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Abstract

For certain applications like autonomous systems it is insufficient to interpret only the
observed data. Instead, objects or other semantic categories, which are close but outside
the field of view, need to be anticipated as well. In this work, we propose an approach for
anticipating the semantic categories that surround the scene captured by a camera sensor.
This task goes beyond current semantic labeling tasks since it requires to extrapolate a
given semantic segmentation. Using the challenging Cityscapes dataset, we demonstrate
how current deep learning architectures are able to learn this extrapolation from data.
Moreover, we introduce a new loss function that prioritizes on predicting multiple labels
that are likely to occur in the near surrounding of an image.

1 Introduction

One of the core capabilities of humans intelligence is to make predictions about the envi-
ronment. Humans are able to predict how the world around them will evolve in the near
future and how their actions will affect it. Even without observing an entire scene, they
can anticipate objects or surfaces that are close. This ability allows them to plan ahead and
to efficiently interact with the world. Similar anticipation capabilities are also required for
autonomous systems. For instance, the presence of semantic categories like pedestrians,
bicyclists, cars, roads or sidewalks in the near surrounding of an autonomous vehicle has im-
plications for the driving policy and safety measurements. These object categories, however,
are not always within the field of view of the sensors attached to the vehicle and therefore
need to be anticipated.

In this work, we propose the first approach that anticipates semantic categories outside
the field of view of a camera. In order to evaluate this task, we propose a novel protocol for
the large-scale Cityscapes dataset [3], which is the state-of-the-art benchmark for semantic
urban scene understanding. In contrast to semantic image segmentation, which requires to
infer the labels for each observed pixel, anticipation of semantic categories outside the field
of view requires to infer the semantic labels in regions that are not observed. The anticipation
task is not only more difficult due to missing data, it is also inherently non-deterministic since
many solutions could be plausible. Since the true distribution of all plausible solutions for
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a single image is unknown, we propose an evaluation metric that does not require a pixel-
wise prediction but measures if the occurrence of a semantic class within a predefined region
outside the image is correctly predicted.

Since the proposed task has not been addressed before, we introduce a baseline that in-
fers the pixel-wise semantic labels in the observed region and the unobserved region outside
the image. The baseline builds on a state-of-the-art convolutional neural network for image
segmentation [2]. In addition, we propose a novel approach that consists of two networks.
While the first network infers semantic labels for each observed pixel, the second network
gradually anticipates the semantic categories outside the field of view from the previous out-
put. For the second network, two different loss functions are investigated. We evaluate the
proposed approach on the Cityscapes dataset [3] using the new protocol for spatial anticipa-
tion of semantic categories. The experimental evaluation shows that the proposed approach
improves the baseline by a large margin.

2 Related Work
Since neural networks achieve impressive results in the domain of image classification [5, 8,
13, 14], they have also been successfully applied in the context of semantic image segmenta-
tion, e.g. in [1, 4, 6, 10]. The task that we address, however, has not been previously studied.
The most related network architecture for semantic image segmentation is the approach by
Chen et al. [2]. It is based on the ResNet architecture [5] and uses a couple of adaptations to
make it suitable for semantic image segmentation. The main adaptation was the introduction
of atrous-convolutions, which are convolutions with increased kernel sizes but with the same
amount of parameters. By varying the kernel size of the atrous-convolution one can compute
responses from the feature maps at different spatial resolutions which allows to control the
size of the receptive field. In addition, the predictions are refined by a conditional random
field [7].

Hallucinating semantics has been addressed in very few works. Liu et al. [9] developed
an approach to reconstruct 3D scenes by simultaneously predicting depth and semantic labels
from incomplete depth data. They propose a two-layer model representing both the visible
and the hidden or occluded information. The approach also has some relations to in-painting
methods like [11], which fill holes inside an image. In-painting methods, however, cannot be
applied to anticipate semantics outside an image. For the task of proposal generation for an
object detector, Ristin et al. [12] predict from large image patches potential bounding boxes
that might contain objects of a relevant object category. While the bounding boxes can be
outside the image patch, the approach aims at exploiting the local context within an image
to reduce the inference time of an object detector. Using context for recognition tasks has
also been extensively studied, for instance, in the seminal work by Torralba [15]. Recently,
temporal anticipation has been studied by a few works. For instance, Vondrick et al. [16]
predict feature representations for a video frame in the future, which can then be used to
anticipate actions or objects that will occur next in a video.

3 Dataset for Anticipation of Semantic Categories
We propose the new task of spatial anticipation of semantic categories outside the field of
view. The task requires to predict for a given image the categories that are most likely to
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occur outside of it as illustrated in Figure 3. For evaluation, we introduce a new protocol for
the Cityscapes dataset [3]. The Cityscapes dataset is recorded by an RGB camera mounted
at the front of a car driving through urban scenes. We only use the images provided with
fine-grained annotation. There are 2,975 images in the training set, 500 in the validation
set and 1,525 images in the test set. For evaluation, we take the images from the validation
set since the ground truth annotations for the test set are not publicly available. Following
[3], we evaluate the performance on 19 classes ignoring the background class. The original
images have the size of 1024×2048 pixels. For our task, we crop the validation images such
that only the center region of 642× 1282 pixels remains. The invisible region outside the
cropped area is used to evaluate the anticipation performance.

For the evaluation, we report the accuracy for two evaluation criteria. The first evaluation
criterion is a standard semantic image segmentation metric and compares the ground-truth
segmentation map for the invisible region with the inferred pixel-wise semantic segmenta-
tion. It assumes that exactly one label is predicted for each pixel outside the cropping area
of the original images. As for standard semantic image segmentation, we use the Jaccard
index, also referred to as intersection over union (IoU), to measure the quality of the pre-
diction. This evaluation approach has the weakness that it assumes that the ground-truth is
deterministic and can be predicted at a pixel level. However, not even humans will be able
anticipate semantic classes with such an accuracy. Moreover, an exact localization of the
anticipated labels is unnecessary in a practical context. To account for this fact, we introduce
an alternative evaluation metric. The unobserved area is subdivided into a grid of cells as
shown in Figure 2. All labels that occur in the same cell are collected. If a label occurs in
the same cell in both the ground-truth and the prediction map, it is counted as a true positive.
Labels only occurring in the prediction map are false positives and labels exclusively occur-
ring in the ground-truth map are considered as false negatives. We sum the true positives,
false positives, true negatives, and false negatives over all cells and images for each class and
compute the F1 score, which is defined as the harmonic mean of precision and recall:

F1 = 2 · precision · recall
precision+ recall

. (1)

The scores are then averaged over all classes.

4 SASNet: Convolutional Neural Network for Spatial
Anticipation of Semantic Categories

To explore the task of spatial anticipation of semantic categories outside the field of view, we
propose an approach that uses a convolutional neural network architecture as it is common
for state-of-the-art approaches for semantic image segmentation. While the intermediate
layers are based on the ResNet 101 structure [5] as in [2], the last layers and loss function
differ from convolutional networks for image segmentation. Due to the task, the model also
needs to be trained in a different way.

Figure 1 gives an overview of the proposed SASNet and the training procedure. The
network is trained by providing masks for the visible and invisible regions for each training
image. The mask divides the original image, which has a resolution of 1024× 2048 pixels
in our dataset, into an inner region Ω1 of 642× 1282 pixels and an outer region Ω2 that is
set to zero as shown in Figure 1 a). We then sample random crops from the images as shown
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Figure 1: Training procedure for SASNet. The SASNet is trained on crops of masked images. The
mask marks the visible and the invisible regions. A detailed description is given in Section 4.

in Figure 1 b). The crops of size 321×321 pixels are taken from the image, its ground-truth
segmentation mask, and the visibility mask. Note that the ratio of the visible and invisible
area varies among the crops. The random crops are our training set T .

Figure 1 c) illustrates the first part of the network. As base architecture for the convo-
lutional neural network, we choose the DeepLab model [2] based on the ResNet 101 struc-
ture [5]. We omit the conditional random field as well as the loss layer and instead process
the unnormalized network output y to compute the loss for the unobserved region Ω2. We
investigate two different loss functions L1 and L2. The first loss L1 is given by the softmax
cross entropy:

L1 =−∑
t∈T

∑
i∈Ωt

2

∑
c∈C

ŷic log

 eyic

∑
c′∈C

eyic′

 (2)

where ŷic is the class probability of the ground truth label of pixel i, which is one for the true
class and zero otherwise. yic denotes the unnormalized predictions of the network for pixel i
and class c.

The second loss L2 measures the anticipation error in accordance with the proposed
second evaluation criterion described in Section 3, i.e. only the classes occurring in each
cell in the region Ω2 should be predicted. This can be efficiently realized as illustrated in
Figure 1 d) by adding a max pooling layer with kernel size and stride k:

ỹikc = max
∆i∈Nik

{
yik+∆i,c

}
(3)

whereNik is the k×k neighborhood of pixel ik, i.e. ỹikc is the maximum value for each class
c in each cell ik. It is important to note that the kernel size does not need to be equal to the
cell size used for evaluation as we will show in Section 5.1. Due to the max pooling, Ω2 has
been reduced to the number of cells Ωk,2. We therefore also resize the mask to Ωk,2. For the
cells of the invisible region, we compute the second loss L2 using the sigmoid cross entropy:

L2 =−∑
t∈T

∑
ik∈Ωt

k,2

∑
c∈C

ŷikc log
(

1
1+ e−ỹikc

)
(4)
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Figure 2: The F1 score is computed for cells outside the visible region and measures if for
each cell the same labels are predicted (right) as they occur in the ground-truth segmentation
map (left).

where ŷikc is one if the cell ik in the invisible region Ωt
2 of random crop t ∈ T contains the

label of class c ∈ C and it is zero otherwise.
For inference, the network processes an image with binary mask, which is one for the

image pixels (Ω1) and zero for the regions where the semantic categories should be antici-
pated (Ω2). For the first loss function L1, the network predicts for each pixel i the semantic
label given by argmaxc

eyic

∑c′ e
yic′ . For the second loss function L2, the network predicts for

each cell ik the set of labels {
c ∈ C :

1
1+ e−ỹikc

≥ 0.5
}
. (5)

Figure 2 shows an example of such a prediction.
In Section 5.1, we show that SASNet performs better when we first perform standard

semantic image segmentation on the visible region Ω1 and then use the inferred labels as
input for SASNet instead of the RGB values of the image. The accuracy can be further
improved by performing the anticipation in successive steps where the region Ω2 outside the
image is gradually increased and the intermediate results are used as input for the next step
as shown in the last row of Figure 3.

5 Experimental Evaluation

5.1 Implementation and Evaluation Details
We augment the training data by random scaling between 0.5 and 1.5, as well as random
mirroring and random cropping as in [2]. The batch size is set to 10 and the learning rate
is set to 2.5 · 10−4. The learning rate of the batch normalization layer parameters are set to
zero. This has shown to stabilize the training process [2]. The number of training iterations
is 20,000. The training takes about 15 hours.

As described in Section 3, we report intersection over union (IoU) and the F1 score
computed for four different cell sizes. As cell size c, we choose 16× 16, 24× 24, 40× 40
and 80× 80 pixels with respect to the original resolution of the Cityscapes images. Both
measures are only evaluated on the unobserved region Ω2.

We evaluate the two loss functions L1 and L2 discussed in Section 4. For L2, we have
to define the kernel size k. In our experiments, we evaluate L2 with the four different kernel
sizes 2×2, 3×3, 5×5 and 10×10. Since the previous layers of the network reduce the size
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of the input image by factor 8, this corresponds to the cell sizes 16× 16, 24× 24, 40× 40
and 80×80 pixels with respect to the input resolution.

As mentioned in Section 4, SASNet can be used to anticipate semantic categories outside
the field of view from the raw RGB image data or from a pre-segmentation of the visible
region Ω1. We evaluate both cases and use [2] for image segmentation in the latter case.
We denote the first version by color-SASNet and the second version by label-SASNet. In
addition, the anticipation can be performed gradually. Depending on the number of steps, we
subdivide Ω2 into either 2, 3 or 4 enclosing regions as can be seen in Figure 3. For each step,
we use the prediction of the previous step as input and anticipate the semantic categories for
the next enclosing region until Ω2 is fully covered. For initialization, we use the inferred
semantic segmentation of the visible region Ω1. 1

5.2 Results
The quantitative results for the dataset described in Section 3 are summarized in Table 1. The
first six rows compare the two loss functions L1 and L2 if SASNet anticipates the semantic
categories from the RGB image (color-SASNet). For both, the intersection over union (IoU)
and the F1 accuracy, L1 performs better than L2. We will, however, observe that this changes
if the anticipation is performed gradually.

In all cases, the F1 score increases for larger c values since this increases the cell size,
which requires a lower localization accuracy. If we compare different values of k for L2, we
observe that IoU is slightly higher for k = 1× 1 since a smaller k enforces the network to
learn a better localization of the categories. The setting with k = 1×1 is also the best for all
c values of the F1 score.

We now compare the difference of having one network (color-SASNet) or two networks
(label-SASNet), one for semantic image segmentation and one for spatial anticipation. A
qualitative comparison is also shown in Figure 3. If we compare the L1 loss, IoU increases
from 26.1 to 30.7. For the L2 loss with k = 1×1, IoU increases from 22.0 to 26.6. The F1
scores also increase for both L1 and L2 by about 4 to 5% for all c values, except for L1 in
the case of c = 80. We can conclude that label-SASNet outperforms color-SASNet.

As illustrated in Figure 3, the anticipation accuracy decreases if the distance to the visible
image border becomes large. The anticipation can therefore performed gradually where the
region Ω2 grows in each step as described in Section 4. The quantitative results using 2, 3,
or 4 steps are reported in Table 1. We first compare the impact of the number of steps for
label-SASNet with L1 loss. The IoU increases from 30.7 to 33.5 if anticipation is performed
in two steps. Further steps increase the accuracy only slightly. The F1 scores are also slightly
improved by estimating the semantic categories outside the image region gradually. If the
L2 loss is used, we observe a large improvement for all values of k. The best results are
achieved with two steps. For k = 5×5, the F1 scores increase from 31.4, 31.8, 34.6, 36.3 to
42.7, 43.5, 44.9, 45.3, for c = 16, 24, 40, 80 respectively. The IoU also increases from 26.6
to 35.0 for k = 1× 1. It actually even achieves a higher IoU than the best setting with L1
loss (33.9).

Since label-SASNet learns to extrapolate a semantic segmentation of a scene, we also
compare it to a standard approach for extrapolation. Using the inferred semantic segmenta-
tion of the visible region Ω1, we replicate the labels of the border. The results are shown in

1The scripts, source code, and models used for evaluation are publicly available at https:
//pages.iai.uni-bonn.de/gall_juergen/projects/spatial_anticipation/spatial_
anticipation.html.
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Figure 3: Qualitative results for the pixel-wise label prediction using L1 loss. The first row shows
an RGB image and the inferred semantic segmentation using [2]. The second row shows the result
for color-SASNet (left), which uses the RGB image of the first row as input, and for label-SASNet
(right), which uses the inferred labels as input. The inner white rectangle marks the boundary between
observed and unobserved regions Ω1 and Ω2. The label-SASNet anticipates the semantic labels in Ω2
better than color-SASNet. The last row shows the result of label-SASNet if the prediction is performed
in two (left) or three steps (right). The additional white rectangles mark the growing regions that are
predicted in each step. Compared to the second row, the labels are better anticipated at the border.

the last row of Table 1. The border replication achieves 34.7 IoU but it performs poorly for
the F1 measure. This shows that the IoU measure, which is dominated by semantic classes
that cover many pixels, is less appropriate than the F1 measure for evaluating spatial antici-
pation.

We can conclude that anticipating semantic categories with two steps improves the accu-
racy by a large margin. The proposed L2 loss performs better than the L1 loss with respect
to the F1 score as well as IoU. Although the impact of k is very low, k = 1×1 is best if the
accuracy is measured by IoU and k = 5×5 works very well for any c value of the F1 score.
For the case of prediction in a single step, L1 performs better than L2 with respect to IoU
and F1 score. However, as the number of iterations for the prediction and the size of the
evaluation cell are increasing, L2 outperforms L1.

6 Conclusion
We have introduced a new task of anticipating semantic label information outside of an im-
age. We investigated two evaluation metrics to assess the quality of the prediction. While the
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Input L steps k % IoU c = 16 c = 24 c = 40 c = 80
RGB L1 26.1 34.7 35.5 37.5 38.9
RGB L2 1x1 22.0 26.6 27.2 29.6 32.7
RGB L2 2x2 21.2 25.6 26.2 28.4 31.8
RGB L2 3x3 21.2 25.8 26.4 28.5 32.0
RGB L2 5x5 21.4 26.4 26.9 29.0 32.4
RGB L2 10x10 20.3 25.2 25.6 27.5 30.7
Label L1 30.7 39.7 40.2 41.7 38.0
Label L1 2 33.5 41.3 42.3 43.2 44.0
Label L1 3 33.9 42.0 42.7 43.3 43.4
Label L1 4 33.9 42.3 43.0 43.6 43.9
Label L2 1x1 26.6 30.8 31.4 34.0 35.3
Label L2 2x2 26.3 30.3 30.9 33.4 35.3
Label L2 3x3 26.2 31.0 31.5 33.9 35.8
Label L2 5x5 26.7 31.4 31.8 34.6 36.3
Label L2 10x10 26.6 30.5 31.1 34.1 36.3
Label L2 2 1x1 35.0 42.3 43.0 44.1 43.7
Label L2 2 2x2 34.8 42.6 43.5 44.7 45.1
Label L2 2 3x3 34.8 42.5 43.4 44.6 44.9
Label L2 2 5x5 34.6 42.7 43.5 44.9 45.3
Label L2 2 10x10 34.6 42.3 43.3 44.6 45.4
Label L2 3 1x1 33.9 41.2 41.9 43.1 43.1
Label L2 3 2x2 33.7 41.4 42.1 43.6 44.1
Label L2 3 3x3 33.7 41.6 42.1 43.5 44.0
Label L2 3 5x5 33.7 41.7 42.3 43.8 44.3
Label L2 3 10x10 33.7 41.2 41.8 43.3 44.1
Label L2 4 1x1 32.8 40.1 40.6 42.0 42.5
Label L2 4 2x2 32.8 40.1 40.7 42.4 42.8
Label L2 4 3x3 32.7 40.4 40.9 42.5 43.0
Label L2 4 5x5 32.7 40.4 40.9 42.7 43.0
Label L2 4 10x10 32.8 39.8 40.3 42.3 43.4
Label Extrapolation 34.7 11.6 12.8 14.0 16.8

Table 1: Quantitative results for spatial anticipation on the Cityscapes dataset [3]. RGB or
Label denote if color-SASNet or label-SASNet are used. L1 stands for pixel-wise loss and
L2 for the cell-wise loss. k is the kernel size and stride used to compute the L2 loss during
training. The third column indicates if the SASNet was applied gradually using 2, 3 or 4
steps. The fifth column is the pixel-wise evaluation using % IoU. The other columns are F1
scores expressed in % computed for the cell-wise evaluation. The size of the cells is specified
as c. The last row shows the result if the labels are extrapolated by label replication.
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first metric measures pixel-wise accuracy, the second metric relaxes the required localization
accuracy and requires only the prediction of categories occurring in cells. In addition, we
have proposed a neural network for spatial anticipation and investigated two different loss
functions. From our experimental evaluation, we conclude that the most effective configura-
tion uses two networks. The first one infers a pixel-wise segmentation within the visible area
and the second one anticipates categories outside of the image from the segmented image.
If the second network is applied gradually, the anticipation accuracy increases by a large
margin. In this configuration, training the second network using the cell-wise loss performs
for both evaluation metrics better than a pixel-wise loss. For the pixel-wise metric, it is most
effective to choose the smallest possible kernel size for the loss function. For the cell-wise
metric, the kernel size k = 5× 5 has shown to perform very well for any cell size used for
evaluation. Although we have demonstrated the anticipation capabilities of the proposed
approach, more research is required to achieve human performance. The proposed protocol
and evaluation measure will facilitate the research on spatial anticipation.
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