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Abstract

Estimating the viewpoint of objects in images is an important task for scene
understanding. The viewpoint estimation accuracy, however, depends highly
on the amount of training data and the quality of the annotation. While hu-
mans excel at labelling images with coarse viewpoint annotations like front,
back, left or right, the process becomes tedious and the quality of the an-
notations decreases when finer viewpoint discretisations are required. To
solve this problem, we propose a refinement of coarse viewpoint annotations,
which are provided by humans, with synthetic data automatically generated
from 3D models. To compensate between the difference between synthetic
and real images, we introduce a domain adaptation approach that aligns the
domain of the synthesized images with the domain of the real images. Ex-
periments show that the proposed approach significantly improves viewpoint
estimation on several state-of-the-art datasets.
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1. Introduction

In order to estimate the viewpoint of objects in images precisely, an accu-
rate annotation of the training data is required. Humans, however, perform
poorly for estimating the viewpoint of an object accurately as illustrated in
Figure 1. Instead of annotating real images, synthetic data can be generated
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Figure 1: Faulty annotations of fine viewpoints are introduced in human-annotated train-
ing datasets. While coarse labels like left or right are correct, the viewpoint annotations in
degrees are not precise (a) and sometimes inconsistent (b). Samples and fine annotations
are taken from the Pascal3D+ dataset [7].
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Figure 2: Humans are perfect for annotating coarse viewpoints of objects in real images,
but fail to estimate pose accurately at a fine level. 3D graphic models can be used to syn-
thesize data at very accurate fine angles, but it is time-consuming to model all appearance
variations present in real images. We therefore propose to leverage the abilities of humans
of estimating coarse viewpoints and the pose accuracy of synthetic data.

using 3D models [1, 2, 3, 4, 5, 6]. While synthetic data provides accurate
viewpoints, it either lacks the realism of real images or it is very expensive
to generate. In particular, collecting a large variation of textured 3D shapes
and combining them with coherent background scenes and illumination con-
ditions is time-consuming.

We address this issue by leveraging human annotators and synthetic data,
as depicted in Figure 2, to avoid manual annotation by humans of fine view-
points, which is time-consuming and erroneous, and to avoid the synthesis
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Figure 3: (a) The four views available for real images. (b) Synthetic and real images with
the same annotated viewpoint lie in different domains within the feature space.

of a realistic dataset that captures the variations of real images, which is
time and memory consuming. To this end, we ask humans to annotate only
four coarse views, sketched in Figure 3a, and introduce an approach that
refines the labels using synthetic data. Since synthetic data and real images
belong to different domains as illustrated in Figure 3b, a domain adaptation
approach is used for the refinement. General domain adaptation approaches
like [8, 9], however, are not sufficient for label refinement since they fail to
distinguish viewpoint rotations by 180 degrees. We therefore present a task-
specific approach that takes advantage of the coarse labels of the real training
samples.

A preliminary version of this work appeared in [10]. While the approach
in [10] was limited to cars, we extend the method to other categories and
provide a thorough experimental evaluation. We also evaluate our approach
with state-of-the-art features extracted from convolutional neural networks
(CNN) [11] and study the effect of truncated and occluded object instances.
The evaluation, which is performed on five datasets for viewpoint estimation,
reveals that our approach outperforms state-of-the-art domain adaptation
methods.

2. Related Work

2.1. Viewpoint estimation

Methods for viewpoint estimation are often based on popular object class
detectors [12, 13, 14, 15] and learn a discrete set of pose classifiers. In [16,
17, 18, 19|, annotations from 2D images are enhanced with 3D metadata
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to formulate 3D geometric models. On the contrary, [20] learns a mixture-
of-templates that inherently captures the characteristics of projected views
and [21] refines the hypothesis of 16 viewpoint detectors from 2D images
with additional view specific Naive Bayes classifiers. More recently, CNNs
for object classification [11] have been retrained using 2D pose annotations
in order to provide viewpoint probabilities as output channels coupled with
the object class probability [22, 23]. In the study pursued in [24], simple
frameworks that extract features from 2D bounding boxes with powerful
encoders provided the same or even better viewpoint accuracies than state-
of-the-art methods based on complex 3D models.

In contrast to classification approaches, regression approaches [25, 26]
do not require a discretisation of the viewpoints. In [27], the viewpoint
regression is integrated into a joint discriminative continuous parametrised
model. However, [23] showed how discretised models with a high number of
discrete poses, i.e., from 16 fine viewpoints onwards, started to get better
accuracies compared to regression methods. For further studies, we refer
to [28] for joint object detection with pose estimation through regression
approaches and [29] for an analysis with regard to deep learning approaches.

2.2. Synthetic Data

The use of synthetic images from rendered models and scenes as train-
ing data started to gain attention in the context of pedestrian detection.
While [6] only uses synthetic data generated from a popular game engine,
[5] combines real with synthetic data from highly accurate 3D reconstructed
humans. Both methods, however, do not consider the 3D information and
collect only 2D images with automatically annotated bounding boxes.

Previously, the 3D spatial information of graphics models was already
addressed in several works to estimate the viewpoint of object instances, as
well as its localisation [1, 16, 18, 30, 31, 32]. These algorithms are computa-
tionally expensive, since the object geometry is used to learn the spatial 3D
relations of parts or features. In contrast to these works, we use the rendered
models to synthesize training images with accurate viewpoint annotations.
Instead of rendering 3D data, synthetic data can also be generated by defin-
ing a parametric model for synthesizing geometric shapes from a particular
object class, used in both recognition and reconstruction, as proposed by [19].

Recently, [33, 34] tested the impact of synthetic data in CNNs by training
millions of synthesized images from 3D models. Thus, the main challenge
becomes the generation of extremely large amounts of data with as much
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intra-class variation as possible, e.g., viewpoint and shape, to avoid over-
fitting.

3D models have also been used to annotate datasets [7, 35] by manually
superposing them on top of 2D object instances. While the 3D models sup-
port humans and improve the accuracy of the annotation, the annotation
process with 3D models is very slow and still prone to annotation errors.

2.3. Domain Adaptation

Domain adaptation addresses the problem when the training and test
data are at least partially from different domains. To this end, either a
transformation of the domains is estimated before the training of a classi-
fier [8, 36, 37] or the so-called source domain is used to regularize the learning
of a classifier on the target domain [38, 39]. A popular choice in this context
are support vector machines [9, 40, 41, 42, 43]. The approaches that estimate
the transformations without a classifier like the geodesic flow kernel [8] learn
mappings from the source and target domain into a joint, low-dimensional
space. This can be done in an unsupervised manner where the target domain
is unlabelled, or in a supervised or semi-supervised setting where the data
from the target domain contains a few labelled samples. While these meth-
ods assume that the source and target domains are known, [44] minimise
the distance between latent domains, rearranging clusters of the annotated
classes based on feature similarities. In contrast to these works, we use do-
main adaptation in a weakly supervised setting where only coarse labels are
available for the training images of the target domain.

During the last years, domain adaptation methods focused on the opti-
mization process for the domain alignment, where additional constraints for
the optimization have been proposed [9, 41, 42, 43, 45]. For instance, orthogo-
nality constraints have been suggested for the transformation matrix [37, 39],
as well as relaxation techniques to make the optimization solvable [8, 43].
Other approaches, on the contrary, excel by its speed and simplicity. [46]
computes a subspace alignment between domains in closed form and [47]
aligns the covariance matrix of the source data with whitening and recolour-
ing, which is applied to synthetic data in [2].

Deep convolutional networks also had a dramatic impact in the field of
domain adaptation. DeCAF [48] demonstrated how features extracted from
CNNs outperform by a large margin classification accuracies of commonly
used features after adaptation, e.g., Bag of Words or HOG features. While
the standard adaptation techniques estimate the alignment after extracting
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Figure 4: Proposed pipeline for viewpoint refinement and estimation of real data.

the features, several papers opted for training deep networks by combin-
ing source and target datasets with specific architectures and loss functions
that jointly minimised the classification regressor and the distance between
domains [49, 50, 51, 52].

3. Adapted synthetic data for viewpoint refinement and estimation

In this section we describe the automatic process of refining coarse an-
notations of real data into fine viewpoints using adapted synthetic data. As
depicted in Figure 4, we initially request humans to coarsely annotate view-
points of given 2D bounding boxes. Additionally, we also generate synthetic
data with fine viewpoint annotations. This process is discussed in Section 3.1.
Then, we adapt the synthetic data towards the real data, explained in Sec-
tion 3.2, and assign fine viewpoints to the real data, further detailed in
Section 3.3. We evaluate our approach for viewpoint refinement and view-
point estimation. For viewpoint refinement, the coarse viewpoint is given
and the goal is to estimate the fine viewpoint. For viewpoint estimation, the
refined real and adapted synthetic data is used to train an estimator for fine-
grained viewpoint estimation. The estimator is then evaluated on unseen
test instances.

3.1. Generation of synthetic data from 3D models

In order to produce thousands of synthetic images, we first download
free available 3D graphics models from the Internet. We then render the
models, centred in the screen coordinate system, with 8 different light sources
evenly spread around the object. Based on a Phong reflection model [53],
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we emphasise the usage of diffuse lighting to highlight shape variations and
deformations, reducing the impact of ambient illuminations and specular
reflections. The resulting rendered virtual classes used in the experiments
are shown in Figure ba. The scene is completed with a real background
image taken from [54] placed behind the rendered object.

Finally, the generation process reduces to a parametrised camera dis-
placement with azimuth @, elevation ¢ and object distance r. Although this
configuration allows to move along the whole view-sphere, we simplify the fine
viewpoint annotations to the Y-axis rotation, being the azimuth angle the
most dominant factor to recognise viewpoint differences in feature space, as
well as the most relevant plane in viewpoint estimation tasks [27]. Figure 5b
shows some examples of synthetic images. While the process of synthesizing
images does not require much effort, it does not generate realistic images
since the unknown 3D geometry and light conditions of the background are
not taken into account.

3.2. Domain Adaptation of synthetic data

Since synthetic data and real images belong to different domains, as il-
lustrated in Figure 3b, we adapt the domain of the synthetic data to the real
data. Our approach clusters the source (synthetic) and target (real) domains,
and establishes correspondences between the clusters. The correspondences
are then used to learn a mapping from the source domain to the target do-
main. The viewpoint annotations of the real images are then refined with
viewpoint classifiers trained on the transformed synthetic data.

The learning of the mapping from the source to the target domain is
discussed in Section 3.2.1 and the establishment of correspondences between
clusters of both domains is discussed in Section 3.2.2.

3.2.1. Alignment from synthetic to real domain

To map the source data to the target domain, we have to learn a mapping
from S € R to T € RP, where D denotes the dimensionality of the features.
For label refinement, the dimensionality of the source and the target domain
is the same. We consider a linear transformation, which is represented by a
matrix W € RPXP je.,  t =Ws.

Let S = {s1,...,sm} and T' = {t1,...,ty} denote the training samples of
the source and target domains, respectively. M and N are the total amount
of samples of each domain and we can assume that M > N, since we can
always generate more synthetic data than annotated real images. We first



(b) Synthesised images with different azimuth, elevation and distance configurations.

Figure 5: 3D graphics models for different object classes are rendered in front of real
background images from [54] in order to automatically generate thousands of synthetic
images with different accurate viewpoint annotations.
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Figure 6: Each cluster in the target domain is assigned to a source cluster that belongs to
the same coarse viewpoint. In this example, for an 8-view refinement: V; = 2 and K; = 4.

assume that for a subset of the target elements ¢, we have already established
a corresponding element in the source domain. The establishment of the
correspondences C' = {cy, ..., cx } with (s, ) and K < N will be explained
in Section 3.2.2.

Given the correspondences, W can be learned by minimizing the objective

1K
=5 IWse — tall 1)
k=1
which can be expressed in matrix form:
1
fw) = §||WP5—PT||2F- (2)

The matrices Pg and Pr € RP*E represent all assignments between source
and target elements, where the columns denote the actual correspondences.
We optimise the objective by non-linear optimisation. To this end, the deriva-
tives of (2) are calculated by

of(W)

L = W(PsPE) = PrPL. 3)

In our implementation, we use the local gradient-based optimization method
of moving asymptotes [55], which is part of the NLOPT package [56].

3.2.2. Source-Target Correspondences

In order to minimize (1), we first have to establish correspondences be-
tween the source and the target data. To this end, we cluster the data in
both domains. For the synthetic data, we use the known fine-grained poses



where each pose can be associated with one of the four coarse viewpoints
i = {front, back, left, right}, i.e., V. = ). V;, where V is the number of fine
viewpoints for refinement. For the target domain, we only have the coarse
viewpoints and therefore cluster the N; training samples of one coarse view-
point further by K-Means, where the number of clusters for each coarse
viewpoint is given by K;, ie., K =)  K;. and V; < K; < N,;. If K; = N;
clustering is not performed since each target instance is considered as one
cluster. If K; = V;, the number of clusters is equal to the number of fine
viewpoints. For the clustering, we represent each image by a HOG or CNN
feature vector and append the aspect ratio of the bounding box surrounding
the object.

As illustrated in Figure 6, we establish correspondences between the clus-
ters in the source and target domains, separately for each coarse viewpoint.
To this end, we represent each cluster by its centroid. The sets of centroids
are denoted by S = {8i,..., 8%, } and 7% = {#1, ..., #% }. The correspondences
are then established by solving a bipartite matching problem:

Vi K;
. ~i 2112
argmin E E Eok ||S, — tng

Cok =1 k=1

subject to Ze”k =1 Vk, Zevk =a, Yv and e, € {0,1} Vo, k.
v k

(4)

It assigns to each cluster in the target domain a unique cluster in the
source domain. Since there can be more clusters in the target domain than
in the source domain, each source is associated to a, = K;/V; target clusters.
If K; is not a multiple of V;, i.e., aV; < K; < (a+ 1)V}, we set a, = a+ 1 for
the first K; —aV; source clusters and a, = a otherwise. We use the Hungarian
algorithm [57] to solve the problem and for any cluster pair with e, = 1, we
obtain a correspondence c¢. The correspondences from all coarse views are
then used to estimate the transformation W in (1).

3.3. Viewpoint Refinement and FEstimation

The last step in our pipeline is the viewpoint refinement of the real train-
ing images. This is seen as a classification problem where we train on the
transformed synthetic samples a linear SVM for each of the fine viewpoints
v ={1,...,V}. Then, we apply the linear SVMs corresponding to the coarse
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viewpoint ¢ of the real image and assign the fine pose with the highest scoring
function:
f(z,i) = argmax w!z + b,, (5)
v={1,...,Vi}
where w, and b, are the weights and bias of the linear SVM for the fine
viewpoint v.

For pose estimation on real test images, we also use linear SVMs in a
one-vs-all classification procedure. For each fine viewpoint, we train a linear
SVM using the real training images with refined pose labels and the syn-
thetic training images, which have been transformed by domain adaptation,
together.

4. Experiments

We evaluate our algorithm on two car and three multi-object datasets
with fine annotated poses. From the former group, the EPFL [21] dataset
contains sequences of 20 cars as they rotate by 360°, where one image is
taken every 3-4°. These fine-grained poses allow us to test the refinement at
higher levels of viewpoint discretisation. We take the first 10 car sequences
as training (1179 images) and the last 10 as test data (1120 images). These
cars are in a fixed location. Therefore, we also evaluate our method on the
more realistic KITTI [54] benchmark, where images are recorded while driv-
ing along streets and roads. Due to the lack of bounding box annotations in
the test data, we perform a 2-fold cross validation on the fully visible cars
of the training set, containing 7481 images with 17463 cars, 7811 of those
which are non-occluded. From the latter, the 3D Obj. Categorization [58]
dataset provides 10 image sets of cars and bikes in 8 different angles (every
45 degrees), permitting a refinement from 4 to 8 fine viewpoints. There are
2 elevations and 3 distances for each view, giving 48 images per object. We
take 7 sets for training and 3 for testing. We also evaluate the method on
the Pascal3D+ [7], which contains occlusions and truncated object instances
of several classes. The main part of this dataset enriches the PASCAL VOC
2012 [59] categories with 3D annotations for 11 rigid objects': aeroplane,
bike, boat, bus, car, chair, dining table, motorbike, sofa, train and tv moni-
tor. The dataset has been further increased by images from the ImageNet

In the standard protocol of [7], the class “bottle” is discarded due to its lack of
viewpoint reference.
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dataset [60], which are also augmented with 3D annotations for the same
rigid objects. Therefore, we opt for evaluating both subsets separately, de-
noted in our experiments as Pascal3D and ImageNet3D, respectively, using
their validation sets as test data.

The setup for the experiments is as follows. At first, we automatically
generate synthetic data of textured 3D models for each object class. Follow-
ing the evaluation protocol of [10], we take 15 car models for all experiments
that only involve cars. For the multi-object evaluations, we make use of
10 models per class, thus decreasing the number of cars in order to keep an
even quantity among all classes. The attached background images, randomly
taken from the KITTI dataset [54], point towards the car’s driving direction,
allowing for synthetic vehicle placements, e.g., bike, bus, car and motorbike
classes, in the centre of the image.

The synthetic images are obtained in two configurations to evaluate the
impact of different viewpoint granularities. For refinements V' < 36, we
rotate the 6 angle of the camera every 10 degrees in clockwise order, for a
total of 36 fine viewpoints. For finer refinements, i.e., V' > 36, we synthesise
every 1 degree ending up with 360 fine viewpoints. Besides, we capture 4
levels of elevation, ¢ = {0,15,30,45}, and 3 distances, r = {1.75,2.25,2.75}
in virtual world coordinates. Due to the special case of aeroplane instances
in the air, we consider for this specific class views below the horizontal plane
assigning ¢ = {-30,-15,0, 15,30}. The pose labels are then quantised to their
closest angle of the V' fine poses. The first viewpoint v = 1 lies at # = 0 in
all quantisation levels. Some examples of the synthesised data are illustrated
in Figure 5b.

Our first evaluation, in Section 4.1, measures the accuracy of our view-
point refinement, extracting the bounding boxes of the real training im-
ages and converting the given viewpoints into the four coarse views, that
is: front = (315°,...,45°), right = [45°, ..., 135°], back = (135°, ...,225°) and
left = [225°,...,315°]. Then, in Section 4.2, we evaluate the viewpoint esti-
mation of the real test images having as training the adapted synthetic data
and the refined real data. We use the given bounding boxes if the images are
not already cropped. Neither coarse nor fine viewpoints are used for the test
images.

Several widely used feature descriptors are evaluated to measure the per-
formance of the method in different feature spaces. For HOG features [13],
we rescale the bounding boxes to 128x128 pixels and extract descriptors
with 8 bins (31 channels/bin), as in [10]. Additionally, we extend it with
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state-of-the-art CNN features from the AlexNet model [11], extracting the
feature maps from the last fully connected layer (CNN-fc7) and the last
convolutional layer (CNN-pool5), with 4096 and 9216 dimensions from the
standard 227x227 patch input, respectively. The reported accuracy values
of both layers come from re-trained models using the 36-viewpoint synthetic
dataset and modifying the output layer with 36 classification channels. In
the experiments with datasets that do not contain occlusions [58, 21, 54],
the annotated instances are rescaled preserving the aspect ratio. For the
evaluations that include occluded objects [7], the annotations are warped in
order to reduce the influence of overlapping objects and truncated borders.

4.1. Viewpoint Refinement

We first evaluate the accuracy of our approach for pose refinement on
the real training images. To this end, we use the coarse labels of the real
training images and refine the viewpoints as described in Section 3.3. We
then evaluate the accuracy of the refined labels on the real training images in
conjunction with the transformed synthetic samples after the domain adap-
tation process. For the initial parameter evaluation of our technique, we stick
to extracted HOG features of car models. Then, we test the performance of
our viewpoint refinement for all descriptors and classes.

Impact of number of target clusters. As described in Section 3.2.2, we clus-
ter each coarse view by K-Means. We therefore evaluate the impact of the
number of target clusters K on the viewpoint refinement. The results for the
different datasets and V refined viewpoints used for evaluation are shown
in Figure 7. As baseline, we use linear SVMs trained on the synthetic data
without domain adaptation. The accuracy tends to stabilize when the num-
ber of clusters is sufficiently large. The finer the viewpoints are the more
clusters are also needed.

Impact of number of target samples. Although annotating real images by
coarse viewpoints is easy to do, it also takes time. We therefore evaluate the
impact of the number of coarsely labelled target samples N. To avoid any
clustering artefacts, we set K; = N, i.e., each target sample itself is a cluster.
We also keep the numbers of the real images N; for each of the four viewpoints
equal while increasing N. The results in Figure 8 show that already 50-75
annotated samples per coarse view give a boost in performance compared to
the baseline. This means that very little time is actually required for the
annotation task.
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Figure 7: Impact of the number of target clusters K for viewpoint refinement.

100 100,

3

% accuracy

W 8 views

40 M 16 views | |- — — w/o Domain Adaptation %0 M 8views || - — —w/o Domain Adaptation 40 M 8views | |- — —w/o Domain Adaptation
W 24 views with Domain Adaptation W 16 views with Domain Adaptation W 16 views with Domain Adaptation
50 100 150 200 250 50 100 150 200 250 20 40 60 80 100 120 140 160
number of target samples N, number of target samples N, number of target samples N,
(a) EPFL dataset (b) KITTT dataset (¢c) Pascal3D dataset

Figure 8: Impact of the number of target samples N; per coarse view for the refinement.

Impact of number of 3D models. We also evaluate the impact of the amount
of 3D models used to generate synthetic data. Figure 9 shows how the
accuracy tends to stabilise with already 7-8 models. Generally, the behaviour
is comparable when using 10 or 15 models in the experiments.

Weak supervision. If the target samples are not annotated by the four coarse
views, we can still perform unsupervised domain adaptation. In this case, we
observe a substantial amount of wrong viewpoint estimates by 180 degrees as
shown by the confusion matrix in Figure 10a. In contrast, we resolve these
errors by using the coarse viewpoints of the real images as weak supervision
as shown in Figure 10b. This shows that using coarse annotations of real im-
ages, which are inexpensive to annotate, significantly increases the viewpoint
refinement accuracy.

Accuracy of the viewpoint refinement. We finally compare the refinement
accuracy of our method with different popular domain adaptation tech-
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Figure 10: Confusion matrix for EPFL dataset in a 16-viewpoint refinement. (a) Without
supervision rotations by 180 degrees are sometimes confused. (b) When weak supervision
from the four coarse viewpoint labels is used, these confusions are resolved.

niques [8, 46, 47]. For the refinement after domain adaptation, we use linear
SVMs as described in Section 3.3. As baseline, we use the linear SVMs
trained on the synthetic data without domain adaptation. The geodesic flow
kernel (GFK) [8] is an unsupervised domain adaptation method that maps
both domains to a common subspace in a Grassmannian manifold. The ap-
proach can also be used for supervised domain adaptation, but it did not
improve the results in our experiments. We therefore report the results for
the unsupervised approach for each coarse viewpoint. The same applies to
the sub-space alignment technique (SA) [46], that maps both domains to a
common subspace using the d largest eigenvectors. In both cases, the number
of chosen sub-dimensions d is kept as large as possible to avoid a significant
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loss in accuracy. Lastly, we also test the current state-of-the-art adapta-
tion method named CORAL [47]. Without any dimensionality reduction,
it decorrelates the source samples by whitening and re-colours them by the
covariance matrix of the target data.

For our method, we report the refinement accuracy for four different
clustering settings. For the first three, we set V' equal to the number of
views for fine-grained viewpoint estimation as in the previous experiments.
We report numbers for K = V, K = 100 and K = N. For the first two
settings, we report the mean accuracy and its standard deviation over 10
runs since K-Means depends on the random initialization. In the last setting,
each target sample is a cluster.

We first report the results only for the fully visible object exemplars and
compare HOG, CNN-fc7 and CNN-pool5 features in Table 1. The accuracies
of both kinds of CNN features outperform the results of the HOG features,
especially when using finer refinements. While CNN-pool5 achieves the best
overall result, it is outperformed by CNN-fc7 for very fine viewpoints V' > 72.
While K = N performs best in almost all cases, K = 100 and K = V achieves
the highest accuracy in a few cases. Overall, K = N with CNN-pool5 features
performs best on all three datasets.

We also evaluated the accuracy when V is also set to the number of
synthetic samples M, i.e., each synthetic image is a cluster. In this case,
the accuracy drops significantly for all datasets and feature descriptors. This
shows that the synthetic data needs to be quantized according to the fine-
grained views.

Table 1 also compares our approach to other domain adaptation meth-
ods [8, 46, 47]. In nearly all setting and feature combinations, our method
outperforms the generic domain adaptation methods. On KITTI with 16
views and CNN-pool5 features, our approach achieves an accuracy of 70%
compared to 50% obtained by [8, 46, 47].

In contrast to the datasets [58, 21, 54], the datasets Pascal3D and Im-
ageNet3D contain many occluded and truncated objects. The results for
these two datasets are reported in Figure 2. We report the accuracies for
both CNN features using K = N and compare it to the baseline without
domain adaptation. Except for the 8 view refinement on ImageNet3D, our
approach outperforms the baseline by around 4%. The CNN-pool5 features
achieve the highest accuracy as it was previously observed on the other two
datasets.
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[ 3DObjCat [58] | EPFL [21] [ KITTI[54] ]

HOG
views 8/car | 8/bike 8 16 24 36 72 180 360 8 16
w/o DA 97.62 98.81 88.65 76.63 66.11 58.59 33.95 14.92 9.17 80.04 65.61
GFK [8] 97.62 98.81 88.92 79.64 66.38 57.67 34.20 15.31 8.60 80.07 65.42
SA [46] 97.62 98.81 88.88 77.66 66.11 58.59 33.87 14.92 9.08 80.04 65.61
CORAL [47] 94.94 98.21 91.13 76.98 67.42 59.51 35.87 15.77 9.21 79.80 61.18
98.57 98.21 90.41 77.32 66.67 58.75 33.29 17.08 8.87 77.15 64.56

V=views, K=V | (053) | 051) | (1.65) | 200 | 211) | (1.89) | (1.55) | (133) | (1200 | (1.30) | (1.67)

Veviows K—100 | 9911 [ 99.80 | 9157 | 79.62 | 70.16 | 59.46 | 33.99 | 17.55 | 9.66 80.32 | 67.37
- T (0.36) | (0.09) | (0.47) | (0.65) | (0.70) | (1.01) | (0.80) | (0.46) | (0.31) | (1.41) | (1.47)
V=views, K=N | 99.70 | 99.40 | 92.00 | 81.82 | 71.85 | 64.99 | 39.59 | 17.69 | 9.85 | 78.78 | 67.05

V=M, K=N 92.86 98.02 85.69 76.69 | 67.02 | 63.33 | 31.55 12.77 6.20 75.70 62.92
AlexNet CNN-fc7
views 8/car | 8/bike 8 16 24 36 72 180 360 8 16
w/o DA 93.75 99.21 89.87 77.98 | 71.50 | 64.81 | 43.57 20.01 10.16 74.60 54.57
GFK [8] 94.35 98.81 89.90 76.63 | 70.56 | 63.21 | 43.27 19.29 9.74 69.61 53.75
SA [46] 93.75 99.21 89.87 77.98 | 71.40 | 64.81 | 43.70 20.39 10.34 74.60 54.57
CORAL [47] 90.18 99.40 89.43 72.01 | 62.43 | 51.77 | 29.05 10.55 6.12 68.67 42.43

9554 | 99.40 | 79.82 | 67.77 | 73.89 | 61.68 | 38.88 | 23.57 | 12.47 | 59.70 | 43.95
(0.37) | (0.20) | (2.20) | (2.02) | (1.75) | (1.60) | (1.37) | (1.39) | (0.98) | (1.97) | (2.02)
Veviows K—100 | 9524 | 9921 | 92.01 | 7953 | 7532 | 6535 | 3885 | 19.80 | IL10 | 68.93 | 57.13
’ (0.40) | (0.22) | (0.70) | (0.91) | (0.93) | (1.08) | (0.96) | (0.81) | (0.66) | (2.10) | (2.42)
V=views, K=N | 97.02 | 99.80 | 87.02 | 83.61 | 77.34 | 67.44 | 46.10 | 19.71 | 10.75 | 70.91 | 57.09

V=views, K=V

V=M, K=N 93.75 97.22 85.81 74.10 65.18 60.85 36.50 17.51 7.47 69.28 47.11
AlexNet CNN-pool5
views 8/car | 8/bike 8 16 24 36 72 180 360 8 16
w/o DA 98.21 98.81 93.26 76.87 | 72.52 | 62.14 | 38.11 18.59 7.70 75.63 49.04
GFK [8] 97.62 98.81 93.07 76.96 | 72.05 | 62.27 | 36.57 18.16 8.28 74.69 49.24
SA [46] 98.21 98.81 93.26 76.87 | 7252 | 62.14 | 37.91 18.53 7.70 75.63 49.10
CORAL [47] 87.20 96.63 77.33 60.65 | 53.15 | 40.52 | 22.01 8.59 4.10 74.86 49.74

97.86 | 99.60 | 79.60 | 72.58 | 67.24 | 51.93 | 38.62 | 19.19 | 8.17 69.14 | 52.36
(0.67) | (0.10) | (1.37) | (1.66) | (1.25) | (1.31) | (1.00) | (0.99) | (1.01) | (1.09) | (1.38)
V—views. K100 | 9910 | 97.62 | 9359 | 80.29 | 75.40 | 63.39 | 37.26 | 1861 | 8.01 79.08 | 68.59
’ (0.12) | (0.31) | (0.61) | (0.72) | (0.77) | (0.55) | (0.38) | (0.27) | (0.17) | (1.12) | (1.32)
V=views, K=N | 100.0 | 100.0 | 95.65 | 84.77 | 77.63 | 69.05 | 43.56 | 19.68 | 8.76 | 80.83 | 70.07
V=M, K=N 96.13 | 99.21 | 86.68 | 76.75 | 68.67 | 67.28 | 3591 | 16.71 | 581 | 74.05 | 47.15

V=views, K=V

Table 1: Accuracy of the coarse-to-fine viewpoint refinement for different domain adap-
tation techniques. For the methods with K-Means clustering, the mean and standard
deviation (brackets) over 10 runs are provided.

4.2. Viewpoint Estimation

We finally evaluate the accuracy of the pose estimation on the real test
images. To this end, we train the viewpoint estimator described in Section 3.3
on the synthetic data (syn), the real training data (real) with refined view-
point labels or on both datasets (joint). For the refinement, we use our
approach with K = N (with DA) and compare it to the refinement with-
out domain adaptation (w/o DA). We report the results for the datasets
with non-occluded object instances in Table 3, where we also compare the
accuracy of the pose estimator when the fine ground-truth viewpoint anno-
tations of the real training images (gt) are used for training. This serves as
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\ PASCAL3D |

AlexNet CNN-fc7
views aero bike boat bus car chair  table mbike  sofa train tv Avg.
3 w/o DA 68.38 65.22 5587 66.66 65.23 61.71 49.79 6731 64.22 55.68 70.28 | 62.75
V=views, K=N | 66.00 63.43 56.57 77.94 64.77 62.49 46.10 69.17 62.13 57.38 (9.83 | 63.26
16 w/o DA 45.62 3335 3098 5237 4570 39.06 30.37 46.39 33.04 37.72 38.83 | 39.40
V=views, K=N | 47.18 41.03 32.92 60.29 46.99 41.48 30.42 50.70 43.36 42.15 36.96 | 43.04
o4 w/o DA 2824 3026 22.83 35.14 3393 27.30 2547 37.88 24.67 27.57 31.76 | 29.55
V=views, K=N | 32.49 31.58 23.41 40.32 34.56 28.81 25.98 42.10 23.11 32.13 24.55 | 30.82
AlexNet CNN-poolh
aero bike boat bus car chair ~ table mbike  sofa train tv Avg.
3 w/o DA 68.80 67.71 58.06 64.73 69.21 62.62 49.84 69.73 59.64 50.61 55.96 | 61.53
V=views, K=N | 71.10 72.75 59.77 68.81 6834 63.91 63.45 72.36 68.13 54.74 73.29 | 66.97
16 w/o DA 4735 41.10 32.61 65.10 4746 39.45 37.23 50.63 3743 33.77 36.55 | 42.61
V=views, K=N | 48.90 48.33 32.05 66.58 49.25 44.09 33.09 52.60 42.63 35.27 41.47 | 44.93
2 w/o DA 30.89 30.21 2531 41.78 33.99 29.34 32.43 37.09 28.74 28.69 25.12 | 31.24
V=views, K=N | 32.57 33.55 27.74 44.12 35.55 31.48 31.64 42.36 2697 29.86 27.90 | 33.07
‘ TmageNet3D |
AlexNet CNN-fc7
views aero bike boat bus car chair  table mbike  sofa train tv Avg.
s w/o DA 70.80 74.43 59.63 81.45 89.02 77.78 55.07 74.86 76.06 66.49 84.11 | 73.61
V=views, K=N | 69.46 73.79 59.55 73.68 87.03 75.26 52.19 76.22 71.70 61.33 80.45 | 70.97
16 w/o DA 51.28 48.76 34.07 51.23 69.86 61.12 46.18 51.34 60.38 39.60 36.08 | 50.00
V=views, K=N | 51.25 55.35 35.50 52.61 72.38 66.43 49.84 56.59 57.94 36.69 54.10 | 53.52
o4 w/o DA 40.66 36.17 23.11 39.53 59.68 50.04 29.35 36.34 4940 21.17 28.83 | 37.66
V=views, K=N | 45.28 41.25 24.51 46.28 62.93 52.08 31.90 40.31 50.24 20.94 35.73 | 41.04
AlexNet CNN-pool5
aero bike boat bus car chair  table mbike  sofa train tv Avg.
3 w/o DA 71.50 7730 58.99 86.19 91.62 79.43 60.41 74.66 81.59 56.71 70.77 | 73.56
V=views, K=N | 70.79 78.71 56.79 86.38 92.30 7859 57.57 76.63 7431 64.80 68.96 | 73.25
16 w/o DA 51.16 54.08 36.05 64.10 73.45 67.62 39.06 5425 53.97 37.82 51.35 | 52.98
V=views, K=N | 53.14 57.93 36.44 69.09 7335 67.89 49.92 55.51 53.75 38.31 52.77 | 55.28
o w/o DA 39.59 3792 2275 5252 60.01 56.40 26.00 33.75 52.88 22.09 36.07 | 40.00
V=views, K=N | 41.88 48.44 22.65 55.57 64.45 58.59 32.41 37.15 54.30 31.54 37.30 | 44.03

Table 2: Accuracy of the coarse-to-fine viewpoint refinement for the Pascal3D+ and Ima-
geNet3D datasets that contain occlusions and truncated object instances.

an upper bound of the accuracy in comparison to the setting with only weak
supervision.

When comparing the results of the domain adaptation for the synthetic,
real or both training sets with the results without domain adaptation, we
observe that the domain adaptation improves the viewpoint estimation for all
scenarios, with the exception of the CNN-fc7 features for EPFL and KITTI
with 8 viewpoint refinement.

Using refined real target images (with DA real) for training is in most
cases sufficient. The adapted synthesized training data, however, performs
better for fine-grained viewpoints V' > 72 since the real images do not nec-
essary provide enough samples for each viewpoint. Combining the real and
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[ 3DObjCat [58] | EPFL [21] [ KITTI[54
HOG

8/car | 8/bike 8 16 24 36 72 180 | 360 8 16

gt | 99.31 | 99.07 | 80.06 | 73.57 | 64.15 | 55.65 | 36.10 | 12.77 | 1.74 | 82.23 | 77.89

syn 75.69 93.06 65.98 60.92 46.42 36.37 22.62 8.55 3.61 58.69 47.25
real | 99.31 | 99.54 | 76.04 65.46 50.65 43.67 23.08 2.65 0.39 74.43 55.69
joint | 88.89 99.07 72.52 63.81 51.71 44.10 23.02 8.55 4.38 72.75 54.30

syn 90.97 93.98 74.62 67.01 55.20 44.84 | 25.96 9.61 4.86 64.28 54.07
with DA | real | 99.31 | 99.54 | 78.37 | 69.04 54.67 | 47.60 | 23.40 3.96 0.64 | 74.46 | 56.28
joint | 93.06 99.07 75.73 | 71.93 | 56.91 | 47.60 | 24.59 9.70 5.64 | 73.23 | 59.04

AlexNet CNN-fc7
8/car | 8/bike 8 16 24 36 72 180 360 8 16
gt 93.75 97.69 67.65 59.75 | 53.25 | 42.45 | 25.44 10.45 | 1.89 | 80.31 76.51

syn 72.92 91.67 62.08 55.35 48.32 40.75 24.16 9.33 4.25 49.31 35.45
real 84.72 97.69 65.77 57.91 48.62 40.61 17.09 2.34 0.41 | 67.44 | 43.02
joint | 77.78 94.44 68.55 | 59.05 51.54 43.86 24.79 10.02 4.80 61.41 43.52

syn 75.69 92.13 64.91 59.65 | 54.58 | 44.77 | 26.20 9.06 4.34 41.87 37.64
with DA | real | 86.81 | 97.69 64.51 59.61 52.20 41.64 22.95 3.04 0.60 64.30 | 50.14
joint | 79.86 96.76 67.61 62.83 | 53.93 43.79 24.10 8.82 5.33 | 61.77 49.95

AlexNet CNN-pools
8/car | 8/bike 8 16 24 36 72 180 360 8 16
gt 100.0 99.07 | 80.35 | 71.97 | 66.92 | 54.53 | 35.48 | 12.15 | 1.48 | 87.00 | 86.88

syn 86.81 90.74 72.10 62.86 55.90 44.49 25.88 11.11 5.10 49.24 34.18
real | 100.0 | 98.61 79.49 66.06 59.65 45.62 24.66 2.35 0.00 75.48 48.86
joint | 97.22 98.61 79.40 67.55 61.35 49.35 26.18 10.69 5.78 73.16 47.66

syn 96.53 97.69 77.03 70.81 62.69 50.78 27.80 10.20 | 6.69 | 66.01 34.49
with DA | real 100.0 | 99.07 | 79.83 | 73.54 | 62.95 51.38 | 27.84 9.46 0.31 | 80.51 | 66.57
joint | 97.22 98.61 79.85 | 72.80 | 65.13 | 52.10 | 27.67 | 11.94 | 6.65 80.34 64.52

w/o DA

w/o DA

w/o DA

Table 3: Pose estimation accuracy on unlabelled test data using real training data, syn-
thetic data or both training sets. All datasets contain non-occluded object instances.

synthetic data for training (with DA joint) works very well for any viewpoint
discretisation and is therefore recommended in practice.

Table 4 reports the accuracies for the Pascal3D+ and ImageNet3D datasets
using CNN-pool5 features. On these datasets the adapted synthesized train-
ing data performs already better than the real data for V' > 16 fine view-
points. As before, combining the refined real data and the adapted syn-
thesized data for training performs well for any viewpoint discretisation
V = 8,16,24. It is interesting to note that our weakly supervised approach
(with DA joint) even outperforms the fully supervised approach (gt) due to
the training data augmentation by the adapted synthetic images.

5. Conclusions

In this work, we have presented an approach for weakly supervised domain
adaptation for the task of viewpoint estimation. It uses synthetic data to
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PASCAL3D

AlexNet CNN-poolb

aero bike boat bus car chair  table mbike  sofa train tv Avg.
w/o DA gt 49.49 4379 2551  34.16  44.71  42.97 22.19 51.68 26.56 23.86 21.99 | 35.17
syn 41.80 44.95 25.25 33.81 38.46  40.71 13.83 46.96  50.17 1742 23.44 | 34.25
8 syn | 43.07 51.32 25.04 35.64 42.90 41.67 10.46 45.81 52.34 20.39  30.60 | 36.29
with DA | real | 42.01 49.51 2223 34.01 44.69 4159 14.17 53.06 26.36 16.09  30.07 | 33.07
joint | 46.20 51.27 24.93 38.34 47.03 41.18 1296  52.23 56.15 22.07 34.04 | 38.76
w/o DA gt 83.30 2551 1346  24.12  30.27 2745 10.15 2779 11.48 1823 13.46 | 21.58
syn 2796  27.93 11.33  27.75  26.92  28.41 10.00 31.03 42.69 16.86 19.95 | 24.62
16 syn | 31.12 29.07 1235 30.05 31.32 2897 13.38 29.25 47.62 14.34 24.96 | 26.58
with DA | real | 29.20  22.00 13.46 18.31 33.15  27.23 9.06 2746  21.19 15.33  23.06 19.04
joint | 33.96 27.22 13.97 30.14 33.81 29.35 13.92 2947 4324 15.88  21.19 | 26.55
w/o DA gt 2379 1758 9.72  18.23 2440 18.87  7.97  20.03  9.37 1578 14.07 | 17.03
syn 16.97 18.31 10.84 23.88 21.77  20.89 5.16 19.38  32.54 9.13 10.82 17.24
24 syn | 1956 21.27 10.86 26.85 2576 2222 7.16 24.81 35.53 8064 15.52 | 19.83
with DA | real 18.45 15.82 7.71 11.19 2540 18.91 6.85 15.89 11.33 9.18 12.17 13.90
joint | 21.63 22.65 9.39 26.84 26.65 22.69 9.13 20.35 32,51 10.00 10.98 19.34
ImageNet3D

AlexNet CNN-pool5
aero bike boat bus car chair  table mbike  sofa train tv Avg.
w/o DA gt 59.76  66.99  49.25 65.53 84.91 5827 37.04 67.65 87.59 24.59 35.86 | 55.40
syn 46.33 62.12  26.06 58.74 76.43 66.56 28.74 61.45  66.63 17.16  37.05 | 49.75
8 syn | 47.94 6459 2936 54.74 76.96 72.06 24.68 63.90 73.76 19.38  33.20 | 50.96
with DA | real | 50.58 64.95 37.80 64.04 83.00 61.33 29.99 66.91 60.03 2040 48.90 | 53.45
joint | 50.85 65.74 36.81 65.21 82.83 69.67 39.14 69.19 76.71 21.22 39.12 | 56.06
w/o DA gt 40.62  43.29  35.12  42.16 71.11  35.92  24.28 40.88 24.61 14.76 17.55 | 3548
syn 33.40 37.54 1598 4093  59.57  54.36 1722 3723  36.03 17.51 12.12 | 32.90
16 syn | 34.06 40.36 16.45 46.48 59.99 57.91 17.41 3871 39.73 19.46 19.12 | 35.43
with DA | real | 33.96 41.28 20.05 40.12 66.79 41.64 15.67  38.75 2241 11.57 14.85 | 31.55
joint | 36.12 40.59 21.40 49.82 66.57 54.02 22.97 41.09 40.43 26.79 20.76 | 38.23
w/o DA gt 80.16  35.86  26.25 45.33 63.20 28.87 19.99 30.03 18.08 15.38 17.14 | 29.80
syn | 26.29 25.01 1048 3516 49.38 4249 1349 26.69 2521  6.19 17.33 | 25.24
24 syn | 25.61 34.56 13.55 36.92 52.50 50.04 1527 30.44 32.61 891 20.85 | 29.30
with DA | real | 25.41 29.64 12.98 19.54  56.96  31.64 13.19  25.33 18.54 8.61 10.82 | 22.96
joint | 28.95 32.54 14.55 40.40 57.93 4533 18.08 29.64 37.71 12.04 21.72 | 30.81

Table 4: Pose estimation accuracy for
contain occlusions and truncated object instances.

the Pascal3D+ and ImageNet3D datasets that

refine the viewpoint annotations of the coarsely labelled training images. Us-
ing coarse viewpoint annotations of real images as weak supervision together
with accurately annotated synthesized images is not only a very efficient ap-
proach to collect training data for fine-grained viewpoint estimation, it also
allows to achieve an accuracy that goes beyond the abilities of human an-
notators. Our evaluation on five datasets for viewpoint estimation showed
that our approach outperforms generic domain adaptation methods and even
outperforms fully supervised methods in some cases.
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