
Adaptive Binarization for Weakly Supervised Affordance Segmentation

Johann Sawatzky
University of Bonn

sawatzky@iai.uni-bonn.de

Juergen Gall
University of Bonn

gall@iai.uni-bonn.de

Abstract

The concept of affordance is important to understand the
relevance of object parts for a certain functional interac-
tion. Affordance types generalize across object categories
and are not mutually exclusive. This makes the segmenta-
tion of affordance regions of objects in images a difficult
task. In this work, we build on an iterative approach that
learns a convolutional neural network for affordance seg-
mentation from sparse keypoints. During this process, the
predictions of the network need to be binarized. To this
end, we propose an adaptive approach for binarization and
estimate the parameters for initialization by approximated
cross validation. We evaluate our approach on two affor-
dance datasets where our approach outperforms the state-
of-the-art for weakly supervised affordance segmentation.

1. Introduction
Affordances are properties of regions of scenes or ob-

jects which indicate their relevance for a certain functional
interaction. Examples are holdable for the external part of a
mug or drivable for a road. Localizing affordances is there-
fore an important task for autonomous systems that interact
with the environment [17] as well as assistive systems that
support visually impaired people [11]. Segmenting affor-
dance regions, however, is a more difficult task than classi-
cal semantic image segmentation, which focuses on objects
or categories that summarize regions of similar appearance
like sky or grass.

Affordances are not only much more fine-grained than
object categories, they represent a more abstract concept
that generalizes across object categories. This requires that
an affordance segmentation approach recognizes affordance
for a previously unseen object class. For instance, it should
generalize cuttable from the blades of scissors or knives to
the blade of a saw. Furthermore, affordance segmentation
is a multi-label segmentation problem since affordance re-
gions spatially overlap. This is in contrast to classical se-
mantic image segmentation where the categories are mutu-

ally exclusive. This is in particular for weakly supervised
learning, as it is addressed in this work, a big challenge.

Since acquiring pixelwise segmentation masks for train-
ing is very time consuming, methods for weakly supervised
learning have been proposed that learn to segment object
categories either from image labels [25, 16] or keypoint an-
notations [1]. Our work builds on [27] where an approach
for affordance segmentation has been proposed that uses
only keypoint annotations as weak supervision for train-
ing. The approach employs an iterative approach alternating
between updating the parameters of a convolutional neural
network and estimating the unknown segmentation masks
of the training images. During this process, the predictions
of the network need to be binarized. Since thresholding at
the 50% decision boundary, as it is done in a fully super-
vised setting, does not work for weakly supervised learning,
an additional binary segmentation step is used in [27].

In this work, we propose an adaptive approach that de-
termines the threshold for binarization for each training im-
age and affordance class. Our approach not only avoids
the additional segmentation step used in [27] but also in-
creases the affordance segmentation accuracy substantially.
Since the initialization of the affordance segments based on
the keypoints has a high impact on the accuracy, we show
further how the parameters for initialization can be deter-
mined by cross validation using an approximation of the
Jaccard index based on the given keypoints. We evaluate
our approach on the CAD 120 affordance dataset [27] and
the UMD part affordance dataset [22] using two different
network architectures. In all settings, our approach outper-
forms [27]. On the CAD 120 affordance dataset, the mean
accuracy is increased by up to 17 percentage points com-
pared to [27].

2. Related Work
Our work is related to affordance modeling as well as

weakly supervised semantic segmentation methods. An af-
fordance is an attribute of an object part that implies the
possible usage of this object. Assigning affordances to ob-
ject parts is not trivial, while [27] and [22] simply let a hu-
man annotator decide, others use more sophisticated statis-
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tics like mining of word co-occurrences [3] or object at-
tribute graph structures [28].
Modeling affordances can be the final goal or an interme-
diate step. In [2], affordances of an object are defined in
terms of hand poses during interaction. These affordances
are used along with object appearance features for object
classification. [15] apply implicit affordance modeling for
simultaneous hand action and object detection. While [29]
combine object affordances with physical observables and
human pose to obtain a generative model for object tasks,
[19] use object affordance, object appearance and human
poses for action detection.
Since recognizing affordances is crucial for the construc-
tive manipulation of objects by robots, several approaches
that require full supervision have been proposed. While
some use geometric information like orientation of object
surfaces [13], 3d point clouds [14], or normal and curvature
features [22], others rely only on appearance. [9] predict
attributes from appearance and affordances from attributes,
[6] measure similarity between query and training image by
the location of object parts, and [27] train a deep model on
RGB data. RGB-D data is exploited by [21] who propose a
two stage cascade to model graspable regions and [26] who
train a CNN to predict depth information and affordances
from RGB data simultaneously. CNNs were also used in
[23] for a pixelwise affordance segmentation in RGB-D
data and in [20] to predict grasps. [8, 12, 18] exploit hu-
man poses to localize object affordances.

Weakly supervised semantic image segmentation faced
rapid progress in recent time. [25] use an expectation-
maximization (EM) approach with area constraints to train
a CNN. While [1] use keypoint annotations and incorpo-
rate objectness into their loss function, [16] exploit localiza-
tion cues from an image level classifier, area constrains and
CRFs. [10] rely on superpixels and [24] learn a model from
image labels and saliency predictions. In [7], an approach
based on pooling of classwise heat maps along with image
labels was proposed. A weakly supervised affordance seg-
mentation approach based on EM similar to [25] was pro-
posed in [27]. Our approach builds on this work.

3. Weakly Supervised Affordance Segmenta-
tion

Our approach for weakly supervised affordance segmen-
tation extends the approach [27] by adaptive binarization
and approximated cross validation for estimating hyperpa-
rameters. We therefore briefly describe [27] first and then
describe in Section 3.2 the adaptive binarization and in Sec-
tion 3.3 approximated cross validation.

3.1. Method

The approach [27] extends fully convolutional neural
networks like [4] or [5] for the task of affordance segmen-

tation. In contrast to semantic image segmentation, where
only one label per pixel needs to be predicted, affordance
segmentation requires to predict a set of labels per pixel
since an object region might contain multiple affordance
types. The approach predicts P (Y |I; θ) where I denotes
the input image, θ denotes the parameters of the model, i.e.
the weights of the neural network, and Y = {yi,l} with
yi,l ∈ {0, 1} is the pixelwise segmentation. If yi,l = 1 the
affordance type l is predicted for pixel i. Due to the multi-
label problem, the network uses a sigmoid layer instead of
a softmax layer [4, 5]:

P (yi,l = 1|I; θ) = 1

1 + exp (−gi,l (yi,l|I; θ))
, (1)

where gi,l is the value of the previous layer of the neu-
ral network. For segmentation, the predicted probabilities
P (yi,l|I; θ) need to be binarized. In [27], this is achieved
by the standard 50% threshold:

ŷi,l =

{
1 if P (yi,l = 1|I; θ) ≥ 0.5

0 otherwise.
(2)

The model parameters θ are determined during training.
In the strongly supervised setting, training means optimiz-
ing the log-likelihood:

J(θ) = logP (Y |I; θ) =
n∑

i=1

∑
l∈L

logP (yi,l|I; θ). (3)

In the weakly supervised setting, the log-likelihood can not
be calculated since Y is not given during training. In [27], it
was proposed to train the model only from a set of keypoints
Z = {(lk, ik)}, which denote the presence of the affordance
lk at pixel ik, using expectation-maximization (EM). Dur-
ing training, both Y and θ need to be estimated from Z. The
approach starts with an initial estimate Ŷ , which is derived
from the keypoints Z by labeling all pixels within a radius
of σ around a keypoint:

ŷi,l =

{
1 if |{(lk, ik)∈Z : lk=l ∧ |ik − i|≤σ}| > 0

0 otherwise.
(4)

In contrast to [27] that uses fixed values for initialization,
we discuss in Section 3.3 how σ can be estimated by ap-
proximated cross validation.

After Ŷ is estimated, the weights of the network θ are
updated by optimizing J(θ) = logP (Ŷ |I; θ). Given the
new weights θ, the CNN predicts P (yi,l|I; θ) for each train-
ing image and Ŷ is refined by binarization of the CNN pre-
dictions. The 50% threshold used in (2), however, is only
valid for the fully supervised setting. While in [27] an ad-
ditional GrabCut step is used to address this issue, we pro-
pose an adaptive approach that determines the threshold for



binarization for each training image and affordance class.
This not only increases the accuracy, but it also reduces the
training time since an additional GrabCut step is not needed
anymore by our approach. The approach for adaptive bina-
rization is discussed in Section 3.2. Our weakly supervised
approach for affordance segmentation is illustrated in Fig-
ure 1.

To reduce overfitting and perform approximated cross
validation as described in Section 3.3, we split the train-
ing set into three equally sized subsets A, B, and C. During
the M-step, we train the convolutional network on each of
the tuples (A,B), (B,C), and (C,A). During the E-step, each
network predicts P (yi,l|I; θ) for the set that was not used
for training. As in [27], we use two EM iterations to ob-
tain Ŷ for all training images. The final CNN model is then
obtained by optimizing J(θ) = logP (Ŷ |I; θ) on the entire
training set.

3.2. Adaptive Binarization

We first want to explain why the binarization as de-
scribed in Equation 2 is not optimal for the weakly super-
vised case. Let us first consider an optimal classifier that
separates two classes perfectly in the training data. In this
case, P (yi,l = 1|I; θ) ≥ 0.5 if a pixel is annotated by
yi,l = 1 and P (yi,l = 1|I; θ) < 0.5 if it is annotated by
yi,l = 0. Hence, using 50% as threshold for binarization
is optimal. For weakly supervised learning, Ŷ is in par-
ticular after the initialization only a poor estimation of the
unknown ground truth segmentation masks Y of the train-
ing data such that ŷi,l 6= yi,l for many pixels. This means
that the optimal threshold is unknown. However, we can
use the keypoints Z to obtain an estimate of the threshold:

ŷi,l =

{
1 if P (yi,l = 1|I; θ) ≥ t
0 otherwise

(5)

where

t = min {0.5, f ({P (yik,l = 1|I; θ)}lk=l)} . (6)

{P (yik,l = 1|I; θ)}lk=l are the predictions of the clas-
sifier for all keypoints in the training image I with la-
bel l and f computes either the mean or median of
{P (yik,l = 1|I; θ)}lk=l. In our default experimental set-
ting, we will have only one keypoint for each affordance
occurring in an image. In general, one can expect that the
threshold is below 0.5 since the ratio |{i:yi,l=0∧ŷi,l=1}|

|{i:yi,l=0}| is

usually lower than |{i:yi,l=1∧ŷi,l=0}|
|{i:yi,l=1}| . As soon as the thresh-

old reaches 0.5, we can replace the adaptive threshold by
0.5. We therefore limit the threshold by 0.5.

3.3. Approximated Cross Validation

In the fully supervised setup, hyperparameters can be
optimized by cross-validation on the training set using the

same measure that is also used for evaluation. Since the
ground truth masks Y , however, are unknown in the weakly
supervised setup, exact cross validation is not possible. We
therefore propose to approximate the Jaccard index, which
measures the intersection over union between the ground-
truth Y and the prediction Ŷ , on the validation set. Since
the Jaccard index is computed per affordance class l and
then averaged over all classes, we discuss only the binary
case with yi ∈ {0, 1}. Let P (yi = 1) = |{i:yi=1}|

|{i}|
be the unknown percentage of pixels with yi = 1 and
P (ŷi = 1) = |{i:ŷi=1}|

|{i}| the known percentage of pixels
that have been classified with ŷi = 1. We can approximate
P (ŷi = 1|yi = 1) by measuring how often a keypoint an-
notated by the affordance class has been correctly classified.
Similarly, P (ŷi = 1|yi = 0) is given by the percentage of
keypoints that have been misclassified. This gives the rela-
tion

P (ŷi = 1) =P (ŷi = 1|yi = 1)P (yi = 1) (7)
+ P (ŷi = 1|yi = 0)(1− P (yi = 1))

and thus

P (yi = 1) =
P (ŷi = 1)− P (ŷi = 1|yi = 0)

P (ŷi = 1|yi = 1)− P (ŷi = 1|yi = 0)
.

(8)

The Jaccard index which is

J =
|{i : yi = 1 ∧ ŷi = 1}|

|{i : yi = 1}|+ |{i : yi = 0 ∧ ŷi = 1}|
(9)

can then be approximated by

Japprox =
P (ŷi = 1|yi = 1)P (yi = 1)

P (yi = 1) + P (ŷi = 1|yi = 0)(1− P (yi = 1))
.

(10)

As mentioned in Section 3.1, we split the training set into
three subsets for approximate cross-validation.

4. Experiments
For evaluation, we use the CAD 120 affordance

dataset [27] and the UMD part affordance dataset [22]. We
use the splits separating the object classes (novel split on
UMD and object split on CAD) and the splits which do not
separate the object classes (category split on UMD and ac-
tor split on CAD). As measure, we use the Jaccard index.
We report the results using the VGG architecture [4] and
the ResNet architecture [5] as underlying convolutional net-
work. First, we conduct ablation experiments to show the
impact of our two key components, adaptive binarization
and approximated cross validation. Second, we compare
our approach with other weakly supervised segmentation



Figure 1: Illustration of our approach for affordance segmentation using keypoints as weak supervision. The CNN is trained
by iteratively updating the segmentation masks for the training images (E-step) and the parameters of the network (M-step).

CAD 120 Background Open Cut Contain Pour Support Hold Mean
non-adaptive (VGG) 0.62 0.09 0.20 0.41 0.35 0.11 0.40 0.31
adaptive (VGG) 0.68 0.10 0.23 0.44 0.36 0.50 0.47 0.40
UMD Grasp Cut Scoop Contain Pound Support Wgrasp mean
non-adaptive (VGG) 0.32 0.12 0.48 0.46 0.08 0.33 0.69 0.36
adaptive (VGG) 0.31 0.18 0.56 0.49 0.08 0.41 0.66 0.38

Table 1: Comparison of adaptive binarization with non-adaptive binarization. The Jaccard index is reported for the object
split of CAD 120 affordance dataset and the novel split of the UMD part affordance dataset.

approaches. If not otherwise specified, we use our approach
based on the VGG architecture with adaptive binarization
and approximate cross validation to determine σ (4). As
in [27], we use one keypoint per affordance class and train-
ing image. In Section 4.3, we also evaluate the impact of
the number of keypoints.

4.1. Adaptive Binarization

First we evaluate the impact of adapting the bina-
rization to each training image and affordance class
in comparison to using a constant threshold for each
affordance class. To this end, instead of using
min {0.5, f ({P (yik,l = 1|I; θ)}lk=l)} as an individual
threshold for each image I , we take the average
of these thresholds over all images in the training
set labeled with the affordance class l. Note that
f ({P (yik,l = 1|I; θ)}lk=l)=P (yik,l = 1|I; θ) in this ex-
periment since we use only one keypoint per affordance l

and image I .
The results for the object split of the CAD 120 affor-

dance dataset and the novel split of the UMD part affor-
dance dataset are shown in Table 1. Compared to the
proposed adaptive binarization approach, the accuracy de-
creases for all affordance classes and the background, which
are regions annotated without any affordance class. In av-
erage, the accuracy decreases by −9%. On UMD, the de-
crease is smaller but still−2%. The effect on CAD is larger
since the size of the affordance regions varies more across
the training images in comparison to UMD.

As discussed in Section 3.2, we limit the adaptive thresh-
old by 0.5, which is the optimal threshold for a fully su-
pervised trained model. Table 2 shows the results when the
threshold is not limited, i.e., the adaptive threshold can even
get close to one. As expected, the accuracy drops for both
datasets by −9% since a threshold above 0.5 would pro-
duce even in the fully supervised case too small affordance



CAD 120 Background Open Cut Contain Pour Support Hold Mean
Max thres. 1.0 (VGG) 0.62 0.08 0.21 0.34 0.33 0.39 0.19 0.31
Max thres. 0.5 (VGG) 0.68 0.10 0.23 0.44 0.36 0.50 0.47 0.40
UMD Grasp Cut Scoop Contain Pound Support Wgrasp mean
Max thres. 1.0 (VGG) 0.32 0.04 0.36 0.42 0.05 0.23 0.64 0.29
Max thres. 0.5 (VGG) 0.31 0.18 0.56 0.49 0.08 0.41 0.66 0.38

Table 2: Impact of limiting the adaptive threshold (5) by 0.5. The Jaccard index is reported for the object split of the CAD
120 affordance dataset and the novel split of the UMD part affordance dataset.

segments.

4.2. Approximated Cross Validation

The initialization depends on the value σ, which de-
termines the initial affordance segments around the key-
points (4). This is shown in the last column of Table 3
where we report the mean Jaccard index for three values
of σ. Note that σ is set proportional to the image width
w. The results show that the accuracy strongly depends on
the initialization. The strongest variation can be observed
for the category split of the UMD part affordance dataset
where the accuracy varies between 0.44 to 0.61. The ap-
proximated Jaccard index computed from the keypoints in
the training set, which is reported in the second column of
Table 3, however, correlates with the Jaccard index on the
test set. This shows that using approximated cross valida-
tion to determine σ works very well in practice. Note that
the values between the Jaccard index and its approximation
differ since the first measure is computed over the test set
and the second over the training set. In all experiments
except of Table 3, we have determined σ by approximated
cross validation.

4.3. Varying Number of Keypoints

Our approach also works with multiple keypoints per af-
fordance class in an image. In this case, we compare two
functions for f ({P (yik,l = 1|I; θ)}lk=l) (5), namely tak-
ing the average or the median of {P (yik,l = 1|I; θ)}lk=l.
The results are reported in Figure 2. For the object split of
the CAD 120 affordance dataset, average and median per-
form similar and the accuracy increases only slightly after
three keypoints. A similar behavior can be observed for the
novel split of the UMD part affordance dataset, but here av-
erage performs better than the median.

4.4. Comparison to the State-of-the-art

We finally compare our approach with other weakly su-
pervised semantic segmentation approaches [16, 1, 25, 27].
The results for both splits on the CAD 120 affordance
dataset are reported in Table 4, while the results for the
UMD part affordance dataset are reported in Table 5. The

methods [16, 25] use only image labels and therefore
weaker supervision. It is therefore expected that methods
that use more supervision in form of keypoints achieve a
higher accuracy. For the methods [1, 27] and our approach,
we use one keypoint for each affordance class in an im-
age. The parameter σ has been determined by approxi-
mated cross validation. We also report the results as in [27]
for the VGG architecture and the ResNet architecture. Our
approach outperforms [27] and the other methods on both
datasets. While our approach achieves with the ResNet ar-
chitecture on all datasets and splits a better mean accuracy
than VGG, this is not the case for [27] where VGG is some-
times better. For the actor split of the CAD 120 affordance
dataset, the mean accuracy is improved by +17% compared
to [27]. This shows the benefit of adaptive binarization for
weakly supervised affordance segmentation. Qualitative re-
sults are shown in Figure 3.

5. Conclusion
In this work, we have proposed an approach for affor-

dance segmentation that requires only weak supervision in
the form of sparse keypoints. Our approach builds on the
method [27], but it does not require an additional graph cut
segmentation step. This has been achieved by an adaptive
approach for binarizing the predictions of a convolutional
neural network during training. By approximating the Jac-
card index based on the keypoints, we are also able to opti-
mize parameters for the initialization. This approach could
also be used to optimize other hyperparameters. We eval-
uated our approach on the CAD 120 affordance and the
UMD part affordance dataset. Our approach outperforms
the state-of-the-art for weakly supervised affordance seg-
mentation. On the CAD 120 affordance dataset, the mean
accuracy is increased by up to 17 percentage points com-
pared to [27].

Acknowledgments. The work has been financially sup-
ported by the DFG projects GA 1927/5-1 (DFG Research
Unit FOR 2535 Anticipating Human Behavior) and GA
1927/2-2 (DFG Research Unit FOR 1505 Mapping on De-
mand).



approx. Jaccard train Jaccard test
σ relative to image width 0.03w 0.06w 0.12w 0.03w 0.06w 0.12w
CAD actor split 0.38 0.40 0.30 0.41 0.42 0.37
CAD object split 0.48 0.50 0.39 0.38 0.40 0.35
UMD category split 0.57 0.58 0.44 0.61 0.59 0.44
UMD novel split 0.66 0.62 0.44 0.38 0.38 0.35

Table 3: Impact of σ (4). The second column contains the approximated Jaccard index (10) computed on the training data
for three values of σ. The approximated Jaccard index is used to determine σ. The third column contains the Jaccard index
computed on the test data for three values of σ.

Figure 2: Affordance segmentation with more than one keypoint per image and affordance. For the function f (5), we
compare average and median. The mean Jaccard index is plotted over the number of keypoints.



CAD 120 Background Open Cut Contain Pour Support Hold Mean
image label supervision - actor split
Area constraints [25] 0.53 0.11 0.02 0.09 0.09 0.07 0.15 0.15
SEC [16] 0.53 0.43 0.00 0.25 0.09 0.02 0.20 0.22
keypoint supervision - actor split
WTP [1] 0.53 0.13 0.00 0.10 0.08 0.11 0.22 0.17
[27] (VGG) 0.61 0.33 0.0 0.35 0.30 0.22 0.43 0.32
Proposed (VGG) 0.71 0.47 0.0 0.36 0.37 0.56 0.49 0.42
[27] (ResNet) 0.60 0.25 0.00 0.35 0.30 0.17 0.42 0.30
Proposed (ResNet) 0.77 0.50 0.00 0.43 0.39 0.64 0.56 0.47

image label supervision - object split
Area constraints [25] 0.59 0.03 0.03 0.01 0.02 0.02 0.28 0.14
SEC [16] 0.54 0.04 0.09 0.13 0.09 0.08 0.13 0.16
keypoint supervision - object split
WTP [1] 0.57 0.01 0.00 0.02 0.09 0.03 0.19 0.13
[27] (VGG) 0.62 0.08 0.08 0.24 0.22 0.20 0.46 0.27
Proposed (VGG) 0.68 0.10 0.23 0.44 0.36 0.50 0.47 0.40
[27] (ResNet) 0.69 0.11 0.09 0.28 0.21 0.36 0.56 0.33
Proposed (ResNet) 0.74 0.15 0.21 0.45 0.37 0.61 0.54 0.44

Table 4: Comparison of our method to the state-of-the-art on the CAD 120 affordance dataset. The Jaccard index is reported.

UMD Grasp Cut Scoop Contain Pound Support Wgrasp mean
image label supervision - category split
Area constraints [25] 0.06 0.04 0.10 0.14 0.22 0.04 0.37 0.14
SEC [16] 0.39 0.16 0.27 0.13 0.35 0.19 0.07 0.22
keypoint supervision - category split
WTP [1] 0.16 0.14 0.20 0.20 0.01 0.07 0.13 0.13
[27] (VGG) 0.46 0.48 0.72 0.78 0.44 0.53 0.65 0.58
Proposed (VGG) 0.55 0.48 0.72 0.76 0.49 0.48 0.67 0.59
[27] (ResNet) 0.42 0.35 0.67 0.70 0.44 0.44 0.77 0.54
Proposed (ResNet) 0.57 0.54 0.71 0.70 0.43 0.54 0.69 0.60

image label supervision - novel split
Area constraints [25] 0.05 0.00 0.04 0.16 0.00 0.01 0.32 0.09
SEC [16] 0.12 0.03 0.06 0.23 0.07 0.12 0.25 0.13
keypoint supervision - novel split
WTP [1] 0.11 0.03 0.18 0.11 0.00 0.02 0.23 0.10
[27] (VGG) 0.27 0.14 0.55 0.58 0.02 0.37 0.67 0.37
Proposed (VGG) 0.31 0.18 0.56 0.49 0.08 0.41 0.66 0.38
[27] (ResNet) 0.25 0.21 0.62 0.50 0.08 0.43 0.67 0.40
Proposed (ResNet) 0.34 0.34 0.58 0.40 0.07 0.42 0.77 0.42

Table 5: Comparison of our method to the state-of-the-art on the UMD part affordance dataset. The Jaccard index is reported.



Figure 3: Qualitative comparison of our approach (second and fifth row) with [27] (first and fourth row). Our approach
localizes even small affordance parts while the GrabCut step in [27] merges the cap with the entire object.

References

[1] A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-
Fei. What’s the Point: Semantic Segmentation with
Point Supervision. ECCV, 2016.

[2] C. Castellini, T. Tommasi, N. Noceti, F. Odone, and
B. Caputo. Using object affordances to improve ob-
ject recognition. Autonomous Mental Development,
3(3):207–215, 2011.

[3] Y.-W. Chao, Z. Wang, R. Mihalcea, and J. Deng. Min-
ing semantic affordances of visual object categories.
In CVPR, pages 4259–4267, 2015.

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Mur-
phy, and A. L. Yuille. Semantic image segmentation
with deep convolutional nets and fully connected crfs.
ICLR, 2015.

[5] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy,



and A. L. Yuille. Deeplab: Semantic image segmen-
tation with deep convolutional nets, atrous convolu-
tion, and fully connected CRFs. arXiv:1506.02106v5,
2016.

[6] C. Desai and D. Ramanan. Predicting functional re-
gions on objects. In CVPR Workshops, pages 968–
975, 2013.

[7] T. Durand, T. Mordan, N. Thome, and M. Cord. Wild-
cat: Weakly supervised learning of deep convnets for
image classification, pointwise localization and seg-
mentation. CVPR, 2017.

[8] H. Grabner, J. Gall, and L. Van Gool. What makes a
chair a chair? In CVPR, pages 1529–1536, 2011.

[9] T. Hermans, J. M. Rehg, and A. Bobick. Affordance
prediction via learned object attributes. In ICRA:
Workshop on Semantic Perception, Mapping, and Ex-
ploration, 2011.

[10] Q. Hou, P. K. Dokania, D. Massiceti, Y. Wei, M.-M.
Cheng, and P. H. S. Torr. Mining pixels: Weakly su-
pervised semantic segmentation using image labels.
arXiv:1612.02101v2, 2016.

[11] R. Jafri, S. Ali, H. Arabnia, and F. Shameem. Com-
puter vision-based object recognition for the visually
impaired in an indoors environment: a survey. The
Visual Computer, pages 1197–1222, 2014.

[12] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated
humans as the hidden context for labeling 3d scenes.
In CVPR, pages 2993–3000, 2013.

[13] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell,
and A. Stentz. Perceiving, learning, and exploiting
object affordances for autonomous pile manipulation.
Autonomous Robots, 37(4):369–382, 2014.

[14] D. I. Kim and G. Sukhatme. Semantic labeling of 3d
point clouds with object affordance for robot manipu-
lation. In ICRA, pages 5578–5584, 2014.

[15] H. Kjellström, J. Romero, and D. Kragić. Visual
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