
Reconstructing Articulated Rigged Models

from RGB-D Videos

Dimitrios Tzionas1,2 Juergen Gall1

1University of Bonn 2MPI for Intelligent Systems
{tzionas,gall}@iai.uni-bonn.de

Abstract. Although commercial and open-source software exist to re-
construct a static object from a sequence recorded with an RGB-D sen-
sor, there is a lack of tools that build rigged models of articulated objects
that deform realistically and can be used for tracking or animation. In
this work, we fill this gap and propose a method that creates a fully
rigged model of an articulated object from depth data of a single sensor.
To this end, we combine deformable mesh tracking, motion segmentation
based on spectral clustering and skeletonization based on mean curva-
ture flow. The fully rigged model then consists of a watertight mesh,
embedded skeleton, and skinning weights.

Keywords: Kinematic Model Learning, Skeletonization, Rigged Model
Acquisition, Deformable Tracking, Spectral Clustering, Mean Curvature
Flow

1 Introduction

With the increasing popularity of depth cameras, the reconstruction of rigid
scenes or objects at home has become affordable for any user [1] and together
with 3D printers allows novel applications [2]. Many objects, however, are non-
rigid and their motion can be modeled by an articulated skeleton. Although
articulated models are highly relevant for computer graphic applications [3] in-
cluding virtual or augmented reality and robotic applications [4], there is no
approach that builds from a sequence of depth data a fully rigged 3D mesh with
a skeleton structure that describes the articulated deformation model.

In the context of computer graphics, methods for automatic rigging have
been proposed. In [3], for instance, the geometric shape of a static mesh is
used to fit a predefined skeleton into the mesh. More detailed human characters
including cloth simulation have been reconstructed from multi-camera video data
in [5]. Both approaches, however, assume that the skeleton structure is given.
On the contrary, the skeleton structure can be estimated from high-quality mesh
animations [6]. The approach, however, cannot be applied to depth data. At the
end, we have a typical chicken-and-egg problem. If a rigged model with predefined
skeleton is given the mesh deformations can be estimated accurately [7] and if
the mesh deformations are known the skeleton structure can be estimated [6].

2 Dimitrios Tzionas and Juergen Gall

In this paper, we propose an approach to address this dilemma and create a
fully rigged model from depth data of a single sensor. To this end, we first create
a static mesh model of the object. We then reconstruct the motion of the mesh in
a sequence captured with a depth sensor by deformable mesh tracking. Standard
tracking, however, fails since it maps the entire mesh to the visible point cloud.
As a result, the object is squeezed as shown in Figure 4. We therefore reduce the
thinning artifacts by a strong regularizer that prefers smooth mesh deformations.
Although the regularizer also introduces artifacts by oversmoothing the captured
motion, in particular at joint positions as shown for the pipe sequence in Figure 1,
the mesh can be segmented into meaningful parts by spectral clustering based
on the captured mesh motion as shown in Figure 5. The skeleton structure
consisting of joints and bones is then estimated based on the mesh segments and
mean curvature flow.

As a result, our approach is the first method that creates a fully rigged model
of an articulated object consisting of a watertight mesh, embedded skeleton, and
skinning weights from depth data. Such models can be used for animation, vir-
tual or augmented reality, or in the context of robot-object manipulation. We
perform a quantitative evaluation with five objects of varying size and deforma-
tion characteristics and provide a thorough analysis of the parameters.

2 Related work

Reconstructing articulated objects has attracted a lot of interest during the past
decade. Due to the popularity of different image sensors over the years, research
focus has gradually shifted from reconstructing 2D skeletons from RGB data
[8–11] to 3D skeletons from RGB [12–15] or RGB-D data [16, 4, 17].

A popular method for extracting 2D skeletons from videos uses a factorization-
based approach for motion segmentation. In [8, 9] articulated motion is modeled
by a set of independent motion subspaces and the joint locations are obtained
from the intersections of connected motion segments. A probabilistic graphical
model has been proposed in [10]. The skeleton structure is inferred from 2D fea-
ture trajectories by maximum likelihood estimation and the joints are located in
the center of the motion segments. Recently, [11] combine a fine-to-coarse mo-
tion segmentation based on iterative randomized voting with a distance function
based on contour-pruned skeletonization. The kinematic model is inferred with
a minimum spanning tree approach.

In order to obtain 3D skeletons from RGB videos, structure-from-motion
(SfM) approaches can be used. [12] perform simultaneous segmentation and
sparse 3D reconstruction of articulated motion with a cost function minimiz-
ing the re-projection error of sparse 2D features, while a spatial prior favors
smooth segmentation. The method is able to compute the number of joints and
recover from local minima, while occlusions are handled by incorporating par-
tial sequences into the optimization. In contrast to [18], it is able to reconstruct
complex articulated structures. [15] use ray-space optimization to estimate 3D
trajectories from 2D trajectories. The approach, however, assumes that the num-

Reconstructing Articulated Rigged Models from RGB-D Videos 3

ber of parts is known. In [13, 14] markers are attached to the objects to get precise
3D pose estimations of object parts. They use a probabilistic approach with a
mixture of parametrized and parameter-free representations based on Gaussian
processes. The skeleton structure is inferred by computing the minimum span-
ning tree over all connected parts.

The recent advances in RGB-D sensors allow to work fully in 3D. An early
approach [16] uses sparse KLT and SIFT features and groups consistent 3D
trajectories with a greedy approach. The kinematic model is inferred by sequen-
tially fitting a prismatic and a rotational joint with RANSAC. In [4] the 3D
trajectories are clustered by density-based spatial clustering. For each cluster,
the 3D pose is estimated and the approach [14] is applied to infer the skeleton
structure. Recently, [17] presented a method that combines shape reconstruction
with the estimation of the skeleton structure. While these approaches operate
only with point clouds, our approach generates fully rigged models consisting of
a watertight mesh, embedded skeleton, and skinning weights.

3 Mesh motion

Our approach consists of three steps. We first create a watertight mesh of the
object using a depth sensor that is moved around the object while the object
is not moving. Creating meshes from static objects can be done with standard
software. In our experiments, we use Skanect [19] with optional automatic mesh
cleaning using MeshLab [20]. In the second step, we record a sequence where the
object is deformed by hand-object interaction and track the mesh to obtain the
mesh motion. In the third step, we estimate the skeleton structure and rig the
model. The third step will be described in Section 4.

3.1 Preprocessing

For tracking, we preprocess each frame of the RGB-D sensor. We first discard
points that are far away and only keep points that are within a 3D volume.
This is actually not necessary but it avoids unnecessary processing like normal
computation for irrelevant points. Since the objects are manipulated by hands,
we discard the hands by skin color segmentation on the RGB image using a
Gaussian mixtures model (GMM) [21]. The remaining points are then smoothed
by a bilateral filter [22] and normals are computed as in [23].

3.2 Mesh tracking

For mesh tracking, we capitalize on a Laplacian deformation framework simi-
lar to [24]. While in [25, 7] a Laplacian deformation framework was combined
with skeleton-based tracking in the context of a multi-camera setup, we use the
Laplacian deformation framework directly for obtaining the mesh motion of an
object with unknown skeleton structure. Since we use only one camera and not

4 Dimitrios Tzionas and Juergen Gall

an expensive multi-camera setup, we observe only a portion of the object and
the regularizer will be very important as we will show in the experiments.

For mesh tracking, we align the mesh M with the preprocessed depth data
D by minimizing the objective function

E(M, D) = Esmooth(M) + γdef

(

Emodel→data(M, D) + Edata→model(M, D)

)

.

(1)

with respect to the vertex positions of the mesh M. The objective function con-
sists of a smoothness term Esmooth that preserves geometry by penalizing changes
in surface curvature, as well as two data terms Emodel→data and Edata→model that
align the mesh model to the observed data and the data to the model, respec-
tively. The impact of the smoothness term and the data terms is steered by the
parameter γdef .

For the data terms, we use the same terms that are used for articulated hand
tracking in [26]. For the first term

Emodel→data(M, D) =
∑

i

‖Vi −Xi‖
2
2 (2)

we establish correspondences between the visible vertices Vi of the mesh M and
the closest points Xi of the point cloud D and minimize the distance. We discard
correspondences for which the angle between the normals of the vertex and the
closest point is larger than 45◦ or the distance between the points is larger than
10 mm.

The second data term

Edata→model(M, D) =
∑

i

‖Vi × di −mi‖
2
2 (3)

minimizes the distance between a vertex Vi and the projection ray of a depth
discontinuity observed in the depth image. To compute the distance, the pro-
jection ray of a 2D point is expressed by a Plücker line [27] with direction di

and moment mi. The depth discontinuities are obtained as in [26] by an edge
detector applied to the depth data and the correspondence between a depth dis-
continuity and a vertex are obtained by searching the closest projected vertex
for each depth discontinuity.

Due to the partial view of the object, the data terms are highly under-
constrained. This is compensated by the smoothness term that penalizes changes
of the surface curvature [24]. The term can be written as

Esmooth(M) =
∑

i

‖LVi − LVi,t−1‖
2
2 (4)

Reconstructing Articulated Rigged Models from RGB-D Videos 5

Fig. 1: Tracked mesh with the deformable tracker presented in Section 3.2 and
the corresponding 3D vertex trajectories. We present images for the sequences
“spray” and “pipe 1/2” showing the temporal evolution at 20%, 40%, 60%, 80%
and 100% of the sequence.

where Vi,t−1 is the previous vertex position. In order to model the surface cur-
vature, we employ the cotangent Laplacian [24] matrix L given by

Lij =

∑

Vk∈N1(Vi)
wik , i = j

−wij , Vj ∈ N1(Vi)

0 , otherwise ,

where wij =
1

2|Ai|
(cotαij+cotβij)

(5)
where N1(Vi) denotes the set of one-ring neighbor vertices of vertex Vi. The
weight wij for an edge in the triangular mesh between two vertices Vi and Vj

depends on the cotangents of the two angles αij and βij opposite of the edge
(i, j) and the size of the Voronoi cell |Ai| that is efficiently approximated by half
of the sum of the triangle areas defined by N1(Vi).

We minimize the least squares problem (1) by solving a large but highly
sparse linear system using sparse Cholesky decomposition. For each frame, we
use the estimate of the previous frame for initialization and iterate between
computing correspondences and optimizing (1) 15 times.

4 Kinematic model acquisition

After having estimated the mesh motion as described in Section 3, we have for
each vertex the trajectory Ti. We use the trajectories together with the shape of
the mesh M to reconstruct the underlying skeleton. To this end, we first segment
the trajectories as described in Section 4.1 and then infer the skeleton structure,
which will be explained in Section 4.2.

4.1 Motion segmentation

In contrast to feature based trajectories, the mesh motion provides trajectories
of the same length and a trajectory for each vertex, even if the vertex has never
been observed in the sequence due to occlusions. This means that clustering the
trajectories also segments the mesh into rigid parts.

Similar to 2D motion segmentation approaches for RGB videos [28], we define
an affinity matrix based on the 3D trajectories and use spectral clustering for

6 Dimitrios Tzionas and Juergen Gall

motion segmentation. The affinity matrix

Φij = exp (−λd(Ti, Tj)) (6)

is based on the pairwise distance between two trajectories Ti and Tj . Φij = 1
if the trajectories are the same and close to zero if the trajectories are very
dissimilar. As in [28], we use λ = 0.1.

To measure the distance between two trajectories Ti and Tj , we measure the
distance change of two vertex positions Vi and Vj within a fixed time interval.
We set the length of the time interval proportional to the observed maximum
displacement, i.e.

dt = 2max
i,t

‖Vi,t −Vi,t−1‖2. (7)

Since the trajectories are smooth due to the mesh tracking as described in Sec-
tion 3.2, we do not have to deal with outliers and we can take the maximum
displacement over all vertices. The object, however, might be deformed only at
a certain time interval of the entire sequence. We are therefore only interested
in the maximum distance change over all time intervals, i.e.

dv(Ti, Tj) = max
t

|‖Vi,t −Vj,t‖2 − ‖Vi,t−dt −Vj,t−dt‖2| . (8)

This means that if two vertices belong to the same rigid part, the distance
between them should not change much over time. In addition, we take the change
of the angle between the vertex normals N into account. This is measured in the
same way as maximum over the intervals

dn(Ti, Tj) = max
t

∣

∣arccos
(

NT
i,tNj,t

)

− arccos
(

NT
i,t−dtNj,t−dt

)∣

∣ . (9)

The two distance measures are combined by

d(Ti, Tj) = (1 + dn(Ti, Tj)) d
v(Ti, Tj). (10)

The distances are measured in mm and the angles in rad. Adding 1 to dn was
necessary since dn can be close to zero despite of large displacement changes.

Based on (6), we build the normalized Laplacian graph [29]

L = D− 1

2 (D − Φ)D− 1

2 (11)

where D is an n× n diagonal matrix with

Dii =
∑

j

Φij (12)

and perform eigenvalue decomposition of L to get the eigenvalues λ1, . . . , λn,
(λ1 ≤ · · · ≤ λn), as well as the corresponding eigenvectors v1, . . . ,vn. The num-
ber of clusters k is determined by the number of eigenvalues below a threshold
λthresh and the final clustering of the trajectories is then obtained by k-means
clustering [29] on the rows of the n× k matrix F = [v1 . . . vk].

Reconstructing Articulated Rigged Models from RGB-D Videos 7

(a) (b) (c) (d) (e) (f)

Fig. 2: The steps of our pipeline. (a) Initial mesh (b) Motion segments (c) Mean

curvature skeleton where the endpoints are shown with cyan, the junction points
with yellow, the virtual point due to collision with white and the motion joints
with magenta (d) Initial skeleton (e) Refined skeleton after removal of redundant
bone (f) Final skeleton after replacement of the colliding bone with two non-
colliding ones and a virtual joint.

In practice, we sample uniformly 1000 vertices from the mesh to compute
the affinity matrix. This turned out to be sufficient while reducing the time to
compute the matrix. For each vertex that has not been sampled, we compute
the closest sampled vertex on the mesh and assign it to the same cluster. This
results in a motion segmentation of the entire mesh as shown in Figure 2b.

4.2 Kinematic topology

Given the segmented mesh, it remains to determine the joint positions and topol-
ogy of the skeleton. To obtain a bone structure, we first skeletonize the mesh
by extracting the mean curvature skeleton (MCS) based on the mean curvature
flow [30] that captures effectively the topology of the mesh by iteratively con-
tracting the triangulated surface. The red 3D curve in Figure 2c shows the mean
curvature skeleton for an object. In order to localize the joints, we compute the
intersecting boundary of two connected mesh segments using a half-edge repre-
sentation. For each intersecting pair of segments, we compute the centroid of the
boundary vertices and find its closest 3D point on the mean curvature skeleton.
In this way, the joints are guaranteed to lie inside the mesh. In order to create
the skeleton structure with bones, we first create auxiliary joints without any
degree of freedom at the points where the mean curvature skeleton branches or
ends as shown in Figure 2c. After all 3D joints on the skeleton are determined, we
follow the mean curvature skeleton and connect the detected joints accordingly
to build a hierarchy of bones that defines the topology of a skeleton structure.

Although the number of auxiliary joints usually does not matter, we reduce
the number of auxiliary joints and irrelevant bones by removing bones that link
an endpoint with another auxiliary joint if they belong to the same motion seg-
ment. The corresponding motion segment for each joint can be directly computed
from the mean curvature flow [30]. We finally ensure that each bone is inside the

8 Dimitrios Tzionas and Juergen Gall

Algorithm 1: Overview of the steps of our algorithm.
Deformable motion capture

- Perform deformable tracking of the object Section 3.2 - Eq. (1)

Motion segmentation of the object

- Generate dense vertex trajectories from tracking result Section 4.1
- Sample 1000 trajectories for tractability Section 4.1
- Build an affinity matrix of vertex trajectories Section 4.1 - Eq. (6-10)
- Segment mesh by spectral clustering Section 4.1 - Eq. (11)

Kinematic model acquisition for the object

- Infer joints at intersections of mesh segments Section 4.2
- Infer skeleton topology Section 4.2
- Compute skinning weights Section 4.2

mesh. To this end, we detect bones colliding with the mesh with a collision de-
tection approach based on bounding volume hierarchies. We then subdivide each
colliding bone in two bones by adding an additional auxiliary joint at the middle
of the mean curvature skeleton that connects the endpoints of the colliding bone.
The process is repeated until all bones are inside the mesh. In our experiments,
however, one iteration was enough. This procedure defines the refined topology
of the skeleton that is already embedded in the mesh. The skinning weights are
then computed as in [3].

As a result, we obtain a fully rigged model consisting of a watertight mesh,
an embedded skeleton structure, and skinning weights. The entire steps of the
approach are summarized in Algorithm 1. Results for a few objects are shown
in Figure 5.

5 Experiments

We quantitatively evaluate our approach for five different objects shown in Ta-
ble 1: the “spray”, the “donkey”, the “lamp”, as well as the “pipe 1/2” and
“pipe 3/4” which have a joint at 1/2 and 3/4 of their length, respectively. We
acquire a 3D template mesh using the commercial software skanect [19] for the
first three objects, while for the pipe we use the publicly available template
model used in [26]. All objects have the same number of triangles, so the av-
erage triangle size varies from 3.7mm2 for the “spray”, 13.8 for the “donkey”,
24.8 for the “lamp” and 4.4 for the “pipe” models. We captured sequences of the
objects while deforming them using a Primesense Carmine 1.09 RGB-D sensor.
The recorded sequences, calibration data, scanned 3D models, deformable mo-
tion data, as well as the resulting models and respective videos for the proposed
parameters are available online1.

We perform deformable tracking (Section 3.2) to get 3D dense vertex trajec-
tories as depicted in Figure 1. Deformable tracking depends on the weight γdef
in the objective function (1) that steers the influence of the smoothness and data
terms. As depicted in Figure 4, a very low γdef gives too much weight to the

1 http://files.is.tue.mpg.de/dtzionas/Skeleton-Reconstruction

Reconstructing Articulated Rigged Models from RGB-D Videos 9

Fig. 3: Each object is scanned in four target poses with increasing difficulty and
pose estimation from an initial state is performed for evaluation while spanning
the parameter space of (γdef , λthresh). For the “donkey” object both a front and
a top view are presented.

Fig. 4: Deformable tracking for γdef = 0.001, 0.005, 0.01, 0.05, 0.1 (from left
to right) that steers the influence of the smoothness and data terms in Equation
(1). We depict the front (top) and side view (bottom) for the last frame of the
sequences “spray” and “donkey”.

smoothness term and prevents an accurate fitting to the input data, while a big
γdef results in over-fitting to the partial visible data and a strong thinning effect
can be observed. The thinning gets more intense for an increasing γdef .

Despite of γdef , our approach also depends on the eigenvalue threshold λthr

for spectral clustering. To study the effect of the parameters, we created a test
dataset. For each object, we scanned the objects in four different poses. To this
end, we fixed the object in a pose with adhesive tape and reconstructed it by
moving the camera around the object. The target poses of the objects are shown
in Figure 3. To measure the quality of a rigged model for a parameter setting,
we align the model M(θ) parametrized by the rotations of the joints and the
global rigid transformation to the reconstructed object O from an initial pose.
For the alignment, we use only the inferred articulated model, i.e. we estimate
the rigid transformation and the rotations of the joints of the inferred skeleton.
As data term, we use

1

|M(θ)|+ |O|

∑

V(θ)∈M(θ)

‖V(θ)−VO‖
2
2 +

∑

VO∈O

‖VO −V(θ)‖22

 (13)

based on the closest vertices from mesh M(θ) to O and vice versa. This measure
is also used to measure the 3D error in mm after alignment.

Table 1 summarizes the average 3D vertex error for various parameter set-
tings, with the highlighted values indicating the best qualitative results for each

10 Dimitrios Tzionas and Juergen Gall

(0.005, 0.98) (0.005, 0.70) (0.050, 0.70) (0.050, 0.70)

(0.005, 0.70)

Fig. 5: Results for the best configuration (γdef , λthr) for each object. The images
show the motion segments and the inferred 3D skeleton, where the joints with
DoF are depicted with red color.

object, while Figure 5 shows the motion segments and the acquired skeletons
for the best configuration. The optimal parameter γdef seems to depend on the
triangle size since the smoothness term is influenced by the areas of the Voronoi
cells |Ai| (5) and therefore by the areas of the triangles. The objects “Donkey”
and “Lamp” have large triangles (> 10mm2) and prefer γdef = 0.05, while the
objects with small triangles (< 10mm2) perform better for γdef = 0.005. Spec-
tral clustering on the other hand works well for λthr = 0.7 when reasonably sized

parts undergo a pronounced movement, however, a higher value of λthr = 0.98
is better for small parts undergoing a small motion compared to the size of the
object like the handle of the “spray”. As shown in Figure 6, a high threshold
results in an over-segmentation and increases the number of joints. An over-
segmentation is often acceptable as we see for example in Figure 2b or in Figure
5 for the “spray” and the “lamp”. In general, a slight over-segmentation is not
problematic for many applications since joints can be disabled or ignored for
instance for animation. A slight increase of the degrees of freedom also does
not slow down articulated pose estimation, it even yields sometimes a lower
alignment error as shown in Table 1.

We also evaluated our method on the public sequences “Bending a Pipe” and
“Bending a Rope” of [26], in which the skeleton was manually modeled with 1
and 35 joints, respectively. As input we use the provided mesh of each object and
the RGB-D sequences to infer the skeleton. We use the tracked object meshes
of [26] as ground-truth and measure the error as in (13), but averaged over
all frames. We first evaluate the accuracy of the deformable tracking in Table
2, which performs best with γdef = 0.005 as in the previous experiments. If
we track the sequence with the inferred articulated model using a point-to-plane
metric as in [26], the error decreases. While the best spectral clustering threshold
λthr for the pipe is again 0.70, the rope performs best for 0.98 due to the small
size of the motion segments and the smaller motion differences of neighboring
segments. We also report the error when the affinity matrix is computed only
based on dv without dn (10). This slightly increases the error for the pipe with
optimal parameters. The motion segments and the acquired skeletons for the
best configurations are also depicted in Table 2.

Reconstructing Articulated Rigged Models from RGB-D Videos 11

6 Conclusion

We presented an approach that generates fully rigged models consisting of a wa-
tertight mesh, an embedded skeleton and skinning weights that can be used out
of the box for articulated tracking or animation. In that respect we operate fully
in 3D capitalizing on deformable tracking, spectral clustering and skeletoniza-
tion based on mean curvature flow. The thorough evaluation of the parameters
provides a valuable intuition about the important factors and opens up possi-
bilities for further generalization in future work. For instance, a regularizer that
is adaptive to the areas of the triangles can be used for deformable tracking
to compensate seamlessly for the varying triangle sizes across different objects.
Furthermore, we have shown in our experiments that the proposed approach
generates nicely working rigged models and has prospects for future practical
applications.

7 Acknowledgements

The authors acknowledge financial support by the DFG Emmy Noether program
(GA 1927/1-1).

References

1. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense
surface mapping and tracking. In: International Symposium on Mixed and Aug-
mented Reality (ISMAR). (2011)

2. Sturm, J., Bylow, E., Kahl, F., Cremers, D.: Copyme3d: Scanning and printing
persons in 3d. In: German Conference on Pattern Recognition (GCPR). (2013)

3. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM
Transactions on Graphics (TOG) 26(3) (2007)

4. Pillai, S., Walter, M.R., Teller, S.: Learning articulated motions from visual demon-
stration. In: Robotics: Science and Systems (RSS). (2014)

5. Stoll, C., Gall, J., de Aguiar, E., Thrun, S., Theobalt, C.: Video-based reconstruc-
tion of animatable human characters. ACM Transactions on Graphics (TOG)
29(6) (2010) 139:1–139:10

6. De Aguiar, E., Theobalt, C., Thrun, S., Seidel, H.P.: Automatic conversion of mesh
animations into skeleton-based animations. Computer Graphics Forum (CGF)
27(2) (2008) 389–397

7. Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H.P., Theobalt, C.: Markerless mo-
tion capture of multiple characters using multiview image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 35(11) (2013)
2720–2735

8. Yan, J., Pollefeys, M.: Automatic kinematic chain building from feature trajectories
of articulated objects. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2006)

9. Yan, J., Pollefeys, M.: A factorization-based approach for articulated nonrigid
shape, motion and kinematic chain recovery from video. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 30(5) (2008) 865–877

12 Dimitrios Tzionas and Juergen Gall

Table 1: Evaluation of our approach using the target poses shown in Figure 3.
We create a rigged model while spanning the parameter space for the deformable
tracking weight γdef and the spectral clustering threshold λthr. The rigged model
is aligned to the target poses by articulated pose estimation. We report the
average vertex error in mm.

❅
❅γdef

λthr
0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.98

S
p
ra
y

0.001 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
0.005 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.4
0.01 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.4
0.05 1.9 1.9 1.9 1.9 1.9 1.9 1.5 1.5
0.1 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9

P
ip
e
1
/
2 0.001 10.0 2.4 2.4 2.4 4.5 3.4 3.3 3.6

0.005 2.4 2.4 2.4 2.4 2.4 4.6 3.8 2.6
0.01 2.7 2.7 2.7 4.7 3.4 3.7 4.3 4.4
0.05 2.6 2.6 3.5 2.7 3.6 3.6 3.6 3.6
0.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

P
ip
e
3
/
4 0.001 8.3 5.1 5.1 5.1 2.5 3.0 2.8 2.4

0.005 2.4 2.4 2.4 2.4 3.6 2.5 2.6 2.4
0.01 2.4 2.4 2.4 2.4 2.8 2.4 2.4 2.4
0.05 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3
0.1 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3

D
o
n
k
e
y

0.001 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
0.005 6.7 6.7 6.7 6.7 6.7 6.7 6.7 5.7
0.01 6.7 6.7 6.7 6.7 5.8 5.8 4.8 4.1
0.05 4.6 5.1 5.0 4.5 4.4 3.9 3.6 3.6
0.1 6.3 5.1 5.0 5.1 3.8 4.0 4.0 4.0

L
a
m
p

0.001 12.9 12.9 12.9 12.9 12.9 12.9 11.8 11.8
0.005 8.2 6.1 6.0 4.7 5.1 4.9 4.6 4.6
0.01 6.0 6.0 4.6 5.0 5.0 4.7 4.7 4.6
0.05 11.8 4.7 4.7 4.7 4.7 4.7 5.2 4.8
0.1 12.6 12.8 5.2 5.3 4.7 4.7 4.6 4.6

10. Ross, D.A., Tarlow, D., Zemel, R.S.: Learning articulated structure and motion.
International Journal of Computer Vision (IJCV) 88(2) (2010) 214–237

11. Chang, H.J., Demiris, Y.: Unsupervised learning of complex articulated kinematic
structures combining motion and skeleton information. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). (2015)

12. Fayad, J., Russell, C., Agapito, L.: Automated articulated structure and 3d shape
recovery from point correspondences. In: International Conference on Computer
Vision (ICCV). (2011)

13. Sturm, J., Pradeep, V., Stachniss, C., Plagemann, C., Konolige, K., Burgard, W.:
Learning kinematic models for articulated objects. In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). (2009)

14. Sturm, J., Stachniss, C., Burgard, W.: A probabilistic framework for learning
kinematic models of articulated objects. Journal of Artificial Intelligence Research
(JAIR) 41(2) (2011) 477–626

15. Yücer, K., Wang, O., Sorkine-Hornung, A., Sorkine-Hornung, O.: Reconstruction
of articulated objects from a moving camera. In: ICCVW. (2015)

16. Katz, D., Kazemi, M., Bagnell, A.J., Stentz, A.: Interactive segmentation, tracking,
and kinematic modeling of unknown 3d articulated objects. In: IEEE International
Conference on Robotics and Automation (ICRA). (2013)

Reconstructing Articulated Rigged Models from RGB-D Videos 13

(0.005, 0.70) (0.05, 0.70) (0.005, 0.98) (0.05, 0.98)

Fig. 6: Results for the four configurations (γdef , λthr) that arise from the pro-
posed parameters. The images show for each object the motion segments and
the inferred 3D skeleton, where the joints with DoF are depicted with red color.

17. Mart́ın-Mart́ın, R., Höfer, S., Brock, O.: An integrated approach to visual per-
ception of articulated objects. In: IEEE International Conference on Robotics and
Automation (ICRA). (2016)

18. Tresadern, P., Reid, I.: Articulated structure from motion by factorization. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2005)

19. Skanect: http://skanect.occipital.com Accessed: 19/08/2016.

20. MeshLab: http://meshlab.sourceforge.net Accessed: 19/08/2016.

21. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection.
International Journal of Computer Vision (IJCV) 46(1) (2002) 81–96

22. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal pro-
cessing approach. International Journal of Computer Vision (IJCV) 81(1) (2009)
24–52

23. Holzer, S., Rusu, R.B., Dixon, M., Gedikli, S., Navab, N.: Adaptive neighbor-
hood selection for real-time surface normal estimation from organized point cloud
data using integral images. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). (2012)

14 Dimitrios Tzionas and Juergen Gall

Table 2: Evaluation of our method and resulting kinematic models for the public
sequences “Bending a Pipe” and “Bending a Rope” of [26]. We report the average
vertex error in mm.

❅
❅❅γdef

λthr

0.70 0.98 0.70 0.98
P
ip
e 0.005 2.6 26.7 2.9 22.1 4.5

0.05 12.6 12.6 12.7 12.7 15.9

articulated articulated deform.

with dn without dn

❅
❅❅γdef

λthr

0.70 0.98 0.70 0.98

R
o
p
e 0.005 2.5 1.1 2.4 1.1 2.6

0.05 141.0 141.0 193.8 193.8 nan

articulated articulated deform.

with dn without dn

24. Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE
Transactions on Visualization and Computer Graphics (TVCG) 14(1) (2008) 213–
230

25. Gall, J., Stoll, C., De Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion
capture using joint skeleton tracking and surface estimation. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). (2009)

26. Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing
hands in action using discriminative salient points and physics simulation. In:
International Journal of Computer Vision (IJCV). Volume 118. (2016) 172–193

27. Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. In: Visual Analysis
of Humans: Looking at People. Springer (2011) 139–170

28. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories.
In: European Conference on Computer Vision (ECCV). (2010)

29. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems NIPS. (2002)

30. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons.
In: Computer Graphics Forum (CGF). Volume 31. (2012) 1735–1744

