operator� the implementation of other operators is analogous� Heraclitus�Alg�C� maintains informa�

tion on whether relations and subdeltas are sorted� so that one or more of the sorting steps of these

sort�based algorithms can be eliminated�

select when� The input arguments of this operator are� a relation R� a selection condition� a

delta &� and an output relation� We assume that no order is maintained for any of the inputs� A

key function used here is select sort which takes as input a relation and a selection condition� As

with sort when� this implements a two�phase sort� but in the heap�sort phase it deletes all tuples

violating the selection condition�

In the following algorithm� if no tuples satisfy the selection condition �i�e�� Temp is empty�� then

R�
� is scanned for the qualifying tuples and returns� Otherwise� it sorts the qualifying tuples found

in each of R�� and R
�
� into two di�erent temporary relations� Next� it performs a three way merge

on these relations� inserting one occurrence of entries of R that match with R�
� �prevent duplicates�

and eliminating those that match with R�� �tuples proposed to be deleted��

�� select sort �R� selection condition� into a temporary relation Temp�

�� if Temp is empty� then

a� for each tuple t of R�
�� evaluate the selection condition for t� If t satis�es this condition�

then insert t into the output relation�
b� return as the output relation and exit�

�� select sort �R��� selection condition� into a temporary relation Temp
��

�� select sort �R�
�� selection condition� into a temporary relation Temp

��


� retrieve the �rst tuple in Temp �say r�� Temp� �say d��� and Temp� �say d%��

	� while not EOF�Temp� OR not EOF�Temp�� OR not EOF�Temp�� do

a� assign t to be the tuple with minimum value among r� d%� and d��
b� If t is not equivalent to d�� then insert t into the output relation�
c� If t is equivalent to r� then get the next tuple r from Temp�
d� If t is equivalent to d�� then get the next tuple d� from Temp���
e� If t is equivalent to d%� then get the next tuple d% from Temp���
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We now analyze the expected I�O cost of this implementation of select when� under the assumption

that the inputs are not maintained in sorted order� Let P �R� represent the number of disk pages

for relation R� SP �R� represents the number of disk pages that satisfy the selection condition� and

analogously for R�
� and R

�
�� We assume that SP �R� � the square of the number of available pages

in the bu�er pool �i�e�� that only one n�way merge is need to sort R�� and similarly for R�
� and R

�
��

The total number of I�Os incurred by the above algorithm can be estimated as the sum of�

select sort�R� � P �R� % � � SP �R�
select sort�R�

�� � P �R�
�� % � � SP �R

�
��

select sort�R��� � P �R��� % � � SP �R
�
��

merge � � � SP �R� % � � SP �R�
�� % SP �R

�
��

This cost function is a worst case estimate because it assumes� ��� SP�R� is not empty� ��� the

tuples of SP�R� are not redundant with those in SP�R�
��� causing all their entries to be written to

the output relation� and ��� the tuples of SP�R� do not match with the tuples found in R���

The implementation also handles the case where the input relation and delta are sorted� In this case�

only steps �
� and �	� of the algorithm are executed� and the selection condition is incorporated into

step �	��

� Heraclitus and Maintenance of Materialized Data

In this section� we show how the Heraclitus DBPL can be used to conveniently implement rules

and their execution model for the maintenance of integrated� materialized derived data� More

speci�cally� we apply these rules and the execution model to supporting data integration involving

object matching� that is� determining when object representations in di�erent databases correspond

to the same object�in�the�world� Chapter 	 in this book introduces �integration mediators� that

support this and more conventional kinds of data integration� One important aspect of integration

mediators is that they can materialize� among other things� the correspondence information about

object matching� A mediator uses a set of rules to maintain the materialized data� In this section� we

focus on using constructs of the Heraclitus DBPL to implement the rules and an execution model

for them� For the sake of clarity� we base our discussion here on object matching between pairs

of classes from di�erent databases� The execution model can be easily extended to support n�ary

matching �ZHK�	��

Before we present the rules and the execution model� we brie�y summarize the Student�Employee

example in Section � of Chapter 	� In the example� there are two databases� StudentDB and

EmployeeDB� that hold information about students at a university and employees in a corporation�

respectively� The relevant subschemas of the two databases are shown in Figure 
��� Our example

integration mediator maintains correspondence information about persons who are both students

and employees�



��� Chapter �


interface Student �

extent students�

string studName�

integer��	 studID�

string major�

string local
address�

string permanent
address�

Set�Course� courses
taken�

�

interface Course �

extent courses�

string courseName�

��� ���

�

Subschema of StudentDB

interface Employee �

extent employees�

string empName�

integer��	 SSN�

Division division�

string address�

�

interface Division �

extent divisions�

string divName�

��� ���

�

Subschema of EmployeeDB

Figure �� Subschemas of StudentDB and EmployeeDB in ODL syntax

The example further assumes that a student object s matches an employee object e �i�e�� they

refer to the same person in the real world� if ��� either s�local address # e�address or

s�permanent address # e�address� and ��� their names are �close� to each other according to

some metric� The �closeness� of names is determined by a function� called here close names���

that takes two names as arguments and returns a boolean value�

To support the kind of object matching criteria such as those between students and employees� we

propose the following general solution� Suppose now that classes A�� A� from two source databases

represent the same or overlapping sets of objects�in�the�world� An integration mediator can support

matching of objects from these classes by maintaining a match class match A� A�� As suggested in

Chapter 	 each of the source classes will contribute three kinds of attributes to the match class �these

sets may overlap�� namely identi�cation attributes� match attributes� and export attributes� Speak�

ing loosely� the class match A� A� will hold an �outer join� of the underlying source classes� where

each object in match A� A� represents a single object�in�the�world� Each element of match A� A�

is called a surrogate object� A given surrogate object might represent objects from essentially any

subset of the associated source database classes�

The interface of the match class match Stud Emp for the Student�Employee example in Chapter 	 is

shown in Figure 
��� The left column of four attributes of this class come from the Student class� the

other � attributes in the right column come from the Employee class� The identi�cation attributes

are studID and SSN� which are printable keys� the match attributes are studName� local address�

perm address� empName� and address� and the only export attribute is studName�
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interface match
Stud
Emp �

string studName� string empName�

integer��	 studID� integer��	 SSN�

string local
address� string address�

string perm
address� �

Figure �� The class interface of match Stud Emp	 stored in the integration mediator

�
� Rule templates

As detailed in Chapter 	� an integration mediator can be generated from high�level speci�cations of

the view that is to be supported� A key component here is the generation of rules for supporting

incremental update propagation within the mediator� This subsection describes the rule �templates�

that are used to generate these rules� and the next subsection brie�y describes the execution model

that is used when applying the rules�

Reference �ZHK�	� describes rule templates for a full range of view�de�ning operations� including

relational algebra and object�matching operations� We focus here on the rule templates for sup�

porting the incremental maintenance of the match class in response of the creation of objects for

a source class Ai� Analogous rule templates for deletions of source objects are omitted� The two

rule templates presented here would be used to generate the rules dealing with the creation of new

objects in the classes A� and A�� The modi�cation updates indicated in the second rule action is

shorthand for a deletion followed by an insertion� Although the rules generated from the templates

described here refer to individual objects� the execution model apply the rules in a set�at�a�time

fashion�

rule template for an insertion in Ai�

ON new &Ai

IF �insert Ai�x � a�� � � � � an�� in &Ai

THEN �insert match A� A��new � � � � � nil� x�m�� � � � � x�mj� nil� � � ����
where m�� � � � �mj are attributes contributed to match A� A� by Ai�

Description� if a new object x of class Ai is inserted� insert a corresponding new object into class

match A� A�� with nil for non�Ai attributes�

rule template for an insertion in match A� A��

ON insert match A� A��x � � � � � nil� x�m�� � � � � x�mj� nil� � � ��

IF exists a unique y in match A� A� such that match�x� y�

THEN �delete match A� A��x��

modify match A� A��y � existing attr� of y� x�m�� � � � � x�mj� � � ����
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Description� when a new match A� A� object x is inserted� if an object y of class match A� A�

matches x� delete x and modify y by setting the values of attributes m�� � � � �mj to x�m�� � � � � x�mj�

Speci�c rule instances can be created from these templates in a straightforward manner�

�
� The execution model

A key issue about the execution model is how to maximize the concurrency between the incremental

maintenance of the match class and answering queries against it� The incremental maintenance

process typically involves �ring of multiple rules� and the action part of each rule performs updates

to the match class� Traditional approaches would lock the match class during the entire period of an

invocation of the incremental maintenance� We propose that the actions do not apply those updates

to the matching class� rather the updates are held in a delta &match A� A�� Only when all the

applicable rules are �red� the match class is then locked and the delta is applied to the match class�

Whenever the rules refer to the match class� it refers to �match A� A� when &match A� A�� rather

then simply match A� A��

The execution model has the following steps�

��� Initialization� Let & correspond to the smash of all incremental updates held in the queue that

receives relevant net changes reported from the source database� & will hold two subdeltas�

&A� and &A��

��� Firing the applicable rules� And the proposed updates to match A� A� are held in &Temp�

Set &match A� A� # &match A� A� smash &Temp� Repeat the above steps until &Temp is

empty� i�e�� a �xpoint is reached�

��� Apply &match A� A�� and delete all entries in the queue that contributed to &�

In the general setting �ZHK�	�� rules for supporting incremental update propagation in an integration

mediator are organized by a directed acyclic graph �DAG�� called a View Decomposition Plan� The

execution model �res the rules in a bottom�up fashion according to this DAG� To provide maximum

concurrency� the e�ect of all rules can be recorded in deltas until all rules have been �red� Then the

actual data can be locked while the deltas are applied�

� Conclusions

This chapter describes the current status of the Heraclitus project� A long�range goal is to develop

and implement language constructs and techniques for the �exible speci�cation and implementa�

tion of a wide variety of execution models for active databases� The current focus has been on the
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development of the language Heraclitus�Alg�C�� that extends C with the relational algebra� deltas�

and delta operators� and uses Exodus to provide bulk data access� The main research contributions

of the implementation have been �a� understanding feasible physical implementations of the alge�

braic operators� and �b� understanding the implications of embedding the Heraclitus paradigm for

database access into an imperative programming language� As shown here� the delta paradigm and

Heraclitus�Alg�C� are especially well�suited for working with virtual states� as arise in several active

databases in the literature� and for specifying how the results of �red rules should be combined� The

chapter also describes how Heraclitus can be used to provide e�ective support for materialized data

integration�

Current work on the Heraclitus paradigm has involved the development of a prototype object�

oriented version of Heraclitus called the Heraclitus�OO� �or H�O� DBPL �DHDD�
�� and the study

of di�erent �forms� of deltas for the object�oriented context �DHR�	�� In connection with data

integration� a recent result has been the development of a framework for integration mediators that

support a �exible hybrid of the virtual and materialized approaches �HZ�	��
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ABSTRACT

This chapter deals with the problem of e�ciently computing a join between two base relations in the presence

of queries and updates to the base relations� We present a performance analysis of three methods join index�

materialized view� and hybrid�hash join� The �rst two methods are examples of a strategy based on data

caching� they represent two ends of a spectrum of possibilities depending on the attributes projected in

the materialization� The third method is an example of a conventional strategy for computing a join from

base relations� The results of this study show that the method of choice depends on the environment�

in particular� the update activity on base relations� the join selectivity� and the amount of main memory

available� A byproduct of this study is a strategy for incrementally maintaining a join index in the presence

of updates to the underlying base relations�

� Introduction

Improving query�processing performance in relational database management systems continues to

be a challenging area of research� New application areas of relational systems such as engineering

design require the storage of more complex objects than the ones required by conventional business

applications �HFLP���LKM��
�� In addition� designers of object�oriented database systems are

choosing to build their systems on top of relational ones �FBC���KH��� E�cient query processing

in such systems becomes a more di�cult problem because queries involve complex objects which

may themselves be composed of complex objects and so on�

Active database systems �MD��� which allow users to specify actions to be taken automatically when

certain conditions arise are systems that require very e�cient query processing� The completion

of many of the actions speci�ed in these systems may be time�constrained in the order of a few

milliseconds� In such situations� the system cannot a�ord to spend a lot of time performing secondary

storage accesses� hence caching precomputed queries may be a good strategy�


�
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Several caching mechanisms have recently been suggested to support e�cient query processing in

extensible relational database systems� Materialized views �AL���BLT�	�LHM��	�SI��� have been

suggested by Stonebraker et al� �SAH�
� and by Hanson �Han��� as an e�cient alternative for the

support of procedures in Postgres �SR�	�� They have also been suggested by several researchers as an

alternative approach to structuring the database at the internal level in a relational system �BCL���

LY�
�Mar���TB���YL��� Other forms of caching include links �Hae��SB
�� view indices �Rou����

and join indices �Val��� Valduriez �Val�� has suggested a join index as a data structure to support

e�cient retrieval of complex objects in object�oriented systems built on top of relational systems�

As a result of these developments� customizers of relational database management systems must

decide among several performance improving mechanisms� For example� if the customizer chooses

to use auxiliary relations to improve query e�ciency� should full tuples be stored �i�e�� materialized

views� or only the tuple identi�ers from the joining relations �i�e�� join indices�� On the other hand�

the customizer may decide to incorporate more e�cient algorithms to compute joins �BE�Bra���

DKO���� and rely exclusively on complete re�evaluation of queries�

This chapter represents a step in establishing criteria for selecting among the various approaches

mentioned above� Speci�cally� we concentrate on the performance analysis of two caching strategies�

a materialized view de�ned as an equi�join operation between two relations and the corresponding

join index� An alternative to caching is the complete computation of a join from the base relations�

We have chosen the hybrid�hash join algorithm as a representative of this approach because it outper�

forms other methods of its type and allows us to compare our results with those of Valduriez �Val���

The remainder of this chapter analyzes these three approaches and compares their costs� Section

� contains a brief description of the methods while Section � describes the performance analysis�

Section � presents results and Section 
 contains our conclusions�

� Methods

In this section we illustrate how each method works via an example� Consider the two relations

shown below� The Student relation contains tuples describing student volunteers� Each tuple

contains a student�s name� major and native country� each tuple also has a unique identi�er known

as a surrogate� The Project relation is used to store data pertaining to the on�going summer

projects of a university�s archeology department� It has attributes for the project title� the project

leader and the project location as well as a surrogate�

If the archeology department wished to place student volunteers on projects located in their native

country� the following query would be necessary�

SELECT Title� Leader� City� Country� Name� Major

FROM Project� Student

WHERE Country � NativeCountry
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Table � Student relation

Ssur Name Major NativeCountry

��� S� Bando Music USA

��� G� Jetson Art Great Britain

��� C� Faleri Math Italy

��� L� LaPaz Art Mexico

��� J� Jones English USA

��
 P� Valens CSci Mexico

Table � Project relation

Psur Title Leader City Country

��� Ruins N� Smith Coba Mexico

��� Facade E� Ruggeri Venice Italy

��� Mural A� Montez Tulum Mexico

��� Excavate M� Cox Lima Peru

We can now examine the auxiliary relations produced by applying the proposed speed�up methods

to the above query�
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�
� Materialized View

The approach used by the materialized view method is to fully evaluate the join once and store the

result for future use� Applying this method would create the relation shown in Table � as a result

of the initial join�

Table � Materialized view for query

Title Leader City Country Name Major

Ruins N� Smith Coba Mexico L� LaPaz Art

Ruins N� Smith Coba Mexico P� Valens CSci

Facade E� Ruggeri Venice Italy C� Faleri Math

Mural A� Montez Tulum Mexico L� LaPaz Art

Mural A� Montez Tulum Mexico P� Valens CSci

Subsequent evaluations of the example query would be very quick as they would merely consist

of reading the materialized view from the disk� However� updating any attribute of any tuple of

Student or Project would necessitate examining the materialized view to determine if it should

also be updated and� when necessary� performing the update�

�
� Join Index

The join index method tries to store enough information to aid e�cient join formation while min�

imizing the size of the auxiliary relation and the e�ects of subsequent updates� For each tuple in

the join� only the surrogates of its component tuples are stored� Thus� when the join is needed� the

appropriate component tuples can be e�ciently fetched via a clustered or inverted index� Further�

more� only updates that change the join attributes �in the example� NativeCountry and Country�

need to be checked against and possibly posted to the join index relation� The sample query join

index is shown in Table ��

Table � Join index relation for the sample query

Psur Ssur

��� ���

��� ��


��� ���

��� ���

��� ��
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�
� Hybrid Hash�Join

The hybrid�hash join algorithm fully utilizes the available main memory to do an e�cient yet com�

plete re�evaluation of the join each time the corresponding query occurs� The e�ciency is gained

by applying the divide�and�conquer principle to the problem of computing a join� The potentially

large component relations are hashed on the join attribute into several smaller sub�les �also called

buckets� each of which will �t into memory� after this stage� each sub�le contains tuples from the

base relations that may potentially join� The set of tuples within each sub�le are then joined in the

appropriate order to produce the �nal join� This method further takes advantage of the available

main memory space by performing the �rst sub�join while building the sub�les for subsequent ma�

nipulation� This algorithm has the advantages of not requiring any permanent auxiliary relations

and being une�ected by base�relation updates�

� Performance Analysis

In this section we analyze the performance of three approaches for computing the join of two relations�

The following scenarios will be analyzed� �a� materialized view with deferred updates to the view� �b�

join index with deferred updates to the join index� and �c� complete re�evaluation using the hybrid�

hash join algorithm� By �deferred updates� we mean that in case the joining base relations are

updated many times between subsequent queries� updating a materialized view or a join index will

be deferred until the time they are queried� Table 
 summarizes the assumptions made with respect

to the storage organization of base relations� join index� and materialized view� These organizations

follow Valduriez�s assumptions �Val���

Table � Assumptions on the organization of base relations�

Base relations R� S clustered B��tree on surrogate

Base relation S nonclustered index on join attribute

Join index JI clustered B��tree on surrogate r

nonclustered B��tree on surrogate s

Materialized view V Linear hash �le on join attribute

�
� Analysis parameters

Table 	 lists the parameters we use to analyze the di�erent scenarios� Similar notation has been

used by DeWitt et al� �DKO����� Hanson �Han��� and Valduriez �Val���
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Table � List of parameters�

Database dependent parameters

jRj� jSj� jJIj� jV j Number of pages in relations R� S� join

index� and materialized view� respectively

jjRjj� jjSjj� jjJIjj� jjV jj Number of tuples in relations R� S� join

index� and materialized view� respectively

JS Join selectivity� �jjR � Sjj���jjRjj � jjSjj�

SR Semijoin selectivity� �jjR  �� Sjj��jjRjj

SS Semijoin selectivity� �jjS  �� Rjj��jjSjj

TR� TS � TJI � TV Size �in bytes� of a tuple of R� S� JI�

and V � respectively

nR� nS� nJI � nV � niR Number of tuples per page in relations R�

S� JI� V � and in the insertion �deletion�

�le� respectively

N�M �N�J Number of passes in phase � of materialized

view and join index algorithms� respectively

N�M �N�J Number of passes in phase � of materialized

view and join index algorithms� respectively

PrA Probability that an update operation

modi�es the join attribute

System dependent parameters

jM j Number of usable pages of main memory

F Space�overhead factor for hashing

P Page size in bytes

PO Average page occupancy factor B��tree

FO Average fan out of an index node in a B��tree

ssur Surrogate size in bytes

sptr Pointer size in bytes

System performance dependent parameters

IO Time to perform a random IO operation

comp Time to compare two keys in memory

hash Time to hash a key

move Time to move a tuple �of any size� in memory

�
� Analysis formulas

Although the formulas used throughout the analysis are similar to or compatible extensions of those

used by Valduriez �Val��� we give a very brief explanation of them� Initial experiments showed that

both quicksort and heap merge possess favorable time�space characteristics for sorting and merging�

respectively� Costs for these algorithms are based on average case analyses by Knuth �Knu��� The

CPU time to quicksort n tuples is de�ned by

CPUst�n� # � � �n% �� � ln��n% ������ � comp

% ��� � �n% �� � ln��n% ������ �move
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if the sort is on a key that is not hashed� or

CPUst�n� # � � �n% �� � ln��n % ������ � �comp % � � hash�
% ��� � �n% �� � ln��n% ������ �move

if the sort is on a key that must be hashed� The number of overhead pages needed to quicksort n

memory�resident items is

SPACEst�n� # � � sptr � lg�n��P�

Merging n items of size s in a heap of size z requires time and space as shown below� �The n items

are assumed to be in a main memory bu�er before they are moved to the heap which contains entire

items as well as pointers into corresponding bu�ers��

CPUmrg�n� z� # ��� � n� �� � lg�z� � ����� � n� � comp
% �n � lg�z� % ���� � n% bn��c � �� �move

if the keys are not hashed� or

CPUmrg�n� z� # ��� � n� �� � lg�z� � ����� � n�

� �comp % � � hash�
% �n � lg�z� % ���� � n% bn��c � �� �move

if the merge keys are hashed� The space required is given by

SPACEmrg�z� s� # z � �s % sptr��P�

The number of page accesses needed to get k records randomly distributed in a �le of n records

stored in m pages given that a page is accessed at most once is given by Yao�s formula �Yao�

Y ao�k�m� n� # m �m �
kY
i��

n� �n�m� � i % �

n� i% �
�

Based on this formula� we can calculate the IO time for accessing k tuples in a relation having m

pages and n tuples via a clustered �IOci� or inverted index �IOii� using the following equations�

IOci # �Y ao�k�m� n� % Y ao�Y ao�k�m� n��m�FO�m�� � IO

IOii # �Y ao�k�m� n� % Y ao�k� n�FO� n�

% Y ao�Y ao�k� n�FO� n�� n��FO � FO�� n�FO��� IO

These formulas assume B��tree indices with two and three levels of index pages when used as

clustered and inverted indices� respectively� The root node is assumed to reside in main memory�
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�
� Cost of materialized view with deferred updates

In this subsection we describe the cost of computing a join operation using a materialized view

de�ned as V # R � S� We assume relations R and S are joined on their common attribute A�

Let iR� dR� iS � and dS denote the sets of tuples inserted into or deleted from relations R and S�

respectively� Let R� # R � dR and S� # S � dS � If a transaction updates the base relations R and

S� the updated state of the view V � can be computed by

V � # V � �iR � S�� � �R� � iS� � �ir � iS �

� ��dR � S�� � �R� � dS� � �dR � dS���

Our analysis assumes that only relation R is updated� thus

V � # �V � �iR � S�� � �dR � S��

Furthermore� relation R is changed by update operations only� which get translated into a delete

followed by an insert� thus jjiRjj # jjdRjj� We defer updating the materialized view until the time

the join computation is required� Computing the join using the materialized view involves� ���

maintaining the changes to R� ��� computing the changes to V from iR and dR� ��� updating V � and

��� reading the new view V �� Because steps ��� and ��� require reading the view� we perform step

��� on the �y at the time the view is read in step ���� thus saving the cost of reading V once� The

sets iR and dR are stored on disk� Since V is stored as a linear hash �le on the join attribute A �see

Table 
� and since we want to perform the updates on the �y� we need to have the changes to the

view ordered on hash�A�� The next subsections describe the cost of computing each of these steps�

��� Maintaining the sets iR and dR� In order to compute changes to the view we need to charge

the overhead of moving the sets iR and dR to an output bu�er and writing them to disk when

relation R is updated�

C��� # �jjiRjj% jjdRjj� �move % �jiRj% jdRj� � IO�

Reading the sets iR and dR from disk to update the view costs

C��� # �jiRj% jdRj� � IO�

All algorithms discussed in this chapter try to make e�cient use of the main memory available�

We assume that updates to R are logged in main memory as long as possible� Roughly half of

the available memory is devoted to deletions while the other half is used to store insertions� The

space used is not exactly half because we must also provide overhead space to sort the deletions or

insertions by hash�A� before writing them out to disk� The layout of memory for this part of the

algorithm is shown in Figure ���� We will say that Z pages are available for insertions and Z pages

are available for deletions where

Z # max
z�fIntegerg

�� � z % SPACEst�z � niR�� � jM j �����
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sor t  &
merge
space

variable
buf fer
space

iR dR

enough space to sort iR and dR

Figure �� Memory con�guration for sorting insertions and deletions�

Thus� there will be f # bjiRj�Zc full internal sorts and p # d�jiRj � f � Z��Ze partial internal sorts
of each of the iR and dR sets� The total number of runs of this part of the algorithm is N�M # f %p

and the total internal sorting cost is

C��� # � � f �CPUst�Z � niR �
% � � p �CPUst�jjirjj � f � Z � niR��

To read the sets iR and dR sorted by hash�A� we simply need to merge N�M sub�les for each of

the sets iR and dR� Merging is done using a heap data structure of size N�M � The cost is

C��� # CPUmrg�jjiRjj� N�M� % CPUmrg�jjdRjj� N�M��

At this point we have a cost of C� # C��� % C��� %C��� %C����

��� Compute the changes to V � We only need to compute iR � S as the set dR ��� V is deleted

from V in step ���� this is accomplished by merely not outputting tuples in V whose R component

matches a dR tuple� As S has an inverted index on the join attribute A� we use main memory to

schedule the accesses to S by ordering the inverted index pointers� We collect jW j pages of iR as

they come out of the merge in the previous step� Call these pages relation WR� Hence� computing

iR � S requires N�M # jiRj�jWRj passes of the following steps�

��� sort WR by attribute A�

��� compute WR � S assuming S has an inverted index on A�

��� sort WR � S by hash�A�� Relation iR � S is produced in sorted order by hash�A� as the union

of WR � S of each pass� So� as step ��� produces tuples of iR � S� step ��� consumes them�

avoiding an intermediate read�write of iR � S�

Since ��N�M pages are used to read the di�erent batches of iR and dR and we need input bu�ers for

S and V and an output bu�er for the updated V � we have jM j���N�M�� pages of available memory
left for this step� WR occupies jWRj pages� WR � S occupies jWRj�nR�jjSjj�JS��TR%TS��P pages�



��� Chapter ��
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space to sort WR and WR join S

V V' iR . . . iR

S dR . . . dR

Figure �� Memory layout for phase � of materialized view method�

In addition� the necessary merging and sorting will occupy some space� The memory con�guration

for step ��� is illustrated in Figure ��� and yields the following computation for jWRj�

jWRj # maxw�fIntegerg�w�jiRj�w %
w
niR
jjSjj
JS
�TR�TS	

P

% � � SPACEmrg�N�M � TR�

% max�SPACEst�w � niR��

SPACEst�w � niR � jjSjj � JS���
� �jM j � � �N�M � ���

Thus the costs of the steps described above are�

C��� # CPUst�jjWRjj��
C��� # IOii�k� jSj� jjSjj�% Y ao�k� jSj� jjSjj� � nS � comp

% jjWRjj � jjSjj � JS �move�

C��� # CPUst�jjWRjj � jjSjj � JS�

where k # SR � jjWRjj� C� # �C��� %C��� % C���� �N�M �

��� Update the view on the �y� This is done while reading V � Reading the whole view costs

C��� # F � jV j � IO�

When the updated pages of V are written� some of the �jjiRjj% jjdRjj��SR groups of adjacent tuples

to be inserted or deleted may extend over a page boundary and cause two writes rather than one�

While this is a possibility� we assume that it does not occur� Under this assumption� writing the

changed pages including inserts and deletes costs

C��� # F � Y ao��jjiRjj% jjdRjj� � SR�F � jV j� jjV jj� � IO�
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The cost of merging the tuples is

C��� # ��jjiRjj% jjdRjj� � jjSjj � JS % jjV jj� � comp
% F � Y ao��jjiRjj% jjdRjj� � SR�F � jV j� jjV jj�
� nV �move�

Thus� the total cost of this step is C� # C���%C���%C���� Finally� the total cost of this scenario is

C # C� %C� %C��

�
� Cost of join index with deferred updates

This subsection analyzes the cost of displaying a join where that join is partially materialized via a

join index and where updates have occurred since the join index was formed� The algorithm used is

based on that of Valduriez �Val�� but has been extended to include incremental� on�the��y updates

of both the join and the join indices� Valduriez�s algorithm exploits the available main memory to

process as much as possible of JI and the corresponding R ��� JI at a single time� if all of JI

and R ��� JI do not �t into the available memory� the processing is accomplished in several passes�

Essentially� we extend the algorithm so that the available memory holds as much as possible of JI

and the corresponding R ��� JI� iR and iR � S�

Speci�cally� on�the��y update of join indices involves two phases� The �rst phase is comprised of

one or more passes where the insertions and deletions are saved in the available memory until space

is exhausted� then each set is sorted on r� its surrogate for R� and written out to disk� The second

phase also involves one or more passes� In each pass� �as much as possible� of JI is read into

memory� A heap organization is used to merge the possibly several �les of deleted tuples to produce

just the deletions which correspond to the portion of JI in memory� Any join index entries in JI

that match deleted tuples are �marked� so that they will not be processed further� Next a heap

is used to merge the possibly several �les of insertions to store in memory the pages of iR which

correspond to the memory�resident portion of the JI� These pages of iR are subsequently sorted

on the join attribute A and pages of S are accessed one page at a time to form iR � S which is in

turn sorted on s� the surrogate for S� Then the necessary pages of R are read one page at a time to

form R ��� JI for the pages of JI which are memory resident� Also at this time� a pointer is stored

with the JI so that the corresponding tuple of R may be accessed quickly� Finally� JI is sorted on

s and S is accessed one page at a time� As tuples of S are retrieved� they can be joined with R and

merged with iR � S to give the join� Also� to keep the join index current� changed pages need to be

moved to an output area and rewritten�

The assumptions made in the following analysis are the same as those of the previous section� On�

the��y�update of join indices can be partitioned into four categories� ��� maintaining the changes to

R� ��� reading and updating the JI and ��� forming the join using JI� dR and iR as well as R and

S�
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��� Maintaining the sets iR and dR� The method which maintains these sets is similar to the

one used for materialized views� However� there are two important di�erences� As a join index is

a �partially materialized view�� it is only e�ected by updates to the join attribute� Thus� if jjiRjj

tuples are inserted by updates� only PrA � jjiRjj need to be saved for future update of the JI�

Secondly� since iR and dR are ordered by r� no hashing is necessary� Based on these observations

and the fact that the memory layout is the same as that in Figure ���� we need only reformulate the

cost equations of the corresponding part of the materialized view analysis� The cost of storing the

pertinent insertions and deletions and then writing them to disk is

C��� # PrA � �jjiRjj% jjdRjj� �move

% PrA � �jiRj% jdRj� � IO�

Reading the pertinent insertions and deletions from disk to update the join and the JI costs

C��� # PrA � �jiRj% jdRj� � IO�

There will be f # bPrA � jiRj�Zc full runs and p # d�PrA � jiRj � f � Z��Ze partial runs of sorting
for insertions and also for the deletions� This gives a total number of runs of N�J # f % p and a

total internal sort cost of

C��� # � � f �CPUst�Z � niR�
% � � p �CPUst�PrA � jjiRjj � f � Z � niR��

As the N�J sub�les for deletions and the N�J sub�les for insertions are read into memory� we

provide two heaps of size N�J for the merging of these sub�le sets� The cost of merging is

C��� # CPUmrg�PrA � jjiRjj� N�J�

% CPUmrg�PrA � jjdRjj� N�J�

Thus� the total cost of maintaining the pertinent insertions and deletions is C� # C���%C���%C���%

C����

��� Reading and updating the JI� Just like merging the sorted deletions and insertions� reading

and updating the join index �le is actually carried out during a series of one or more passes� However�

as the cost of these operations is independent of the number of passes� we show them here in a

separate section�

Reading the join index �le costs

C��� # jJIj � IO�

Using the pertinent deletions to �mark� the entries in JI which correspond to deleted items costs

C��� # �PrA � jjdRjj% jjJIjj� � comp�

The step where the join indices for the inserted tuples are merged with the already �marked� join

index is actually done as part of forming the join itself� The cost of merging and moving the newly
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inserted tuples to the joined result output area is

C��� # �jjiRjj � PrA � jjSjj � JS % jjJ jj � jjdRjj � PrA � jjSjj
� JS� � comp % jjiRjj � PrA � jjSjj � JS �move�

The process of forming the join will also identify pages of JI which need to be updated by being

moved to the join index output bu�er and written� Again� we make the assumption that no iR or

dR group will overlap page boundaries� The cost is

C��� # Y ao��jjiRjj% jjdRjj� � PrA� jJIj� jjJIjj�

� �IO % nJI �move��

Thus the cost apportioned to reading and updating the JI may be summarized as C� # C��� %

C��� % C��� % C����

��� Forming the join� The join is actually formed in one or more passes� Hence� many of the

costs involved are determined by the number of passes required which is in turn determined by how

many pages of JI can be read into memory during a given pass� Let jJIkj denote this quantity�

The available memory pages� M � must contain one page to input S� one page to input R� one page

to store a portion of S ��� JIk� one page to store the join result� one page to form the updated

JI� � � N�J pages to read in the insertions and deletions� space to merge both the insertions and

deletions� as many pages as possible to accommodate the JI and its pointers to the corresponding

R tuple� enough pages to store R ��� JIk� enough pages to store the insertions pertaining to JIk�

enough pages to store memory�resident iR � S� and enough space to sort the largest of JIk� memory�

resident iR and memory�resident iR � S� This memory requirement is illustrated in Figure ��� and

yields the following computation�

f ixed buf fer
space,1
page each

sort  &
merge
space

variable
buf fer
space

JIk R semi jo in  J Ik

iRk j o i n  S

space to merge N1J runs each of
iR and dR & space to sort JIk, R
semijoin JIk, iRk and iRk join S

SS JIk J I ' iR iR. . .
Rresu l t dR dR. . .

iRk

Figure �� Memory con�guration for phase � of join index algorithm�
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jJIkj # maxk�fIntegerg�k�jJIj���
 � k %
k
jjRjj
SR
TR

jJIj
P

% k
jiRj
PrA
jJIj

%
k
jiRj
PrA
niR
jjSjj
JS
�TS�TR	

jJIj
P

% � � SPACEmrg�N�J � TR�

% max�SPACEst�k � nJI��

SPACEst�k � jIRj � niR�jJIj��

SPACEst�k � jiRj � niR � jjSjj � JS�jJIj���
�M � � � �N�J �� 
�

The number of passes is determined by taking N�J # jJIj�jJIkj� Likewise� the number of pages of

R which are memory�resident during any pass is jRkj # jRj � SR�N�J and the number of pages of
memory�resident iR is jiRk j # jiRj � PrA�N�J �

Once the jJIkj is read into memory and �marked� by the accumulated deletions and the corre�
sponding pages of iR are read into memory� the latter pages are sorted on the join attribute A� the

corresponding tuples of S are accessed via an indirect index on A to form the join� and this portion

of iR � S is sorted on s� The cost of this step is

C��� # �CPUst�jiRk j � niR�

% IOii�SR � jiRk j � niR � jSj� jjSjj�

% Y ao�SR � jiRK j � niR � jSj� jjSjj� � nS � comp
% jiRk j � niR � jjSjj � JS �move

% CPUst�jiRK j � niR � JS � jjSjj�� �N�J

Forming Rk requires reading R using a clustered index� �nding which tuples match and moving

these to the area reserved for Rk� These operations have an attendant cost of

C��� # �IOci�jjRjj � SR�N�J � jRj�N�J� jjRjj�N�J�
% Y ao�jjRjj � SR�N�J � jRj�N�J� jjRjj�N�J�

� nR � comp� �N�J % jjRjj � SR �move�

Sorting the JIk on s incurs the following cost�

C��� # CPUst�jJIkj � nJI� �N�J �

Accessing S and moving join tuples to the output area requires

C��� # �IOci�jjSjj � SS�N�J � jSj� jjSjj�
% Y ao�jjSjj � SS�N�J � jSj� jjSjj�� �N�J
% jjSjj � SS �move�

The cost for forming the join is thus C� # C��� % C��� % C��� % C��� and the full cost for the join

index scenario is C # C� %C� %C��
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�
� Cost of hash join

As the hybrid�hash join algorithm has been analyzed extensively elsewhere �DKO���� and adding

the complicating factor of updates does not invalidate that analysis� we give only a brief presentation

here� The algorithm consists of B % � steps where

B # max���
jRj � F � jM j

jM j � �
��

On the �rst step R and S are read into memory and hashed into B%� compatible sets� also� the �rst

sets� R� and S�� are joined at this time while the remainder are written out to disk� The remaining

B steps consist of processing the sets R�� � � � � RB and S�� � � � � SB by reading them into memory and

joining them� q of the tuples will be processed as part of the �rst pass and � � q will be processed

during the subsequent passes� q is calculated as jR�j�jRj where jR�j # �jM j�B��F� The entire cost

is
C # �jRj% jSj� � IO % �jjRjj% jjSjj� � hash

% �jjRjj% jjSjj� � ��� q� �move
% �jRj% jSj� � ��� q� � IO

% �jjRjj% jjSjj� � ��� q� � hash % jjSjj �F � comp

% jjRjj �move % �jRj% jSj� � ��� q� � IO�

� Results

This section presents the performance comparisons of the three methods just analyzed� The default

values used for some of the parameters are shown in Table  and are the same as those used in

previous related studies �DKO����Val���

Table � Parameter settings�

jjRjj� jjSjj ������� tuples ssur� sptr � bytes

jM j ���� pages IO �
 msec

TR�TS ��� bytes comp � �sec

PO �� hash � �sec

FO ��� entries move �� �sec

P ���� bytes F ���

Figure ��� illustrates the regions where each method performs best for di�erent update activity

and join selectivities� The update activity in the system is described by the ratio jjiRjj�jjRjj which
represents the percentage of the tuples from the base relation R modi�ed between two consecutive

queries that involve the join� The join selectivity factor JS is proportional to the semijoin selectivities

SS and SR �SS # SR� as JS # ��� � SS�jjRjj� This value has been chosen to produce a resulting

join relation of realistic size� For example� when SR # ����� the resulting join relation has the same
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cardinality as an operand relation� We have chosen a join selectivity whose proportion to the semijoin

is �� times larger than the proportion used by Valduriez �Val�� to best highlight di�erences among

the three methods� Figure ��� shows that materialized views o�er the fastest performance when the

selectivity is neither extremely high nor extremely low and the update activity is at most moderate�

When the selectivity is extremely high� e�g�� the join relation is much larger than the relations used

to form the join� the hash join method has the lowest cost� If the selectivity is extremely low or the

selectivity is moderate but the update activity is large� then the join index algorithm has the fastest

execution time�

The e�ect produced in Figure ��� can be best understood by looking at a slightly more detailed

cost analysis contained in Figure ��
� This diagram breaks down the cost at each selectivity into

the �le costs that are associated with the basic algorithm and the costs for supporting updates and

any non�update�related internal operations� All parameter settings are the same as those used in

Figure ��� with the exception that the update activity has been �xed at 	 percent and the values for

SR do not range beyond ���� For each method� the time associated with the non�updated�related �le

costs of the basic algorithm is represented by the white area under the total cost curve� the dark area

under the curve represents the time associated with update operations and�or non�update�related

internal processing� For the materialized view algorithm the dark area under the curve represents

only update costs as this method has no internal processing associated with the basic algorithm� In

the case of the join index method� the dark area under the curve represents both update costs and

internal costs associated with the basic algorithm� however� the internal costs are small and never

exceed � percent of the total time� The cost curve for the hash join method is constant with the

darkened area representing only internal processing costs associated with the basic algorithm� the

internal costs are approximately � percent of the total cost� Comparison among the three detailed

analyses shows that the materialized view method has a competitive advantage because the �le

time required by its basic algorithm is less � sometimes much less � than the other two approaches�
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Figure �� Cost of each method broken down into non�update�related �le processing and other

costs�

In particular� for low selectivities� reading the relation V takes a fraction of the time to read R

and S� rewrite them and then read them again as required by the hash join method� And reading

V takes much less time than reading JI� randomly accessing portions of R and several runs of

randomly accessing portions of S as required by the join index method� The implication of this

observation is that optimizing the internal processing of the hash join or join index algorithms or

the update processing of the join index algorithm is unlikely to e�ect the comparative advantage

of the materialized view method� The only way that the hash join method can favorably compete

with the materialized view approach is by drastically increasing the size of V � which is exactly what

occurs for extremely high selectivities� The only way that the join index algorithm can beat the time

performance of the materialized view method is when the latter method spends su�ciently more

time in processing updates� which is exactly what occurs when the selectivity is extremely low or

the update activity is high�

We conclude this section with some experimental observations about the e�ects of various parameters

which are held constant in Figure ���� As an example of what happens when these constants take on

di�erent values� consider the implications of varying the size of main memory� Figure ��	 illustrates

the regions where each method is better for di�erent join selectivities and amounts of main memory

available� Clearly� the join index algorithm is able to use additional main memory more e�ciently
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than the other two algorithms in the sense that the join index algorithm reaches the point where

all processing can be accomplished in one iteration� sooner than the other two methods� Thus�

moderately increasing the size of main memory in Figure ��� would enlarge the area where the join

index algorithm performs best� If the memory size were increased by approximately ��K pages� the

area where the hash join method is superior would be increased� Similar e�ects can be observed for

changes in other parameters� These changes do not change the general implications of the results

shown in Figure ��� but they may considerably alter the boundaries of various regions of superiority�

For instance� the size of V is largely dependent on the value used for JS so varying it within the

bounds established by SS and SR have a considerable e�ect on the cost of the materialized view

algorithm� In particular� the size of the area where the materialized view algorithm performs best

varies inversely with the value of JS� The join index method gains a competitive advantage from

only having to process a percentage of the updates� Therefore� it is not surprising that its area of

superiority varies inversely with the probability of an update altering the join attribute� Lastly� we

consider the e�ects upon Figure ��� results when the relation size varies� This can be accomplished

either by changing the tuple sizes� TS or TR� or the number of tuples� jjRjj or jjSjj� Varying the

relation size has an inverse e�ect on whatever method is doing the most �le process at a given

selectivity� The materialized view cost is most e�ected at low selectivities� the join index method is

e�ected at moderate selectivities� and the hash join method is e�ected at high selectivities�

� Conclusion

This study has raised several points regarding the e�ectiveness of the join index� the materialized

view� and the hash join algorithms for computing an equi�join� The method of choice depends

upon the values of several parameters� Our results have shown that among these parameters are

the selectivity� the update activity� the probability that the joining attribute is updated� and the

relation and memory sizes� The observed e�ects of these parameters can be summarized as follows�
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The hash join algorithm performs well when the selectivity is extremely high� Its performance is

adversely e�ected by an increase in relation size� Increasing the size of available main memory

does not help the algorithm�s performance until the memory is made extremely large� Although

its performance is invariant to the update activity and the join attribute update probability�

the hash join gains indirectly because increasing these parameters adversely e�ects the cost of

the other two methods�

The materialized view approach performs well for what might be described as �typical values��

Primarily� these values include selectivities that are neither extremely high nor extremely low

and a low to moderate update activity� This method is only slightly slower than the join index

algorithm for very low selectivities� Increasing the relation size adversely e�ects this algorithm

at low selectivities but increases its relative goodness at moderate selectivities� The algorithm

does not appear to utilize additional main memory as well as the other two approaches� The

materialized view approach is una�ected by increasing the join attribute update probability�

but it gains relatively when this occurs because the join index method becomes more costly�

The join index algorithm performs best when the selectivity is low to moderate� the update

activity is high and the join attribute update probability is low� This method is favorably

e�ected by an increase in memory and adversely e�ected by an increase in the attribute update

probability� Increasing the relation size favors this method at high and low selectivities but

decreases its relative cost e�ectiveness at moderate selectivities� A byproduct of this analysis is

a strategy for incrementally maintaining a join index in the presence of updates to underlying

base relations�

These results are important because complete or partial caching of joins is a relevant strategy for

e�ciently supporting ��� procedures as data types in extensible database systems� ��� situation moni�

toring in active databases� and ��� querying through methods in object�oriented database systems�

Unfortunately� database customizers working in these environments often have only incomplete or

imperfect knowledge of critical parameters� We propose the following heuristics based on our results�

�a� If the join relation is much larger than the two relations which form it� use the hash join algo�

rithm� �b� If the join relation is smaller or not much larger than its base relations and the update

activity is less than or equal to �� percent� cache the join via the materialized view algorithm� and

�c� If the join relation is smaller or not much larger than its base relations but the update activity is

more than �� percent� use the join index algorithm to partially cache the join relation� While these

heuristics do not guarantee the quickest join� the actual times obtained will generally not be too far

from the optimal time�

Although this work has generated some interesting results� there is much to be done� There are

several places where the internal processing could be optimized or further compaction could be

applied� Also� the analysis should be generalized to investigate other operators like select and

project� joins of more than two relations and arbitrary and possibly unequal sets of insertions and

deletions� Eventually� the information gleaned from such an investigation could be incorporated
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in a system which used the designer�s estimates to initially select among algorithms for e�ciently

supporting queries but also maintained usage statistics so that the system could automatically adapt

to the appropriate structures and algorithms after a suitable period�
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