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Abstract

In recent years, human pose estimation has greatly benefited from deep learning and
huge gains in performance have been achieved. The trend to maximise the accuracy on
benchmarks, however, resulted in computationally expensive deep network architectures
that require expensive hardware and pre-training on large datasets. This makes it diffi-
cult to compare different methods and to reproduce existing results. In this paper, we
therefore propose an efficient deep network architecture that can be efficiently trained on
mid-range GPUs without the need of any pre-training. Despite the low computational
requirements of our network, it is on par with much more complex models on popular
benchmarks for human pose estimation.

1 Introduction
Convolutional networks have raised the bar substantially for many computer vision bench-
marks. Human pose estimation is such an example where methods based on convolutional
networks dominate the leader boards [3, 13]. Despite the recent success in human pose es-
timation, a direct comparison between the architectures remains difficult. For architectures
that do not provide the source code for training and testing, the reproducibility of the results
can be very difficult due to small details that might be essential for the performance, such
as the used image resolution or the exact form of data augmentation. Very often, pre-trained
models are used that are fine-tuned on the benchmark datasets, making it difficult to com-
pare them with methods that are trained from scratch on benchmarks and therefore on less
training data. Another issue is the increasing complexity of the models for human pose es-
timation. Despite the impressive accuracy they achieve, computationally expensive network
architectures with a large memory footprint can be impractical for many applications since
they require high-end graphics cards.

In this work, we propose an efficient network architecture for human pose estimation
that exploits the best current design choices for network architectures with a low memory
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footprint and we train it using best-practice ingredients for efficient learning. An important
design choice is to learn features in different layers at multiple scales. This has been recently
exploited in the context of classification by Szegedy et al. [25] through the introduction of
inception layers. Surprisingly, very little attention has been paid on exploiting this concept
for human pose estimation. Similarly, learning features at multiple image resolutions has
been shown to be very effective for human pose estimation [27], as it helps the network to use
a larger context for difficult body joints like wrists and ankles. In our network, we combine
both ideas to achieve maximum performance. Another important aspect is the use of features
from the middle layers in addition to features from the last layer. While coarse features
from the last layer are very good for classification but poor for localisation due to pooling,
features from the middle layers are better for localisation. Long et al. [17] exploited this
for semantic segmentation and [10] used it for object localisation. Similarly, using context
around features from the last layer has shown to be very effective in the context of semantic
segmentation [16]. Our network also exploits context around features from the last layer
along with features from a middle layer. Other recent advances in deep learning, e.g., Adam
optimiser [15], exponential learning rate decay, batch normalisation [12] and extensive data
augmentation, also have shown to provide further benefits for the overall performance. We
therefore exploit the above ingredients to add additional gains to the performance.

Based on the design choices, we propose a network architecture for human pose esti-
mation that is efficient to train and has a low memory footprint such that a mid-range GPU
is sufficient. Yet, our network architecture achieves state-of-the-art accuracy on the most
popular benchmarks for human pose estimation, indicating that very complex architectures
might not be needed for the task. For best comparison and reproducibility, we evaluate the
network using the protocols of state-of-the-art benchmarks without any pre-training or post-
processing. The learned models for all benchmarks and the source code for training and
testing are publicly available1 and serve as an up-to-date baseline for more complex models.

2 Related Work

Human pose estimation has been intensively studied in the last decades. The classical ap-
proaches are based on the pictorial structure model [1, 2, 7, 9, 13, 18, 19, 32] that uses a
tree-structured graphical model to encode spatial dependencies between neighbouring joints.
These approaches have shown to be successful for many applications but they can suffer
from double counting, for instance, in case of occlusions. Another line of research is based
on hierarchical models [24, 26] that first detect larger body parts in the image and then condi-
tion the detection of smaller body parts on the detected larger body parts. Complex non-tree
models [23] have also been used that model spatial dependencies between unconnected body
parts. Loopy belief propagation is then used for approximate inference to predict the joint
positions in the image. Recently, sequential prediction machines [21] have been proposed
that combine the benefit of modelling complex spatial dependencies between joints with an
efficient inference procedure.

Approaches based on CNNs became popular in the last two years. Toshev et al. [29] first
used CNNs to directly regress the positions of body joints. Tompson et al. [27] have shown
that predicting belief maps as opposed to point estimates of joints improves accuracy. In
their later work, Tompson et al. [28] further improved performance by introducing a cascade

1https://web-info8.informatik.rwth-aachen.de/software/pose-cnn
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Figure 1: (a) Proposed fully convolutional GoogLeNet (FCGN), which is an adaptation of
the batch-normalised inception network [12]. (b) The proposed multi-resolution network
combines two FCGNs. One takes the full resolution image as input and one takes a half
resolution image as input.

architecture that compensates for the negative effect of pooling. In [4] the joint positions are
not directly predicted, but an iterative procedure is used to refine the pose step by step until it
converges to a pose configuration. While the majority of approaches estimates the pose of a
single person, multi-person pose estimation is addressed in [20]. Very recently, convolutional
pose machines have been proposed that stack multiple CNNs where each CNN refines the
pose [30]. The method achieves very accurate pose estimates, but it is very expensive to train
and requires 6GB of GPU memory. In contrast, our network is fast to train and requires only
3GB which makes our network also suitable for mid-range GPUs like GTX980.

3 Fully Convolutional Deep Network for Human Pose
Estimation

For 2D human pose estimation, the positions of all body joints in an image need to be pre-
dicted. Recent approaches [27, 29] have shown that regressing point estimates for body joints
may be sub-optimal and a better strategy is to use fully convolutional deep architectures to
predict dense belief maps for each body joint. If not well designed, fully convolutional
networks, however, can be very inefficient in terms of memory usage and training time.
We therefore propose an efficient fully convolutional network for predicting belief maps for
body joints. To this end, we adapt the batch-normalised inception network [12], which was
proposed for image classification and is based on the GoogLeNet architecture.
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3.1 Network Architecture
Our adaptation of [12] is illustrated in Figure 1(a), which we refer in this work as Fully
Convolutional GoogLeNet (FCGN). We use the first 17 layers of [12] and remove the average
pooling, drop-out, linear and soft-max layers from the last stages of the network. We add a
skip connection to combine feature maps from layer 13 with feature maps from layer 17. We
upsample the feature maps from layer 17 to the resolution of the feature maps from layer 13
by a deconvolution filter with size 2× 2 and stride 2. The output of the FCGN consists of
feature maps from layer 13 and 17 that have 16 times lower resolution than the input image
due to pooling.

The proposed multi-resolution network for pose estimation is illustrated in Figure 1(b). It
uses two FCGNs with shared weights, where each FCGN takes the same image at a different
resolution and produces feature maps as previously described. The feature maps obtained
from the half resolution image are upsampled to the resolution of the feature maps extracted
from the full resolution image by a deconvolution filter with size 2× 2 and stride 2. The
feature maps of the half resolution and full resolution FCGN are then directly upsampled
to obtain belief maps for different body joints by using a larger deconvolution filter of size
32×32 and stride 16. Due to the large deconvolution filter, we implicitly exploit the context
of neighbouring pixels in the feature maps for predicting belief maps for joints. The belief
maps are then normalised by using a sigmoid function. We also use spatial drop out [28]
before upsampling to further regularise our network.

3.2 Training
We denote a training example as (I,{B j}). While I denotes the image, which is in our
experiments of size 256×256, B j denotes the ground-truth 2D belief map for a joint j. Each
belief map has the same size as the image and is created by setting all pixels with distance
larger than 8 pixels to the joint j to 0 and all other pixels to 1, as shown in Figure 2(a).
Given the training samples N = {(I,{B j})}, we minimise the binary cross entropy between
the ground-truth and predicted belief maps for k joints in each training image I as follows:

argmin
w
−

k

∑
j=1

∑
x,y

B j(x,y) log(B̂w
j (x,y))+(1−B j(x,y)) log(1− B̂w

j (x,y)), (1)

where w and B̂w
j are the parameters of our network and the predicted belief maps, respec-

tively. The weights of the network are then learned using back propagation and the Adam
optimiser [15]. At inference, we take the maximum scoring location in each predicted belief
map as the final joint position for each joint.

3.3 Data Augmentation
Data augmentation is an essential ingredient for deep networks and has a significant impact
on performance. In contrast to image classification, we do not only transform the image but
also the joint annotations. We apply the following transformation to the training images:

W =

1 0 cx
0 1 cy
0 0 1

rscosθ −ssinθ 0
ssinθ scosθ 0

0 0 1

1 0 −xp + tx
0 1 −yp + ty
0 0 1

 , (2)
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Figure 2: (a) Image with ground truth binary belief maps for all joints. (b) Illustration of the
data augmentation procedure: (i) original image (ii) person shifted to the top left (iii) warped
image (iv) person shifted back to centre of the cropped image.

The first transformation on the right hand side moves the person centred at (xp,yp) to the
origin and applies a random translation (tx, ty) to it. The second transformation applies ran-
dom scaling s, rotation θ and reflection r and the last transformation shifts the warped person
back to the centre (cx,cy) of the cropped image. Figure 2(b) illustrates the procedure. For
each training image, we generate and apply random transformations W . If one or more joints
of the person are outside the image, we discard the transformation and replace it with another
random transformation.

4 Experiments
We evaluate our network on standard benchmarks for human pose estimation, namely the
MPII Human Pose (MPII) dataset [3], the Leeds Sports Pose (LSP) dataset [13, 14] and
the Frames Labelled In Cinema (FLIC) datasets [22]. Some qualitative results are shown in
Figure 3.

Our experimental settings are as follows: We crop the images in all datasets to a res-
olution of 256× 256 pixels. For the training images, we crop around the person’s centre,
computed as the midpoint between maximum and minimum ground-truth joint positions in
x,y directions. For the test images, we crop around the provided rough location when avail-
able and around the centre of the image otherwise. We train the network from scratch without
any pre-training with a learning rate of 0.00092 using a stair case decay of 0.95 applied after
73 epochs. We use a batch size of 8. For Adam, we use β1 = 0.9 and ε = 0.1. The ground-
truth belief maps are created by setting all pixels within an 8 pixel distance to the annotated
joint to 1. We train the network for 120 epochs for each dataset. For data augmentation, we
transform each training image 120 times. The scaling parameter s∈ [0.5,1.5], the translation
parameters tx,y ∈ [−20,20] and the rotation parameter θ ∈ [−20◦,20◦] are randomly selected
with uniform probability. Horizontal flipping r is applied with probability 0.5.

We use the Torch 7 [6] framework for our experiments. Unless otherwise stated, we
report results for the above-mentioned settings. For evaluation, we use the PCK measure
[22] for the LSP and FLIC datasets and PCKh [3] for the MPII dataset.

4.1 FLIC dataset
The FLIC [22] dataset consists of 3,987 training images and 1,016 test images. Our model
takes 10 hours to train on the FLIC dataset using a GTX 980 GPU. Following the standard
practice, we report PCK @ 0.2 only for wrists and elbows. Our quantitative results are given
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Method Elbows Wrists
Tompson et al. [28] 93.1 89.0
Toshev et al. [29] 92.3 82.0
Chen et al. [5] 95.3 92.4
Wei et al. (with scale normalisation) [30] 97.6 95.0
Ours 96.1 89.7
Ours with scale normalisation 98.5 96.5
Ours with reduced augmentation 92.4 81.9
Ours without learning rate decay 94.5 86.5

Table 1: Comparison with the state-of-the-art on the FLIC datasets using PCK @ 0.2.

in Table 1. We outperform the other methods for elbows and wrists except for [5] when we
do not exploit scale information. However, our model does not use any image dependent
explicit prior model as compared to [5]. We also study the impact of scale normalisation,
data augmentation and learning rate decay on this dataset.

Impact of scale normalisation. For the FLIC dataset, rough torso detections are avail-
able for the training and testing images. We thus normalise all training and test images to
the same scale by re-normalising the height of the detected torso in each image to 200 pix-
els. The results reported in Table 1 show that using scale information, when available, can
provide significant gains in accuracy, especially for wrists from 89.7 to 96.5. Our network
outperforms the convolutional pose machines [30], which also use scale information. This
is remarkable, since our model has a low memory footprint of 3 GB and runs on a mid-
range GPU, while convolutional pose machines require high-end GPUs with more than 6
GB memory.

Impact of data augmentation. We evaluate the impact of data augmentation by reducing
the ranges for scaling s ∈ [0.7,1.3], translation tx,y ∈ {−5,5} and rotation θ ∈ {−5◦,5◦}
on the FLIC dataset. The results reported in Table 1 show that the accuracy drops from
96.1 to 92.4 for elbows and from 89.7 to 81.9 for wrists. This shows that extensive data
augmentation is indeed important for achieving high accuracy and that the exact details of
data augmentation are important for reproducibility.

Effect of exponential learning rate decay. We also compare an exponential decay of the
learning rate with a constant learning rate using the same number of epochs. Without the
learning rate decay, accuracy drops from 96.1 to 94.5 for elbows and from 89.7 to 86.5 for
wrists as reported in Table 1.

4.2 Leeds Sports Pose (LSP) dataset
The LSP dataset [13] consists of 1,000 training and 1,000 test images. The extended LSP
dataset [14] consists of an additional 10,000 training images. For our experiments, we use
the 11,000 training images from LSP and extended LSP together. Our model takes 2 days
for training using a GTX 980 GPU. Quantitative results for PCK @ 0.2 are shown in Table
2. Our network achieves a higher accuracy than most of the other methods and gets very
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Method Head Shoulder Elbow Wrist Hip Knee Ankle PCK
Tompson et al. [27] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.0
Fan et al. [8] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0
Carreira et al. [4] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1
Chen et al. [5] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4
Yang et al. [31] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6
Wei et al. [30] . . . . . . . 84.3
Pishchulin et al. [20] + MPII 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Wei et al. [30] + MPII 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Ours 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8
Ours with single resolution only 96.0 85.8 79.6 73.7 86.3 80.8 77.7 82.8
Ours with feature maps from last layer only 95.4 83.7 74.8 70.4 84.4 78.2 74.2 80.2

Table 2: Comparison with the state-of-the-art on the LSP datasets using PCK @ 0.2.

close to [30] when the same training data is used, which is consistent with the results on the
FLIC dataset. We also study the impact of two design choices of our network illustrated in
Figure 1, namely using the features from layer 13 and a multi-resolution architecture.

Impact of middle layer features. To evaluate the impact of using feature maps from the
middle layer on the accuracy, we remove the skip layer connection from layer 13. The
accuracy drops for all joints and in average from 83.8 to 80.2 as shown in Table 2.

Impact of multi-resolution architecture. We compare our model that combines two FCGNs,
one applied to the full resolution image and the second one to the half resolution image. If
we use only one FCGN with the full resolution image for training and testing, the average
accuracy decreases slightly from 83.8 to 82.8 as shown in Table 2. The slight decrease can
be explained by the fact that the half resolution FCGN introduces more context for the pre-
diction. As a result, the additional context only improves the prediction of the joints that are
far away from the head, namely wrist, knee and ankle.

4.3 MPII Human Pose dataset

The MPII Human Pose [3] dataset is a challenging dataset and consists of around 40,000
images of people. We use 25,925 images for training and use 2,958 images for validation
according to the train/validation split from [28]. We evaluate on the 7,247 single person test
images with withheld annotations. The dataset provides a rough scale and person location for
both training and test images. We crop test images around the given rough person location.
We normalise both training and test images to the same scale by using the provided rough
scale information. Our model takes 3 days to train on the MPII dataset using a GTX 980
GPU.

Our quantitative results are shown in Table 3. Our network outperforms most of the
recent state-of-the-art methods and is competitive with [30]. [30], however, used additional
training data from the LSP dataset to boost the accuracy. The fact that complex models
like [30] do not significantly outperform the proposed network shows that increasing the
parameters and complexity of the models and thus the memory consumption and training
time might not be the best way to increase the accuracy for human pose estimation.
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Method Head Shoulder Elbow Wrist Hip Knee Ankle PCKh
Hu et al. [11] 95.0 91.6 83 76.6 81.9 74.5 69.5 82.4
Carreira et al. [4] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al. [28] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Pishchulin et al. [20] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Wei et al. [30] + LSP 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Ours 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3

Table 3: Comparison with the state-of-the-art on the MPII datasets using PCKh @ 0.5.

Figure 3: Qualitative results for the Frames Labelled In Cinema (FLIC) dataset [22], the
Leeds Sports Pose (LSP) dataset [13, 14] and the MPII Human Pose (MPII) dataset [3].

5 Conclusion
In this work, we have proposed a deep network with a low memory footprint for human
pose estimation that can be trained efficiently on a mid-range GPU. It achieves competitive
results on popular benchmarks for human pose estimation, which is impressive since the
model does not require any pre-training on large datasets as other models and can be trained
from scratch also on small datasets like FLIC. The proposed network, which is publicly
available, can serve as a baseline for more complex models in the future.
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