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A Comparison with other duplicate removal methods

Related works applied their methods on different backbones and implementa-
tions. To isolate their impact from the backbone’s base performance we show it
before and after applying the proposed methods as well as the relative changes
of mean AP in percentage in Table 1. We compare our approach with the re-
sults provided in the respective publications. Note that all methods rely on a
two-stage detector as a backbone. GossipNet [2] achieved a 0.8% higher AP
for a standard Faster-RCNN model, corresponding to a 3.4% relative improve-
ment. Relation Network [3] compared the changes for three different two-stage
detectors with Relational Module (RM) in RCNN. We generally observe slight
improvements with the highest relative improvement of 1.6% for FPN. Our ap-
proach achieves a relative improvement of 2.2% and 1.2% for EfficientDet-D0 and
RetinaNet-ResNet50, respectively, which is less attractive compared to Gossip-
Net. However, as shown in the previous section, the reported improvements of
GossipNet can no longer be reproduced with SSD.

Table 1. Comparison of our approach and related works. We show improvements from
using NMS to applying the learning duplicate removal method on MS-COCO test-dev.
We also include the relative mean AP improvement in percentage for comparison.

method e2e model AP ∆AP in %

GossipNet[2] Faster-RCNN 23.5 → 24.3 +3.4%

Relation
Network[3]

✓
Faster-RCNN+RM 35.2 → 35.4 +0.6%

FPN+RM 38.3 → 38.9 +1.6%
DCN+RM 38.8 → 39.0 +0.5%

ours ✓
EfficientDet(SSD) 32.0 → 32.7 +2.2%
RetinaNet(SSD) 34.2 → 34.6 +1.2%
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B Additional Ablation Studies

Table 2. Comparison of the number of
detection candidates K. We also compare
the orignal setting K = 600 with our cho-
sen K = 300 with a best performance for
GossipNet.

Method K AP AP50 AP75

ours

100 32.2 49.2 35.4
200 32.2 49.1 35.2
300 32.7 49.9 35.9
400 32.5 49.6 35.5
500 32.4 49.3 35.4

Gossip-
Net

300 31.6 49.7 33.7
600 31.3 49.6 33.3

Table 3. Ablation study of IoU threshold
T2, classification cost α and localization
cost weight β.

T2 α β AP AP50 AP75

0.50 1.0 1.0 29.0 49.6 30.5
0.60 1.0 1.0 31.0 50.3 33.5
0.70 1.0 1.0 32.7 49.9 35.9
0.80 1.0 1.0 31.9 46.4 35.6

0.50 1.0 0.0 22.7 46.6 19.5
0.60 1.0 0.0 28.4 48.9 30.3
0.70 1.0 0.0 31.7 48.9 34.9
0.80 1.0 0.0 31.9 46.2 35.7

0.70 0.0 1.0 8.1 12.7 8.6

Table 4. Comparison of NMS and SoftNMS
with our approach.

hyper-
param

EfficientDet RetinaNet
AP AP50 AP75 AP AP50 AP75

N
M
S

Nt = 0.4 31.4 50.0 33.1 34.2 52.1 36.6
Nt = 0.5 31.6 50.0 33.3 34.4 52.1 36.8
Nt = 0.6 31.6 49.2 33.7 34.3 51.4 37.1
Nt = 0.7 31.2 47.4 34.2 33.9 49.8 37.4

S
o
ft
N
M
S σ = 0.2 31.7 49.9 33.6 34.4 51.9 37.1

σ = 0.4 31.7 49.2 33.9 34.6 51.8 37.5
σ = 0.6 31.1 47.6 33.5 34.2 50.6 37.2
σ = 0.8 30.3 45.9 32.9 33.5 49.2 36.6

ours – 32.7 49.9 35.9 34.7 50.8 38.7

Table 5. Ablation study of the
IoU threshold T1 of the class-
agnostic NMS for generating tar-
get of the pre-filtering head.

T1 AP AP50 AP75

0.95 32.3 49.5 35.3
0.90 32.7 49.9 35.9
0.80 32.5 49.6 35.6
0.70 32.2 49.1 35.2

Impact of the number of candidates We first vary the number of detection candi-
dates as the input of the message-passing network K and compare their perfor-
mance in Table 2. With K = 300, our approach achieves a highest performance.
Reducing the number K to 200 leads to an AP drop of 0.5% but it doesn’t de-
crease continuously when further reducing K to 100. On the other hand, increas-
ing K causes a slighter performance drop. Similar to our approach, GossipNet
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also achieves a better performance by modeling the relationship between top 300
detection candidates, while the original setting K = 600 performs slightly worse.

Impact of matching parameters Next, we investigate the hyperparameters of the
bipartite matching. The first four rows of Table 3 show the performance with
different matching threshold T2 that distinguishes positive and negative samples.
The overall performance peaks at T2 = 0.7 with an AP of 32.7%. In the next four
rows, only classification cost is considered in matching by setting β to 0 so that
the matching results are similar to the greedy matching that are used in related
works [2], [3]. The model performs best when T2 = 0.8, while the APs at different
T2 are worse than the one with localization cost. Different than Relation Network
[3], we don’t observe a strong correlation between T2 and the IoU threshold for
calculating AP in both settings. The reason might be that we used the refined
boxes for matching while no box refinement are used in other works. The last
row of Table 3 shows that the network fails when omitting the classification cost
(i.e. α = 0) because the matcher ignores the effect of the rescoring in this case.

B.1 Hyperparameters of heuristic algorithms

As the performance of the widely used heuristic duplicate removal algorithms,
e.g. NMS and SoftNMS [1], strongly relies on hyperparameters tuning, we show
a more comprehensive comparison between greedy NMS and SoftNMS to our
approach on val in Table 4 by varying the IoU threshold Nt of greedy NMS
and the normalizing parameter σ of SoftNMS respectively. Both, EfficientDet
and RetinaNet perform best if SoftNMS with σ = 0.4 is used. Increasing σ of
SoftNMS leads to a significant performance drop. As for greedy NMS, an IoU
threshold Nt with 0.5 or 0.6 provides best performance but the highest AP75 is
reached by setting Nt to 0.7. Our method outperforms the classical NMS and
SoftNMS even for the optimal hyperparameters, especially on AP75.

B.2 Supervision NMS in pre-filtering

We show an ablation study of the IoU threshold T1 of the class-agnostic NMS
that is used to supervise the pre-filtering head in Table 5. The overall perfor-
mance can be reached by setting T1 = 0.9. Increasing T1 may lead to an in-
sufficient filtering of highly duplicated boxes, which causes a performance drop
by 0.4% if T1 = 0.95. With a smaller IoU threshold T1, the class-agnostic NMS
filters more duplicates but also some potential true-positives. This can be inter-
preted by the slight performance drop with T1 = 0.8 and T1 = 0.7. After all, we
don’t seek a clean suppression of the most duplicates from the pre-filtering but
a rough filtering that discards obvious duplicates. And we found that T1 = 0.9
provides a good balance due to its best performance.
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C Qualitative Evaluation

In this section, we show a more comprehensive qualitative evaluation of COCO
val set. We use EfficientDet-D0 as the base model to generate detection results
for evaluation.

C.1 Detections from different network stages

Our approach processes SSD raw detections in two stages: it first pre-filters all
detections and then generates final rescored and refined detections. To show
the effectiveness of each component, especially the pre-filtering, we illustrate
the detection results from different intermediate stages. Each row of Figure 1
and 2 shows raw SSD detections, pre-filtered detections and final detections
for one example. As most SSD raw detections are background, we only show
the top 5000 raw detections for every category on the left side. The top 300
pre-filtered detections for every category are shown in the middle. We keep the
top 100 detections among all categories as final detections following the COCO
evaluation criterion. The box opacity indicates the predicted score and we show
different categories in different colors. As shown in Figure 1 and 2, SSD predicts
a large amount of very similar boxes with high scores which are easily recognized
as duplication. The pre-filtering produces a sparser detection set by suppressing
many highly overlapping boxes. The duplicate detections around larger objects
are more likely suppressed by pre-filtering due to an obvious high IoU between
each other. After rescoring by message passing, the network is able to produce
only one high-scoring detection for every object.

C.2 Failure cases without pre-filtering

We show the effectiveness of our learning pre-filtering using two failure cases
of the direct top-K sampling in Figure 3. In addition to showing the top 300
pre-filtered detections, we also show the top 300 SSD detections with highest
scores in the second column that corresponds to the input of the GCN when the
pre-filtering is disabled. In the first example, a football player in deep purple is
highly occluded by the player in blue on the right side. Although the occluded
player is detected by SSD (see the best 5000 detections), he is omitted by the
direct top-K filtering but still kept by our learnable pre-filtering. The same issue
can be observed in the second example even if the tennis player on the left
side is not occluded. Using our learnable pre-filtering, the network re-ranks the
detections, lifts the true-positives with relatively lower scores and thus keeps
potential true-positives as much as possible.

C.3 Comparison with NMS

Figure 4, 5 and 6 show detection results of our approach and classical NMS for
same examples on COCO val set. We keep the top 100 detection boxes among
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all categories of both networks and show the box opacity in proportion to their
scores. In addition, we show ground-truths in opaque boxes with category labels
for comparison. As discussed in the paper, our approach is able to suppress
duplicates that have a lower IoU to the ground truth box or recover some low-
scoring detections. Our approach performs especially well when objects with the
same category appear together. Figure 7 shows a similar comparison on KITTI
validation set that contains more crowded scenarios e.g. parking cars. In the first
example, our approach is able to selects a better box with higher overlapping
for the red car on the bottom right edge. Other examples also show a better
performance of our approach in occlusion.
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top 5000 SSD detections
top 300 pre-filtered

detections
top 100 final detections

Fig. 1. Detection results from different network stages.
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top 5000 SSD detections
top 300 pre-filtered

detections
top 100 final detections

Fig. 2. Detection results from different network stages.

top 5000
SSD detections

top 300
SSD detections

top 300 pre-
filtered detections

final detections
(with pre-filtering)

Fig. 3. Failure cases when our learnable pre-filtering is disabled.
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NMS ours ground truth

Fig. 4. Comparison with NMS and ground truth.
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NMS ours ground truth

Fig. 5. Comparison with NMS and ground truth.
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NMS ours ground truth

Fig. 6. Comparison with NMS and ground truth.

NMS ours ground truth

Fig. 7. Comparison with NMS and ground truth.
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