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Open Set Domain Adaptation for Image and
Action Recognition
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Abstract—Since annotating and curating large datasets is very expensive, there is a need to transfer the knowledge from existing
annotated datasets to unlabelled data. Data that is relevant for a specific application, however, usually differs from publicly available
datasets since it is sampled from a different domain. While domain adaptation methods compensate for such a domain shift, they
assume that all categories in the target domain are known and match the categories in the source domain. Since this assumption is
violated under real-world conditions, we propose an approach for open set domain adaptation where the target domain contains
instances of categories that are not present in the source domain. The proposed approach achieves state-of-the-art results on various
datasets for image classification and action recognition. Since the approach can be used for open set and closed set domain
adaptation, as well as unsupervised and semi-supervised domain adaptation, it is a versatile tool for many applications.

Index Terms—Domain Adaptation, Open Set Recognition, Action Recognition.
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1 INTRODUCTION

IN the last years, impressive results have been achieved
on large-scale datasets for image classification or action

recognition. Acquiring such large annotated datasets, how-
ever, is very expensive and there is a need to transfer the
knowledge from existing annotated datasets to unlabelled
data that is relevant for a specific application. If the labelled
and unlabelled data have different characteristics, they have
been sampled from two different domains. In particular,
datasets that have been collected from the Internet, e.g.,
from platforms for sharing videos or images, differ greatly
from data that needs to be processed for an application.
To address the domain shift between the labelled dataset,
which is the source domain, and the unlabelled data from
the target domain, various unsupervised domain adaptation
approaches have been proposed. If the data from the target
source is partially labelled, the problem is termed semi-
supervised domain adaptation. In this work, we address
unsupervised and semi-supervised domain adaptation in
the context of image and action recognition.

Although the methods for domain adaptation have been
advanced tremendously in the last years [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], the evaluation protocols were restricted
to a scenario where all categories in the target domain are
known and match the categories in the source domain.
Fig. 1(a) illustrates such a closed set domain adaptation setting.
The assumption that all images or videos that are in the
target domain belong to categories in the source domain,
however, is violated in most cases. In particular if the
number of potential categories is very large as it is the case
for object or action categories, the target domain contains
images or videos of categories that are not present in the
source domain since they are not of interest for a specific
application. We therefore propose a more realistic evalu-
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Fig. 1. (a) Standard domain adaptation benchmarks assume that source
and target domains contain images or videos only of the same set of cat-
egories. This is denoted as closed set domain adaptation since it does
not include samples of unknown categories or categories which are not
present in the other domain. (b) We propose open set domain adap-
tation. In this setting, both source and target domain contain images
or videos that do not belong to the categories of interest. Furthermore,
the target domain contains images or videos that are not related to any
image or video in the source domain and vice versa.

ation setting for unsupervised or semi-supervised domain
adaptation, namely open set domain adaptation, which builds
on the concept of open sets [11], [12], [13]. As illustrated
in Fig. 1, the source and target domains are not anymore
restricted in the open set case to share the same categories
as in the closed set case, but both domains contain images
or videos from categories that are not present in the other
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domain.
To address the problem of open set domain adaptation,

we propose a generic approach that learns a linear mapping
that maps the feature space of the source domain to the
feature space of the target domain. It assigns a subset of
images or videos of the target domain to the categories of
the source domain and transforms the feature space of the
source domain gradually towards the feature space of the
target domain. By using a subset instead of the entire set,
the approach handles images or videos in the target domain
that are not related to any sample in the source domain.
The approach can be applied to any feature space, which
includes features extracted from images as well as features
extracted from videos. The approach works in particular
very well for features spaces that are extracted by convolu-
tional networks and outperforms most end-to-end learning
approaches for domain adaptation. The good performance
of the approach coincides with the observation that deep
convolutional networks tend to linearise manifolds of image
domains [14], [15]. In this case, a linear mapping is sufficient
to map the feature space of the source domain to the feature
space of the target domain. In particular, the flexibility of
the approach, which can be used for images and videos,
for open set and closed set domain adaptation, as well
as unsupervised and semi-supervised domain adaptation,
makes the approach a versatile tool for applications. An
overview of the approach for unsupervised open set domain
adaptation is given in Fig. 2.

A preliminary version of this work was presented in [16].
In this work, we introduce open set domain adaptation for
action recognition and provide a thorough experimental
evaluation, which includes open set domain adaptation
from synthetic data to real data and an evaluation of the
proposed approach for standard closed set protocols. In
total, we evaluate the approach on 26 open set and 34 closed
set combinations of source and target domains including the
Office dataset [1], its extension with the Caltech dataset [3],
the Cross-Dataset Analysis [17], the Sentiment dataset [18], syn-
thetic data [19], and two action recognition datasets, namely
the Kinetics Human Action Video Dataset [20] and the UCF101
Action Recognition Dataset [21]. Our approach achieves state-
of-the-art results in all settings both for unsupervised and
semi-supervised open set domain adaptation and obtains
competitive results compared state-of-the-art deep leaning
approaches for closed set domain adaptation.

2 RELATED WORK

2.1 Domain Adaptation

The interest in studying domain adaptation techniques for
computer vision problems increased with the release of a
benchmark by Saenko et al. [1] for domain adaptation in the
context of object classification. The first relevant works on
unsupervised domain adaptation for object categorisation
were presented by Golapan et al. [2] and Gong et al. [3], who
proposed an alignment in a common subspace of source and
target samples using the properties of Grassmanian mani-
folds. Jointly transforming source and target domains into
a common low dimensional space was also done together
with a conjugate gradient minimisation of a transformation

matrix with orthogonality constraints [22] and with dictio-
nary learning to find subspace interpolations [23], [24], [25].
Sun et al. [26], [27] presented a very efficient solution based
on second-order statistics to align a source domain with a
target domain. Herath et al. [28] also match second-order
statistics with a joint estimation of latent spaces. To obtain an
estimate of the target distribution in the latent space, Gho-
lami et al. [29] introduce a Bayesian approximation to jointly
learn a softmax classifier across-domains. Similarly, Csurka
et al. [30] jointly denoise source and target samples to re-
construct data without partial random corruption. Zhang et
al. [31] also align distributions, but they include geometrical
differences in a joint optimisation. Sharing certain similar-
ities with associations between domains, Gong et al. [32]
minimise the Maximum Mean Discrepancy (MMD) [33] of
two datasets. They assign instances to latent domains and
solve it by a relaxed binary optimisation. Hsu et al. [7] use
a similar idea allowing instances to be linked to all other
samples.

Semi-supervised domain adaptation approaches take ad-
vantage of knowing the class labels of a few target samples.
Aytar et al. [34] proposed a transfer learning formulation
to regularise the training of target classifiers. Exploiting
pairwise constraints across domains, Saenko et al. [1] and
Kulis et al. [35] learn a transformation to minimise the effect
of the domain shift while also training target classifiers.
Following the same idea, Hoffman et al. [36] considered an
iterative process to alternatively minimise the classification
weights and the transformation matrix. In a different con-
text, [37] proposed a weakly supervised approach to refine
coarse viewpoint annotations of real images by synthetic im-
ages. In contrast to semi-supervised approaches, the task of
viewpoint refinement assumes that all images in the target
domain are labelled but not with the desired granularity.

The idea of selecting the most relevant information of
each domain has been studied in early domain adaptation
methods in the context of natural language processing [38].
Pivot features that behave the same way for discriminative
learning in both domains were selected to model their
correlations. Gong et al. [39] presented an algorithm that
selects a subset of source samples that are distributed most
similarly to the target domain. Another technique that deals
with instance selection has been proposed by Sangineto et
al. [40]. They train weak classifiers on random partitions of
the target domain and evaluate them in the source domain.
The best performing classifiers are then selected. Other
works have also exploited greedy algorithms that iteratively
add target samples to the training process, while the least
relevant source samples are removed [41], [42].

During the last years, a large number of domain adap-
tation methods have been based on deep convolutional
neural networks (CNN) [43], which learn more discrim-
inative feature representations than hand-crafted features
and substantially reduce the domain bias between datasets
in object recognition tasks [44]. Non-adapted classifiers
trained with features extracted from CNN layers outper-
form domain adaptation methods with shallow feature de-
scriptors [27], [44]. Many of these deep domain adaptation
architectures are inspired by the traditional methods and
seek to minimise the MMD distance as a regulariser to learn
features for source and target samples jointly [45], [46], [47],
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Fig. 2. Overview of the proposed approach for unsupervised open set domain adaptation. (a) The source domain contains some labelled images,
indicated by the colours red, blue and green, and some images belonging to unknown classes (grey). For the target domain, we do not have any
labels but the shapes indicate if they belong to one of the three categories or an unknown category (circle). (b) In the first step, we assign class
labels to some target samples, leaving outliers unlabelled. (c) By minimising the distance between the samples of the source and the target domain
that are labelled by the same category, we learn a mapping from the source to the target domain. The image shows the samples in the source
domain after the transformation. This process iterates between (b) and (c) until it converges to a local minimum. (d) In order to label all samples in
the target domain either by one of the three classes (red, green, blue) or as unknown (grey), we learn a classifier on the source samples that have
been mapped to the target domain (c) and apply it to the samples of the target domain (a). In this image, two samples with unknown classes are
wrongly classified as red or green.

[48], [49]. Recently, Carlucci et al. [50] extend this type of
networks and use intermediate layers for the alignment
of distributions before batch normalisation. They learn a
parameter that steers the contribution of each domain at
a given layer. Ganin et al. [6] added a domain classifier
network after the CNN to maximize the discriminatory loss
of both domains while jointly minimising the classification
loss using source data. More recently, Tzeng et al. [9] pro-
pose a generalized framework for adversarial adaptation.
In the semi-supervised setting, Mottian et al. [10] present a
deep domain adaptation method that exploits the domain
loss minimisation while maximizing the distances between
labelled samples from different domains and classes. Other
forms of data representation, such as hash codes [51] and
scatter tensors [52], [53], have also been combined with
deep domain adaptation architectures to further reduce the
domain bias.

2.2 Open Set Recognition
The inclusion of open sets in recognition tasks appeared
in the field of face recognition, where evaluation datasets
contain unseen face instances as impostors that have to be
rejected [54], [55]. Such open set protocols are nowadays
widely used for evaluating face recognition approaches [56].

The generalisation towards an open set scenario for
multi-object classification was introduced by Schreier et
al. [11], who addressed the more realistic case of a finite set
of known objects mixed with many unknown ones. Based
on this principle, [57] and [12] propose multi-class classifiers
that detect unknown instances by learning SVMs that assign
probabilistic decision scores instead of class labels. More
recently, Bendale and Boult [13] adapt traditional neural
networks for open set recognition tasks by introducing a
new layer that estimates the probability of an object to be
labelled as unseen class.

Closely related are also the works [58] and [59] that add
a regulariser to detect uninformative data and penalise a
misclassification during training. Lately, Gavves et al. [60]
present an active learning technique, whose intially trained
SVMs on a subset of known classes are used as priors to
further train novel object classes from other target datasets.

3 OPEN SET DOMAIN ADAPTATION

We present an approach that iterates between solving the
labelling problem of target samples, i.e., associating a subset
of the target samples to the known categories of the source
domain, and computing a mapping from the source to the
target domain by minimising the distances of the assign-
ments. The transformed source samples are then used in
the next iteration to re-estimate the assignments and update
the transformation. This iterative process is repeated until
convergence and is illustrated in Fig. 2.

In Section 3.1, we describe the unsupervised assignment
of target samples to categories of the source domain. The
semi-supervised case is described in Section 3.2. Section 3.3
finally describes how the mapping from the source domain
to the target domain is estimated from the previous assign-
ments. This part is the same for the unsupervised and semi-
supervised setting.

3.1 Unsupervised Domain Adaptation

We first address the problem of unsupervised domain adap-
tation, i.e., none of the target samples are annotated, in an
open set protocol. Given a set of classes C in the source
domain, including |C − 1| known classes and an addi-
tional unknown class that gathers all instances from other
irrelevant categories, we aim to label the target samples
T = {T1, . . . , T|T |} by a class c ∈ C. We define the cost of
assigning a target sample Tt to a class c by dct = ‖Sc − Tt‖22
where Tt ∈ RD is the feature representation of the target
sample t and Sc ∈ RD is the mean of all samples in the
source domain labelled by class c. To increase the robustness
of the assignment, we do not enforce that all target samples
are assigned to a class as shown in Fig. 2(b). The cost
of declaring a target sample as outlier is defined by a
parameter λ, which is discussed in Section 4.1.

Having defined the individual assignment costs, we can
formulate the entire assignment problem by:
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minimise
xct,ot

∑
t

(∑
c

dctxct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

xct, ot ∈ {0, 1} ∀c, t .

(1)

By minimising the constrained objective function, we obtain
the binary variables xct and ot as solution of the assignment
problem. The first type of constraints ensures that a target
sample is either assigned to one class, i.e., xct = 1, or de-
clared as outlier, i.e., ot = 1. The second type of constraints
ensures that at least one target sample is assigned to each
class c ∈ C. We use the constraint integer program package
SCIP [61] to solve all proposed formulations.

As it is shown in Fig. 2(b), we label the targets also by
the unknown class. Note that the unknown class combines
all objects that are not of interest. Even if the unknowns in
the source and target domain belong to different semantic
classes, a target sample might be closer to the mean of all
negatives than to any other positive class. In this case, we
can confidentially label a target sample as unknown. In our
experiments, we show that it makes not much difference if
the unknown class is included in the unsupervised setting
since the outlier handling discards target samples that are
not close to the mean of negatives.

3.2 Semi-supervised Domain Adaptation
The unsupervised assignment problem naturally extends
to a semi-supervised setting when a few target samples
are annotated. In this case, we only have to extend the
formulation (1) by additional constraints that enforce that
the annotated target samples do not change the label, i.e.,

xĉtt = 1 ∀(t, ĉt) ∈ L, (2)

where L denotes the set of labelled target samples and ĉt the
class label provided for target sample t. In order to exploit
the labelled target samples better, one can use the neigh-
bourhood structure in the source and target domain. While
the constraints remain the same, the objective function (1)
can be changed to

∑
t

∑
c

xct

(
dct +

∑
t′∈Nt

∑
c′

dcc′xc′t′

)
+ λot

 , (3)

where dcc′ = ‖Sc − Sc′‖22. While in (1) the cost of labelling a
target sample t by the class c is given only by dct, a second
term is added in (3). It is computed over all neighbours
Nt of t and adds the distance between the classes in the
source domain as additional cost if a neighbour is assigned
to another class than the target sample t.

The objective function (3), however, becomes quadratic
and therefore NP-hard to solve. Thus, we transform the
quadratic assignment problem into a mixed 0-1 linear program
using the Kaufman and Broeckx linearisation [62]. By sub-
stituting

wct = xct

 ∑
t′∈Nt

∑
c′

dcc′xc′t′

 , (4)

we derive to the linearised problem

minimise
xct,wct,ot

∑
t

(∑
c

dctxct +
∑
c

wct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

actxct +
∑
t′∈Nt

∑
c′

dcc′xc′t′ − wct ≤ act ∀s, t ,

xct, ot ∈ {0, 1} ∀c, t ,
wct ≥ 0 ∀c, t ,

(5)
where act =

∑
t′∈Nt

∑
c′ dcc′ .

3.3 Mapping

As illustrated in Fig. 2, we iterate between solving the
assignment problem, as described in Section 3.1 or 3.2, and
estimating the mapping from the source domain to the
target domain. We consider a linear transformation, which
is represented by a matrix W ∈ RD×D . We estimate W by
minimising the following loss function:

f(W ) =
1

2

∑
t

∑
c

xct‖WSc − Tt‖22 , (6)

which can be written in matrix form:

f(W ) =
1

2
||WPS − PT ||2F . (7)

The matrices PS and PT ∈ RD×L with L =
∑
t

∑
c xct rep-

resent all assignments, where the columns denote the actual
associations. The quadratic nature of the convex objective
function may be seen as a linear least squares problem,
which can be easily solved by any available QP solver. State-
of-the-art features based on convolutional neural networks,
however, are high dimensional and the number of target
instances is usually very large. We use therefore non-linear
optimisation [63], [64] to optimise f(W ). The derivatives of
(6) are given by

∂f(W )

∂W
=W (PSP

T
S )− PTPTS . (8)

If L < D, i.e., the number of samples, which have been
assigned to a known class, is smaller than the dimension-
ality of the features, the optimisation also deals with an
underdetermined linear least squares formulation. In this
case, the solver converges to the matrix W with the smallest
norm, which is still a valid solution.

After the transformation W is estimated, we map the
source samples to the target domain. We therefore iterate the
process of solving the assignment problem and estimating
the mapping from the source domain to the target domain
until it converges. After the approach has converged, we
train linear SVMs in a one-vs-one setting on the transformed
source samples. For the semi-supervised setting, we also
include the annotated target samples L (2) to the training
set. The linear SVMs are then used to obtain the final
labelling of the target samples as illustrated in Fig. 2(d).
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4 EXPERIMENTS

We evaluate our method in the context of domain adap-
tation for image classification and action recognition. In
this setting, the images or videos of the source domain
are annotated by class labels and the goal is to classify the
images or videos in the target domain. We report the accura-
cies for both unsupervised and semi-supervised scenarios,
where target samples are unlabelled or partially labelled,
respectively. For consistency, we use libsvm [65] since it has
also been used in other works, e.g., [66] and [27]. We set
the misclassification parameter C = 0.001 in all experi-
ments, which allows for a soft margin optimisation that
works best in such classification tasks [27], [66]. The source
code and the described open set protocols are available at
https://github.com/Heliot7/open-set-da.

4.1 Parameter configuration

Our algorithm contains a few parameters that need to be
defined. For the outlier rejection, we use

λ = ρ
(
max
t,c

dct +min
t,c

dct
)
, (9)

i.e., λ is adapted automatically based on the distances dct
and ρ, which is set to 0.5 unless otherwise specified. While
higher values of λ closer to the largest distance barely dis-
card any outlier, lower values almost reject all assignments.
We iterate the approach until the maximum number of 10
iterations is reached or if the distance√∑

t

∑
c

xct ‖WkSc − Tt‖22 (10)

is below ε = 0.01, where Wk denotes the estimated trans-
formation at iteration k. In practice, the process converges
after 3-5 iterations.

4.2 Open set domain adaptation

4.2.1 Office dataset
We evaluate and compare our approach on the Office
dataset [1], which is the standard benchmark for domain
adaptation with CNN features. It provides three different
domains, namely Amazon (A), DSLR (D) and Webcam (W).
While the Amazon dataset contains centred objects on white
background, the other two comprise pictures taken in an
office environment but with different quality levels. In total,
there are 31 common classes for 6 source-target combina-
tions. This means that there are 4 combinations with a
considerable domain shift (A → D, A → W, D → A, W
→ A) and 2 with a minor domain shift (D → W, W → D).
Following the standard protocol and for a fair comparison
with the other methods, we extract feature vectors from the
fully connected layer-7 (fc7) of the AlexNet model [43].

We introduce an open set protocol for this dataset by
taking the 10 classes that are also common in the Caltech
dataset [3] as shared classes. In alphabetical order, the
classes 11-20 are used as unknowns in the source domain
and 21-31 as unknowns in the target domain, i.e., the
unknown classes in the source and target domain are not
shared. For evaluation, each sample in the target domain
needs to be correctly classified either by one of the 10 shared

A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 87.1 70.7 72.6 77.5 53.9 57.5

DAN [47] 88.1 76.5 77.6 90.5 70.2 72.5
RTN [48] 93.0 74.7 76.6 87.0 70.8 73.0
BP [6] 91.9 77.3 78.3 89.2 73.8 75.9

ATI 92.4 78.2 78.8 85.1 77.7 78.4
ATI-λ 93.0 79.2 79.8 84.0 76.5 77.6
ATI-λ-N1 91.9 78.3 78.9 84.6 74.2 75.6

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 79.4 40.0 45.1 97.9 87.5 88.5

DAN [47] 83.4 53.5 57.0 96.1 87.5 88.4
RTN [48] 82.8 53.8 57.2 97.9 88.1 89.0
BP [6] 84.3 54.1 57.6 97.5 88.9 89.8

ATI 93.4 70.0 71.1 98.5 92.2 92.6
ATI-λ 93.8 70.0 71.3 98.5 93.2 93.5
ATI-λ-N1 93.3 65.6 67.8 97.9 94.0 94.4

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 80.0 44.9 49.2 100 96.5 96.6 87.0 65.6 68.3

DAN [47] 84.9 58.5 60.8 100 97.5 98.3 90.5 74.0 75.8
RTN [48] 85.1 60.2 62.4 100 98.3 98.8 91.0 74.3 76.2
BP [6] 86.2 61.8 64.0 100 98.0 98.7 91.6 75.7 77.4

ATI 93.4 76.4 76.6 100 99.1 98.3 93.8 82.1 82.6
ATI-λ 93.7 76.5 76.7 100 99.2 98.3 93.7 82.4 82.9
ATI-λ-N1 93.4 71.6 72.4 100 99.6 98.8 93.5 80.6 81.3

TABLE 1
Open set domain adaptation on the unsupervised Office dataset with

10 shared classes (OS) using all samples per class [32]. For
comparison, results for closed set domain adaptation (CS) and

modified open set (OS∗) are reported.

classes or as unknown. In order to compare with a closed
setting (CS), we report the accuracy when source and target
domain contain only samples of the 10 shared classes. Since
OS is evaluated on all target samples, we also report the
numbers when the accuracy is only measured on the same
target samples as CS, i.e., only for the shared 10 classes. The
latter protocol is denoted by OS∗(10) and provides a direct
comparison to CS(10).

Unsupervised domain adaptation. We firstly compare the
accuracy of our method in the unsupervised set-up with
state-of-the-art domain adaptation techniques embedded
in the training of CNN models. DAN [47] retrains the
AlexNet model by freezing the first 3 convolutional layers,
finetuning the last 2 and learning the weights from each
fully connected layer by also minimising the discrepancy
between both domains. RTN [48] extends DAN by adding a
residual transfer module that bridges the source and target
classifiers. BP [6] trains a CNN for domain adaptation by
a gradient reversal layer and minimises the domain loss
jointly with the classification loss. For training, we use all
samples per class as proposed in [32], which is the standard
protocol for CNNs on this dataset. As proposed in [6], we
use for all methods linear SVMs for classification instead of
the soft-max layer for a fair comparison.

To analyse the formulations that are discussed in Sec-
tion 3, we compare several variants: ATI (Assign-and-
Transform-Iteratively) denotes our formulation in (1) assign-
ing a source class to all target samples, i.e., λ = ∞. Then,
ATI-λ includes the outlier rejection and ATI-λ-N1 is the un-
supervised version of the locality constrained formulation
corresponding to (3) with 1 nearest neighbour. In addition,
we denote LSVM as the linear SVMs trained on the source
domain without any domain adaptation.
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A→D A→W D→A D→W W→A W→D
assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM assign-λ LSVM

initial 72.6 57.5 45.1 88.5 49.2 96.6
iteration 1 78.4 76.8 74.5 69.8 73.6 68.1 90.4 90.3 71.9 70.0 89.6 97.8
iteration 2 77.7 79.1 80.1 77.6 80.4 71.3 91.5 93.5 77.2 75.9 84.7 98.3
iteration 3 75.3 79.8 77.8 76.7

TABLE 2
Evolution of the percentage of correct assignments (assign-λ) when taking into account the selected target samples and the average class

accuracy of all target samples using linear SVMs (LSVM). The approach converges after 2 or 3 iterations.

A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 84.4±5.9 63.7±6.7 66.6±5.9 76.5±2.9 48.2±4.8 52.5±4.2

TCA [67] 85.9±6.3 75.5±6.6 75.7±5.9 80.4±6.9 67.0±5.9 67.9±5.5
gfk [3] 84.8±5.1 68.6±6.7 70.4±6.0 76.7±3.1 54.1±4.8 57.4±4.2
SA [66] 84.0±3.4 71.5±5.9 72.6±5.3 76.6±2.8 57.4±4.2 60.1±3.7
CORAL [27] 85.8±7.2 79.9±5.7 79.6±5.0 81.9±2.8 68.1±3.6 69.3±3.1

ATI 91.4±1.3 80.5±2.0 81.1±2.8 86.1±1.1 73.4±2.0 75.3±1.7
ATI-λ 91.1±2.1 81.1±0.4 82.2±2.0 85.5±2.1 73.7±2.6 75.3±1.4

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 75.5±2.1 36.1±3.7 42.2±3.3 96.2±1.0 81.5±1.5 83.1±1.3

TCA [67] 88.2±1.5 71.8±2.5 71.8±2.0 97.8±0.5 92.0±0.9 91.5±1.0
gfk [3] 79.7±1.0 45.3±3.7 49.7±3.4 96.3±0.9 85.1±2.7 86.2±2.4
SA [66] 81.7±0.7 52.5±3.0 55.8±2.7 96.3±0.8 86.8±2.5 87.7±2.3
CORAL [27] 89.6±1.0 66.6±2.8 68.2±2.5 97.2±0.7 91.1±1.7 91.4±1.5

ATI 93.5±0.3 69.8±1.4 70.8±2.1 97.3±0.5 89.6±2.1 90.3±1.8
ATI-λ 93.9±0.4 71.1±0.9 72.0±0.5 97.5±1.1 92.1±1.3 92.5±0.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 72.5±2.7 34.3±4.9 39.9±4.4 99.1±0.5 89.8±1.5 90.5±1.3 84.1 58.9 62.5

TCA 85.5±3.3 68.1±5.1 68.6±4.6 98.8±0.9 94.1±2.9 93.6±2.6 89.5 78.1 78.2
gfk 75.0±2.9 43.2±5.1 47.6±4.6 99.0±0.5 92.0±1.5 92.2±1.4 85.2 64.7 67.3
SA 76.5±3.2 49.7±5.1 53.0±4.6 98.8±0.7 92.4±2.9 92.4±2.8 85.7 68.4 70.3
CORAL 86.9±1.9 63.9±4.9 65.6±4.3 99.2±0.7 96.0±2.1 95.0±2.0 90.1 77.6 78.2

ATI 92.2±1.1 75.1±1.7 76.0±2.0 98.9±1.3 95.5±2.3 95.4±2.1 93.2 80.7 81.5
ATI-λ 92.4±1.1 75.4±1.8 76.4±1.8 98.9±1.3 96.5±2.1 95.8±1.8 93.2 81.5 82.3

TABLE 3
Open set domain adaptation on the unsupervised Office dataset with

10 shared classes (OS). We report the average and the standard
deviation using a subset of samples per class in 5 random splits [1]. For

comparison, results for closed set domain adaptation (CS) and
modified open set (OS∗) are reported.

The results of these techniques using the described
open set protocol are shown in Table 1. Our approach
ATI improves over the baseline without domain adaptation
(LSVM) by +6.8% for CS and +14.3% for OS. The improve-
ment is larger for the combinations that have larger do-
main shifts, i.e., the combinations that include the Amazon
dataset. We also observe that ATI outperforms all CNN-
based domain adaptation methods for the closed (+2.2%)
and open setting (+5.2%). It can also be observed that the
accuracy for the open set is lower than for the closed set
for all methods, but that our method handles the open set
protocol best. While ATI-λ does not obtain any considerable
improvement compared to ATI in CS, the outlier rejection
allows for an improvement in OS. The locality constrained
formulation, ATI-λ-N1, which we propose only for the semi-
supervised setting, decreases the accuracy in the unsuper-
vised setting.

The evolution of the percentage of correct assignments
and the intermediate classification accuracies are shown in
Table 2. The approach converges after two or three itera-
tions. While the accuracy of the LSVMs that are trained
on the transformed source samples increases with each

iteration, the accuracy of the assignment can even decrease
in some cases.

Additionally, we report accuracies of popular domain
adaptation methods that are not related to deep learning.
We report the results of methods that transform the data
to a common low dimensional subspace, including Transfer
Component Analysis (TCA) [67], Geodesic Flow Kernel
(GFK) [3] and Subspace alignment (SA) [66]. In addition,
we also include CORAL [27], which whitens and recolours
the source towards the target data. Following the standard
protocol of [1], we take 20 samples per object class when
Amazon is used as source domain, and 8 for DSLR or
Webcam. As in the previous comparison with the CNN-
based methods, we extract feature vectors from the last
convolutional layer (fc7) from the AlexNet model [43]. Each
evaluation is executed 5 times with random samples from
the source domain. The average accuracy and standard
deviation of the five runs are reported in Table 3. The results
are similar to the protocol reported in Table 1. Our approach
ATI outperforms the other methods both for CS and OS and
the additional outlier handling (ATI-λ) does not improve the
accuracy for the closed set but for the open set.
Impact of unknown class. The linear SVM that we employ
in the open set protocol uses the unknown classes of the
transformed source domain for the training. Since unknown
object samples from the source domain are from different
classes than the ones from the target domain, using an
SVM that does not require any negative samples might be a
better choice. Therefore, we compare the performance of a
standard SVM classifier with a specific open set SVM (OS-
SVM) [12], where only the 10 known classes are used for
training. OS-SVM introduces an inclusion probability and
labels target instances as unknown if this inclusion is not
satisfied for any class. Table 4 compares the classification
accuracies of both classifiers in the 6 domain shifts of the
Office dataset. While the performance is comparable when
no domain adaptation is applied, ATI-λ obtains significantly
better accuracies when the learning includes negative in-
stances.

As discussed in Section 3.1, the unknown class is also
part of the labelling set C for the target samples. The labelled
target samples are then used to estimate the mapping W (6).
To evaluate the impact of including the unknown class,
Table 5 compares the accuracy when the unknown class is
not included in C. Adding the unknown class improves the
accuracy slightly since it enforces that the negative mean of
the source is mapped to a negative sample in the target. The
impact, however, is very small.

Additionally, we also analyse the impact of increasing
the amount of unknown samples in both source and target
domain on the configuration Amazon → DSLR+Webcam.
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A→D A→W D→A D→W W→A W→D AVG.
OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM

No Adap. 67.5 72.6 58.4 57.5 54.8 45.1 80.0 88.5 55.3 49.2 94.0 96.6 68.3 68.3
ATI-λ 72.0 79.8 65.3 77.6 66.4 71.3 82.2 93.5 71.6 76.7 92.7 98.3 75.0 82.9

TABLE 4
Comparison of a standard linear SVM (LSVM) with a specific open set SVM (OS-SVM) [11] on the unsupervised Office dataset with 10 shared

classes using all samples per class [32].

A→D A→W D→A D→W W→A W→D AVG.
OS(10)

ATI-λ (C w/o unknown) 79.0 77.1 70.5 93.4 75.8 98.2 82.3
ATI-λ (C with unknown) 79.8 77.6 71.3 93.5 76.7 98.3 82.9

TABLE 5
Impact of including the unknown class to the set of classes C. The evaluation is performed on the unsupervised Office dataset with 10 shared

classes using all samples per class [32].

Since the domain shift between DSLR and Webcam is close
to zero (same scenario, but different cameras), they can
be merged to get more unknown samples. Following the
described protocol, we take 20 samples per known category,
also in this case for the target domain, and we randomly
increase the number of unknown samples from 20 to 400
in both domains at the same time. As shown in Table 6,
that reports the mean accuracies of 5 random splits, adding
more unknown samples decreases the accuracy if domain
adaptation is not used (LSVM), but also for the domain
adaptation method CORAL [27]. This is expected since the
unknowns are from different classes and the impact of the
unknowns compared to the samples from the shared classes
increases. Our method handles such an increase and the
accuracies remain stable between 80.3% and 82.5%.

Amazon→ DSLR+Webcam
number of unknowns 20 40 60 80 100 200 300 400
unknown / known 0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00

LSVM 74.2 70.0 66.2 63.4 61.4 53.9 50.4 48.2
CORAL [27] 77.2 76.4 76.2 74.8 73.7 71.5 70.8 69.7
ATI-λ 80.3 82.4 81.2 81.7 82.5 80.9 80.7 81.9

TABLE 6
Impact of increasing the amount of unknown samples in the domain
shift Amazon→ DSLR+Webcam on the unsupervised Office dataset
with 10 shared classes using 20 random samples per known class in

both domains.

Subsampling of target samples. In order to evaluate the
robustness of our method when having a reduced amount
of target samples for domain adaptation, we subsample the
target data. Fig. 3 shows the results for ATI-λ on the 6 do-
main shifts of the Office dataset with the standard open set
protocol (OS). We vary the number of target samples from
50 to the total number of instances. For a fixed number of
target samples, we randomly sample 5 times from the target
data and plot the lowest, highest and average accuracy of
the 5 runs. The accuracy is always measured on the whole
target dataset. The results show that between 300 and 400
target instances are sufficient to achieve similar accuracies
than our method with all target samples. When the domain
shifts are smaller, e.g., D→ W and W→ D, even less target
samples are required.

Scalability analysis of target samples. The number of sam-
pled target samples has an impact on the execution time of
the assignment and the transformation steps of the iterative

process. Therefore, we also test the scalability of the two
steps of our method with respect to the number of target
samples. The average execution times of both techniques
in the domain shift Amazon → DSLR+Webcam for all the
random splits and unknown sets of the previous evaluation
are shown in Fig. 4. We observe that the assignment problem
takes less than a second to be solved for any size of target
data from the evaluated settings. Most of the computation
time is required for estimating the transformation W , which
requires at least 120 seconds. The computation time of this
step, however, increases only moderately with respect to the
number of target samples.

Impact of parameter ρ. The cost that determines whether a
target sample is considered as outlier during the assignment
process is defined by λ (9), which is based on the current
minimum and maximum distance between the source clus-
ters and target samples. Thus, λ is updated at each iteration.
The value of λ, however, also depends on the parameter ρ.
For all experiments, we use ρ = 0.5 as default value, aiming
for a moderate outlier rejection. Fig. 5 shows the impact of ρ
on the accuracy. Using ρ = 0.5, which rejects around 10-20%
of the target samples, achieves the best results in 5 out of the
6 domain shifts on the Office dataset. When ρ gets closer to
0 the accuracy drops substantially since too many samples
are discarded.

Impact of constraint
∑
t xct ≥ 1. Our formulation in (1)

ensures that at least one target sample is assigned to an
object category. Therefore, all classes contribute to the esti-
mation of the transformation matrix W . In order to measure
its impact on the adaptation problem, we run experiments
with

∑
t xct ≥ 1 and without the constraint, i.e., when a

class might not be assigned to any target sample at all. As
illustrated in Fig. 5, the inclusion of this constraint provides
higher accuracies when ρ < 0.3. For greater values of ρ,
the constraint can be omitted since it does not influence the
accuracy.

Impact of wrong assignments. During the iterative process
of our method, wrong assignments take part in the opti-
misation of W , introducing false associations between the
source and the target domain that negatively affect the final
transformation. A general assumption in our method is that
the correct assignments largely compensate the wrong ones
and, thus, the transformed source data allows for better
classification accuracies in the target domain. Therefore,
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red line indicates the classification accuracy when using all target samples. The results are reported for ATI-λ using the open set protocol on the
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we artificially generate assignments in the first iteration
by assigning a random subset of target samples to the
correct class in the source domain and the remaining target
samples to random classes. We then run our approach
without any additional modifications until it converges.
We report in Table 7 the average percentage of correct
assignments of 5 random splits for the domain shift Amazon
→ DSLR+Webcam with 400 unknown samples. While the
first iteration represents the accuracy of correct and ran-
dom assignments that we generate, the last row shows the
accuracies after the approach has converged. As it can be
observed, the approach ends in a local optimum, but the
accuracies increase for all cases except if we initialise the

approach with 100% correct assignments. It is expected that
the assignment accuracy does not remain at 100% since the
image manifolds are not perfectly linearised and even for
the best estimate of W wrong assignments can occur.

Amazon→ DSLR+Webcam (400 unknown samples)
%gt (+rnd) 10 20 30 40 50 60 70 80 90 100 std
iteration 1 18.2 27.0 36.1 45.2 54.3 63.5 72.7 81.7 90.7 100.0 85.1

final 24.4 40.1 54.7 65.4 72.8 79.2 83.6 88.8 93.1 96.7 88.6

TABLE 7
Impact of limiting the amount of correct assignments in the first

iteration. We report the average percentage of correct assignments
over 5 random splits and increase the percentage of correctly selected
assignments from 10% to 100%, leaving the rest randomly selected.
The last column shows the percentage of correct assignments of the

method without modifying the initial assignments.

Semi-supervised domain adaptation. We also evaluate our
approach for open set domain adaptation on the Office
dataset in its semi-supervised setting. Applying again the
standard protocol of [1] with the subset of source samples,
we also take 3 labelled target samples per class and leave
the rest unlabelled. We compare our method with the deep
learning method MMD [46]. As baselines, we report the
accuracy for the linear SVMs without domain adaptation
(LSVM) when they are trained only on the source samples
(s), only on the annotated target samples (t) or on both (st).
As expected, the baseline trained on both performs best
as shown in Table 8. Our approach ATI outperforms the
baseline and the CNN approach [46]. As in the unsupervised
case, the improvement compared to the CNN approach
is larger for the open set (+4.8%) than for the closed set
(+2.2%). While the locality constrained formulation, ATI-λ-
N , decreased the accuracy for the unsupervised setting, it
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Fig. 5. The black and grey curves show the classification accuracies for varying values of ρ when including or not the constraint
∑

t xct ≥ 1,
respectively. ρ = 0.5 obtains the best accuracies in 5 out of 6 domain shifts. The blue curve shows the percentage of selected assignments to
compute the transformation matrix W in the first iteration. The results are reported for ATI-λ using the open set protocol on the unsupervised Office
dataset with 10 shared classes using all samples per class.

improves the accuracy for the semi-supervised case since the
formulation enforces that neighbours of the target samples
are assigned to the same class. The results with one (ATI-λ-
N1) or two neighbours (ATI-λ-N2) are similar.

A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.8±3.2 62.1±7.9 65.9±6.2 76.4±2.1 45.7±5.0 50.4±4.5
LSVM (t) 92.3±3.9 68.2±5.2 71.1±4.7 91.5±4.9 59.6±3.7 63.2±3.4
LSVM (st) 95.7±1.3 82.5±3.0 84.0±2.6 92.4±1.8 72.5±3.7 74.8±3.4

MMD [46] 94.1±2.3 86.1±2.3 86.8±2.2 92.4±2.8 76.4±1.5 78.3±1.3

ATI 95.4±1.3 89.0±1.4 89.7±1.3 95.9±1.3 84.0±1.7 85.1±1.5
ATI-λ 97.1±1.1 89.5±1.4 90.2±1.3 96.1±2.0 84.1±1.8 85.2±1.5
ATI-λ-N1 97.6±1.0 89.5±1.3 90.3±1.2 96.4±1.7 84.4±3.6 85.5±1.5
ATI-λ-N2 97.9±1.4 89.4±1.2 90.1±1.0 92.8±1.6 84.3±2.4 85.4±1.5

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.2±1.7 40.3±4.3 45.2±3.8 97.2±0.7 81.4±2.4 83.0±2.2
LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 91.5±4.9 59.6±3.7 63.2±3.4
LSVM (st) 91.9±0.7 68.7±2.5 71.2±2.3 98.7±0.9 87.3±2.3 88.5±2.1

MMD [46] 90.2±1.8 69.0±3.4 71.3±3.0 98.5±1.0 85.5±1.6 86.7±1.4

ATI 93.5±0.2 74.4±2.7 76.1±2.5 98.7±0.7 91.6±1.7 92.4±1.5
ATI-λ 93.5±0.2 74.4±2.5 76.2±2.3 98.7±0.8 91.6±1.7 92.4±1.5
ATI-λ-N1 93.4±0.2 74.6±2.5 76.4±2.3 98.9±0.5 92.0±1.6 92.7±1.5
ATI-λ-N2 93.5±0.1 74.9±2.3 76.7±2.1 99.3±0.5 92.2±1.9 92.9±1.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM (s) 78.8±2.9 32.4±3.8 38.2±3.4 99.5±0.3 88.7±2.2 89.6±1.9 87.1 58.4 62.0
LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 92.3±3.9 68.2±5.2 71.1±4.7 90.9 60.2 63.8
LSVM (st) 90.8±1.3 66.2±4.4 69.0±4.1 99.4±0.7 93.5±2.7 94.0±2.5 94.8 78.4 80.3

MMD [46] 89.1±3.2 65.1±3.8 67.8±3.4 98.2±1.4 93.9±2.9 94.4±2.7 93.8 79.3 80.9

ATI 93.0±0.5 71.3±4.6 74.3±4.3 99.3±0.6 96.3±1.8 96.6±1.7 96.0 84.4 85.7
ATI-λ 93.0±0.5 71.5±4.8 73.6±4.4 99.5±0.6 96.3±1.8 96.6±1.7 96.3 84.6 85.7
ATI-λ-N1 93.0±0.6 72.2±4.5 74.2±4.1 99.3±0.6 96.7±2.1 97.0±1.9 96.4 84.9 86.0
ATI-λ-N2 93.0±0.6 72.8±4.2 74.8±3.9 99.3±0.6 95.5±2.2 95.9±2.0 96.6 84.8 86.0

TABLE 8
Open set domain adaptation on the semi-supervised Office dataset

with 10 shared classes (OS). We report the average and the standard
deviation using a subset of samples per class in 5 random splits [1].

4.2.2 Dense Cross-Dataset Analysis

In order to measure the performance of our method and
the open set protocol across popular datasets with more
intra-class variation, we also conduct experiments on the
dense set-up of the Testbed for Cross-Dataset Analysis [17]. This
protocol provides 40 classes from 4 well known datasets,
Bing (B), Caltech256 (C), ImageNet (I) and Sun (S). While the
samples from the first 3 datasets are mostly centred and
without occlusions, Sun becomes more challenging due to
its collection of object class instances from cluttered scenes.
As for the Office dataset, we take the first 10 classes as
shared classes, the classes 11-25 are used as unknowns in
the source domain and the classes 26-40 as unknowns in
the target domain. We use the provided DeCAF features
(DeCAF7). Following the unsupervised protocol described
in [68], we take 50 source samples per class for training and
we test on 30 target images per class for all datasets, except
Sun, where we take 20 samples per class.

The results reported in Table 9 are consistent with the
Office dataset. ATI outperforms the baseline and the other
methods by +4.1% for the closed set and by +5.3% for the
open set. ATI-λ obtains the best accuracies for the open set.

4.2.3 Sparse Cross-Dataset Analysis

We also introduce an open set evaluation using the sparse
set-up from [17] with the datasets Caltech101 (C), Pascal07
(P) and Office (O). These datasets are quite unbalanced and
offer distinctive characteristics: Office contains centred class
instances with barely any background (17 classes, 2300 sam-
ples in total, 68-283 samples per class), Caltech101 allows for
more class variety (35 classes, 5545 samples in total, 35-870
samples per class) and Pascal07 gathers more realistic scenes
with partially occluded objects in various image locations
(16 classes, 12219 samples in total, 193-4015 samples per
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B→C B→I B→S C→B C→I C→S
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 82.4±2.4 66.6±4.0 75.1±0.4 59.0±2.7 43.0±2.0 24.2±3.0 53.5±2.1 40.1±1.9 76.9±4.3 62.5±1.2 46.3±2.7 28.2±1.4

TCA [67] 74.9±3.0 62.8±3.8 68.4±4.0 56.6±4.5 38.3±1.7 29.6±4.2 49.2±1.1 38.9±1.9 73.1±3.6 60.2±1.4 45.9±3.6 29.7±1.6
gfk [3] 82.0±2.2 66.2±4.0 74.3±1.0 58.3±3.1 42.2±1.4 23.8±2.0 53.2±2.6 40.2±1.8 77.1±3.3 62.2±1.5 46.2±3.0 28.5±1.0
SA [66] 81.1±1.8 66.0±3.4 73.9±0.9 57.8±3.2 41.9±2.4 24.3±2.6 53.4±2.5 40.3±1.7 77.3±4.2 62.5±.8 46.1±3.3 29.0±1.5
CORAL [27] 80.1±3.5 68.8±3.3 73.7±2.0 60.9±2.6 42.2±2.4 27.2±3.9 53.6±2.9 40.7±1.5 78.2±5.1 64.0±2.6 48.2±3.9 31.4±0.8

ATI 86.3±1.6 71.4±1.8 80.1±0.7 68.0±1.9 49.2±3.2 36.8±1.2 53.2±3.4 45.4±3.4 81.7±3.7 66.7±4.2 52.0±3.4 35.8±1.8
ATI-λ 86.7±1.3 71.4±2.3 80.6±2.4 69.0±2.8 48.6±2.5 37.4±2.6 54.2±1.9 45.7±3.0 82.2±3.7 67.9±4.2 53.1±2.8 37.5±2.7

I→B I→C I→S S→B S→C S→I AVG.
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 59.1±2.0 42.7±2.0 86.2±2.6 73.3±3.9 50.1±4.0 32.1±3.2 33.1±1.7 16.4±1.1 53.1±2.6 27.9±2.9 52.3±1.8 25.2±0.5 59.3 41.5

TCA [67] 56.1±3.8 40.9±2.9 83.4±3.2 68.6±1.8 49.3±2.6 34.5±3.8 30.6±1.3 19.4±2.1 47.5±3.5 32.0±3.9 45.2±1.9 31.1±4.6 55.2 42.0
gfk [3] 58.7±1.9 42.6±2.4 86.1±2.7 73.3±3.6 49.5±3.6 32.7±3.6 33.3±1.4 16.9±1.5 53.1±3.0 28.6±3.8 52.5±2.0 26.4±1.1 59.0 41.6
SA [66] 58.7±1.8 43.1±1.6 85.9±2.9 72.8±3.1 50.0±3.6 32.2±3.7 34.2±1.1 17.5±1.6 52.5±3.2 29.2±4.2 52.6±2.4 27.1±1.3 59.0 41.1
CORAL [27] 58.5±2.7 44.6±2.5 85.8±1.5 74.5±3.4 49.5±4.8 35.4±4.4 32.9±1.6 18.7±1.2 52.1±2.8 33.6±5.3 52.9±1.8 31.3±1.3 59.0 44.2

ATI 57.9±1.9 48.8±2.3 89.3±2.2 77.1±2.6 55.0±5.0 42.2±4.0 34.9±2.6 22.8±3.1 59.8±1.3 46.9±2.5 60.8±3.4 32.9±2.2 63.4 49.5
ATI-λ 58.6±1.4 48.7±1.8 89.7±2.3 77.5±2.2 55.3±4.3 43.4±4.8 34.1±2.4 23.2±3.2 60.2±2.7 47.3±2.9 60.3±2.4 33.0±1.1 63.6 50.2

TABLE 9
Unsupervised open set domain adaptation on the Testbed dataset (dense setting) with 10 shared classes (OS). In addition, the results for closed

set domain adaptation (CS) are reported for comparison.

C→O C→P O→C O→P P→C P→O AVG.
shared classes 8 7 8 4 7 4
unknown / all (t) 0.52 0.30 0.90 0.81 0.54 0.78

LSVM 46.3 36.1 60.8 29.7 78.8 70.1 53.6
TCA [67] 45.2 33.8 58.1 31.1 63.4 61.1 48.8
gfk [3] 46.4 36.2 61.0 29.7 79.1 72.6 54.2
SA [66] 46.4 36.8 61.1 30.2 79.8 71.1 54.2
CORAL [27] 48.0 35.9 60.2 29.1 78.9 68.8 53.5

ATI 51.6 52.1 63.1 38.8 80.6 70.9 59.5
ATI-λ 51.5 52.0 63.4 39.1 81.1 71.1 59.7

TABLE 10
Unsupervised open set domain adaptation on the sparse set-up

from [17].

C→O C→P O→C O→P P→C P→O AVG.
LSVM (s) 46.5±0.1 36.2±0.1 60.8±0.3 29.7±0.0 79.5±0.3 73.5±0.7 54.4
LSVM (t) 53.1±3.7 44.6±2.1 73.7±1.5 40.5±3.0 81.1±2.5 70.5±4.3 60.6
LSVM (st) 56.0±1.3 44.5±1.2 68.9±1.1 40.9±2.2 80.9±0.6 76.7±0.3 61.3

ATI 59.6±1.2 55.2±1.3 75.8±1.2 45.2±1.4 81.6±0.2 77.1±0.8 65.8
ATI-λ 60.3±1.2 56.0±1.2 75.8±1.1 45.8±1.2 81.8±0.2 76.9±1.3 66.1
ATI-λ-N1 60.7±1.2 56.3±1.2 76.7±1.6 45.8±1.4 82.0±0.4 76.7±1.1 66.4

TABLE 11
Semi-supervised open set domain adaptation on the sparse set-up

from [17] with 3 labelled target samples per shared class.

class). For each domain shift, we take all samples of the
shared classes and consider all other samples as unknowns.
Table 10 summarises the amount of shared classes for each
shift and the percentage of unknown target samples, which
varies from 30% to 90%.

Unsupervised domain adaptation. For the unsupervised
experiment, we conduct a single run for each domain shift
using all source and unlabelled target samples. The results
are reported in Table 10. ATI outperforms the baseline and
the other methods by +5.3% for this highly unbalanced open
set protocol. ATI-λ improves the accuracy of ATI slightly.

Semi-supervised domain adaptation. In order to evaluate
the semi-supervised setting, we take all source samples and
3 annotated target samples per shared class as it is done in
the semi-supervised setting for the Office dataset [1]. The
average and standard deviation over 5 random splits are
reported in Table 11. While ATI improves over the baseline

trained on the source and target samples together (st) by
+4.5%, ATI-λ and the locality constraints with one neigh-
bour boost the performance further. ATI-λ-N1 improves the
accuracy of the baseline by +5.1%.

4.2.4 Action recognition

We extend the applicability of our technique to the field
of action recognition in video sequences. We introduce an
open set domain adaptation protocol between the Kinetics
Human Action Video Dataset [20] (Kinetics) and the UCF101
Action Recognition Dataset [21] (UCF101). The Kinects dataset
is used as source domain and contains a total of 400 hu-
man action classes. The UCF101 dataset serves as target
domain including 101 action categories, mainly of sports
events. Since the labels of the same action differ between
the datasets, e.g., massaging persons head (Kinetics) and head
massage (UCF101), we manually map the class labels be-
tween the datasets. Additionally, we also merge all action
classes in one datasets if they correspond to a single class in
the other dataset, e.g., dribbling basketball, playing basketball,
shooting basketball (Kinetics) are merged and associated to
basketball (UCF101). We finally obtain an open set protocol
with 66 shared action classes. The list of shared classes, as
well as all unrelated categories between both datasets, are
provided in the supplemental material.

For action recognition, we use the features extracted
from the 5c layer of the spatial and temporal stream of the
I3D model [69], which is pretrained on Kinetics [20]. We
forward the complete video sequences through the spatial
and temporal stream of I3D [69] and the 5c layer of each
stream provides an 7× 7× 1024 output for a temporal frag-
ment. We then apply spatial average pooling using a 7 × 7
kernel and average over time to obtain a 1024-dimensional
feature vector from both the spatial and temporal stream
of the I3D model [69]. Finally, the feature vectors from the
spatial and temporal streams are concatenated to get a single
2048-dimensional feature vector per video sequence.

Unsupervised domain adaptation. In the unsupervised set-
ting, we evaluate our method by taking all source samples in
a single run. Table 12 shows that the proposed approach out-
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Kinetics→ UCF101
LSVM TCA [67] gkf [3] SA [66] CORAL [27] ATI ATI-λ

64.9 71.2 64.9 65.1 69.4 76.6 76.9

TABLE 12
Unsupervised open set domain adaptation for action recognition.

(a) No adaptation (LSVM): 64.9% (b) ATI-λ: 76.9%

Fig. 6. Confusion matrices without (a) and with adaptation (b) for the 66
shared classes and unknowns (last row and last column) for the open
set protocol for Kinetics [20] and UCF101 [21]. Many instances of the
shared classes in the target domain are wrongly classified as unknown
instances (last column) if domain adaptation is not applied. The figure is
best viewed by zooming in.

performs the baseline and other approaches. ATI-λ achieves
the highest accuracy and improves the accuracy by +12.0%
compared to LSVM. The resulting confusion matrices of
LSVM and ATI-λ are shown in Fig. 6. LSVM misclassifies
many instances of shared classes in the target domain as
unknown instances (last column of confusion matrix), which
is a well-known problem for open set recognition. Although
ATI-λ does not resolve this problem completely, it reduces
this effect substantially.

Semi-supervised domain adaptation. We extend the un-
supervised protocol to evaluate our method on a semi-
supervised setting by labelling 3 target samples per shared
class. We report the average accuracies of 5 random splits
in Table 13. Like in the previous semi-supervised experi-
ments, ATI-λ-N1 obtains the best classification accuracies,
outperforming the baseline without adaptation, LSVM (st),
by +11.0%.

4.2.5 Synthetic data
We also introduce another open set protocol with a domain
shift between synthetic and real data. In this case, we take
152,397 synthetic images of the VISDA’17 challenge [19] as
source domain and 5970 instances of real images from the
training data of the Pascal3D dataset [70] as target domain.
Since both datasets contain several types of vehicles, we
obtain 6 shared classes, namely, aeroplane, bicycle, bus, car,
motorbike and train, within the 12 categories of each dataset.
Following the protocol used in Section 4.2.1, we extract
deep features from the fully connected layer-7 (fc7) from the
AlexNet model [43] with 4096 dimensions. In addition, we
also extract features from the VGG-16 model [71] to evaluate
the impact of using deeper features.

The results of the classification task are shown in Ta-
ble 14. The proposed domain adaptation method achieves
the best results for both types of CNN features. When we

Kinetics→ UCF101
LSVM (st) ATI ATI-λ ATI-λ-N1
73.5±0.5 84.1±0.7 84.2±0.8 84.5±0.6

TABLE 13
Semi-supervised open set domain adaptation for action recognition.

VISDA→ Pascal3D
LSVM TCA [67] gkf [3] SA [66] CORAL [27] ATI ATI-λ

AlexNet 48.0 49.7 50.1 51.2 52.0 61.1 61.4
VGG-16 53.6 55.0 55.2 56.5 60.0 72.0 71.9

TABLE 14
Open set domain adaptation using synthetic images from the VISDA’17
challenge [19] as source and real data from the Pascal3D dataset [70]
as target dataset. There are 6 shared classes between both datasets.

compare the performance of the deep features from AlexNet
and VGG-16, the accuracy of the baseline (LSVM) increases
by +5.6% when using the deeper network VGG-16 instead of
AlexNet. ATI and ATI-λ, however, benefit even more from
the deeper architecture. For instance, the accuracy of ATI-λ
increases by +10.5%. This coincides with the observation
that deeper networks have a stronger linearisation effect
on manifolds of image domains [14], [15] than shallow
networks. Since the proposed approach learns a linear
mapping from the feature space of the source domain to
the feature space of the target domain, it benefits from a
better linearisation. The confusion matrices of the classifi-
cation task with features extracted from the VGG-16 model
are shown in Fig. 7. ATI-λ improves the overall accuracy
of LSVM by +18.3% since it resolves confusions between
similar classes. For instance, LSVM frequently misclassifies
bicycle as motorbike and car as instances of trucks, which are
part of the unknown class.

4.3 Closed set domain adaptation
We also report the accuracies of our method for popular
domain adaptation datasets using the standard closed set
protocols, where all classes are known in both domains.

4.3.1 Office dataset
For the Office dataset [1], we run experiments for the
6 domain shifts of the three provided datasets and use
deep features extracted from the fc7 feature map from the
AlexNet [43] and VGG-16 [71] models.
Unsupervised domain adaptation. For unsupervised do-
main adaptation, we first report the results for the protocol
from [1], where we run 5 experiments for each domain shift
using randomised samples of the source dataset. The results
are shown in Table 15, where we compare our method with
generic domain adaptation methods, i.e., TCA [67], gfk [3],
SA [66] and CORAL [27] using AlexNet features. The results
are in accordance with the observations from Section 4.2.1.
While ATI outperforms all generic domain adaptation meth-
ods in average and ATI-λ performs slightly better than
ATI, ATI-λ-N1 decreases the accuracy in the unsupervised
setting. In addition, we also include the accuracies of using
nearest neighbours without domain adaptation, NN, which
reports significant lower accuracies than LSVM. LSVM also
outperforms NN in other closed set evaluation protocols by
a large margin.
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aeroplane

bicycle

bus

car

motorbike

train

unknown

aero bike bus car mbike train unkn

(a) No adaptation (LSVM): 53.6% (b) ATI-λ: 71.9%

Fig. 7. Confusion matrices without (a) and with adaptation (b) for an
open set classification task with 6 shared classes and a domain shift
between synthetic [19] (source) and real [70] (target) data. The features
are extracted from the fc7 layer of the VGG-16 model [71].

A→D A→W D→A D→W W→A W→D AVG.
NN 51.3±1.4 45.7±2.1 26.0±0.9 65.5±1.4 28.0±0.5 69.8±1.8 47.7
LSVM 62.3±3.8 55.8±3.1 42.8±1.6 90.1±0.6 41.2±0.4 92.6±1.5 64.1

TCA [67] 60.3±4.0 54.7±3.0 49.4±1.6 90.7±0.4 46.9±2.3 92.0±0.9 65.7
gfk [3] 61.3±3.7 55.7±3.0 45.6±1.6 90.6±0.4 43.1±2.3 93.4±0.9 65.0
SA [66] 60.6±3.5 55.0±3.1 47.3±1.6 90.9±0.6 44.4±1.4 93.3±0.8 65.3
CORAL [27] 64.4±3.9 58.9±3.3 52.1±1.2 92.6±0.3 50.0±1.0 94.0±0.6 68.7

ATI 67.6±3.0 62.3±3.1 54.8±1.3 90.3±0.8 52.4±2.1 92.6±1.7 70.0
ATI-λ 67.3±2.3 62.6±2.5 55.2±2.6 90.1±0.6 53.4±2.5 92.7±2.5 70.2
ATI-λ-N1 64.6±2.9 60.9±1.3 51.9±1.9 90.2±0.9 48.1±1.6 93.7±2.1 68.2

TABLE 15
Comparison on the unsupervised Office dataset [1] with 31 shared

classes and 6 domain shifts using the protocol from [1] and features
from the AlexNet model (fc7 layer).

We also compare our method with current state-of-the-
art CNN-based domain adaptation methods [6], [9], [47],
[48], [50], [51]. In this case, we report the accuracies when all
source samples are used in a single run as described by [32].
As shown in Table 16, our method achieves competitive
results even for the standard closed set protocol.

Semi-supervised domain adaptation. We also evaluate our
approach for semi-supervised domain adaptation on the
Office dataset. We follow the protocol from [1] and report
the accuracies and standard deviations over 5 runs with
random samples. In the first experiment with AlexNet fea-
tures, we also include ATI-λ-N2 with locality constraints
using 2 nearest neighbours and compare our approach with
state-of-the-art CNN-based methods [46], [47], [72]. As in
Section 4.2.1, we train the SVMs on the transformed source
samples and labelled target samples (st). The results are
reported in Table 17.

Our method achieves the same average accuracy as
MMC [72] and performs slightly worse than [10] for the
VGG-16 features. In addition, we report the accuracy for
AlexNet features when the mapping W (6) is estimated
using only the labelled target samples without solving the
individual assignments (1). This variant is denoted by ATI
(labels t) and performs worse than ATI.

4.3.2 Office+Caltech dataset

We also evaluate our approach on the extended version of
the Office evaluation set [3], which includes the additional
Caltech (C) dataset. This results in 12 domain shifts, but
reduces the amount of shared classes to only 10. As shown

A→D A→W D→A D→W W→A W→D AVG.
AlexNet features (fc7)

NN 55.9 49.7 27.4 75.3 31.5 86.2 54.3
LSVM 65.7 60.3 43.2 94.7 44.0 98.9 67.8

DAN [47] 66.8 68.5 50.0 96.0 49.8 99.0 71.7
DAH [51] 66.5 68.3 55.5 96.1 53.0 98.8 73.0
RTN [48] 71.0 73.3 50.5 96.8 51.0 99.6 73.7
BP [6] - 73.0 - 96.4 - 99.2 -
ADDA [9] - 75.1 - 97.0 - 99.6 -

ATI 70.3 68.7 55.3 95.0 56.9 98.7 74.2
ATI-λ 69.0 67.0 56.2 95.0 56.9 98.7 73.8

VGG-16 features (fc7)
NN 61.3 55.4 33.1 78.6 49.4 88.8 61.1
LSVM 76.1 68.6 55.3 95.9 61.5 99.6 76.2

DAN [47] 74.4 76.0 61.5 95.9 60.3 98.6 77.8
AutoDIAL [50] 82.3 84.2 64.6 97.9 64.2 99.9 82.2
ATI 80.6 81.4 67.1 96.1 66.4 99.3 81.8
ATI-λ 80.8 81.3 66.9 96.1 66.5 98.9 81.8

TABLE 16
Comparison on the unsupervised Office dataset [1] with 31 shared
classes and 6 domain shifts taking all source samples as in [32].

A→D A→W D→A D→W W→A W→D AVG.
AlexNet features (fc7)

LSVM (st) 82.6±5.5 77.0±2.5 63.4±1.6 94.0±0.8 61.8±1.1 96.3±0.8 79.2

DDC [46] - 84.1±0.6 - 95.4±0.4 - 96.3±0.3 -
DAN [47] - 85.7±0.3 - 97.2±0.2 - 96.4±0.2 -
MMC [72] 86.1±1.2 82.7±0.8 66.2±0.3 95.7±0.5 65.0±0.5 97.6±0.2 82.2
ATI (labels t) 85.0±2.1 78.3±2.3 63.6±1.5 94.0±0.8 62.3±0.9 96.4±0.8 79.9
ATI 85.5±2.9 82.4±1.1 65.1±1.3 93.4±0.9 65.6±1.5 95.7±1.1 81.3
ATI-λ 85.6±2.6 82.6±0.5 65.3±1.3 93.3±1.0 65.7±1.7 95.7±1.1 81.4
ATI-λ-N1 88.1±1.7 83.1±2.3 66.0±1.4 93.9±1.2 65.9±1.5 96.2±0.8 82.2
ATI-λ-N2 87.0±3.5 84.6±3.5 65.3±1.0 93.6±1.2 65.9±1.8 95.8±1.3 82.0

VGG-16 features (fc7)
LSVM (st) 86.1±1.5 83.4±1.2 67.9±1.0 96.1±0.7 67.1±0.6 96.6±1.0 82.9

SO [52] 84.5±1.7 86.3±0.8 65.7±1.7 97.5±0.7 66.5±1.0 95.5±0.6 82.7
CCSA [10] 88.2±1.0 89.0±1.2 72.1±1.0 97.6±0.4 71.8±0.5 96.4±0.8 85.8
ATI-λ-N1 90.3±1.9 88.0±1.4 70.8±0.9 95.1±0.7 70.3±2.0 96.3±0.9 85.1

TABLE 17
Comparison on the semi-supervised Office dataset [1] with 31 shared

classes and 6 domain shifts, following the protocol from [1].

in Table 18, our method obtains very competitive results
with AlexNet features, outperforming in overall the generic
domain adaptation method [27] and 3 out of 4 CNN-based
methods. If features from a deeper network such as VGG-16
are used, our method obtains the best overall results.

4.3.3 Dense Testbed for Cross-Dataset Analysis
We also present an evaluation on the Dense dataset of the
Testbed for Cross-Dataset Analysis [68] using the provided
DeCAF features. This protocol comprises 12 domain shifts
between the 4 datasets Bing (B), Caltech (C), ImageNet (I)
and Sun (S), which share 40 classes. Following the protocol
described in [68], we take 50 source samples per class for
training and we test on 30 target images per class for all
datasets, except Sun, where we take 20 samples per class.
The results reported in Table 19 show that ATI-λ outper-
forms other generic domain adaptation methods.

4.3.4 Sentiment Analysis
To show the behaviour of our method with a different
type of feature descriptor, we also present an evaluation
on the Sentiment analysis dataset [18]. This dataset gathers
reviews from Amazon for four products: books (B), DVDs
(D), electronics (E) and kitchen appliances (K). Each domain
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A→C A→D A→W C→A C→D C→W
AlexNet features (fc7)

NN 78.4 78.1 71.7 90.7 84.4 80.8
LSVM 83.3 84.1 77.5 91.8 89.1 82.3

CORAL [27] 83.2 86.5 79.6 91.4 86.6 82.1
BP [6] 84.6 92.3 90.2 91.9 92.8 93.2

DDC [46] 83.5 88.4 83.1 91.9 88.8 85.4
DAN [47] 84.1 91.1 91.8 92.0 89.3 90.6
RTN [48] 88.1 95.5 95.2 93.7 94.2 96.9

ATI 86.5 92.8 88.7 93.8 89.6 93.6
ATI-λ 87.1 90.6 90.7 93.4 85.4 93.4

VGG-16 features (fc7)
NN 86.7 84.4 83.4 91.4 88.2 88.0

LSVM 87.8 88.7 87.2 93.3 91.8 91.4

ATI 91.0 92.4 95.9 94.7 93.1 97.4
ATI-λ 90.4 92.4 91.4 94.5 93.9 96.0

D→A D→C D→W W→A W→C W→D AVG
AlexNet features (fc7)

NN 64.2 58.6 89.0 63.2 58.8 95.4 76.1
LSVM 79.4 70.2 97.9 80.0 72.7 100.0 84.0

CORAL [27] 87.3 77.5 99.3 85.2 76.1 100.0 86.2
BP [6] 84.0 74.9 97.8 86.9 77.3 100.0 88.2

DDC [46] 89.0 79.2 98.1 84.9 73.4 100.0 87.1
DAN [47] 90.0 80.3 98.5 92.1 81.2 100.0 90.1
RTN [48] 93.8 84.6 99.2 95.5 86.6 100.0 93.4

ATI 93.4 85.9 98.9 93.6 86.3 100.0 91.9
ATI-λ 93.6 85.8 99.3 93.6 86.1 100.0 91.8

VGG-16 features (fc7)
NN 78.9 75.0 95.2 80.9 78.5 100.0 85.6

LSVM 82.5 77.9 98.4 87.8 84.9 100.0 89.3

ATI 93.7 89.8 98.1 95.1 90.3 99.5 94.3
ATI-λ 94.6 89.4 98.4 95.3 89.4 99.6 93.8

TABLE 18
Classification accuracies on the unsupervised Office+Caltech

dataset [3] with 10 shared classes and 12 domain shifts using deep
features. We take all source samples on a single run [32].

B→C B→I B→S C→B C→I C→S
LSVM 63.8±2.2 57.4±0.7 20.2±1.0 38.3±0.8 62.9±0.9 21.7±1.6

TCA [67] 53.8±1.3 49.1±1.1 17.1±1.1 35.6±1.8 59.2±0.8 18.9±1.2
gfk [3] 63.4±1.8 57.2±1.1 20.6±1.3 38.3±0.9 62.9±1.2 21.7±1.4
SA [66] 63.0±1.9 57.1±1.4 20.2±1.4 38.3±0.9 62.8±1.0 21.5±1.2

CORAL [27] 63.9±2.1 57.8±0.8 20.4±2.0 38.3±0.8 63.4±0.9 22.5±1.2

ATI 69.1±1.3 62.4±1.9 23.4±1.1 39.0±1.4 66.9±1.2 25.2±0.9
ATI-λ 69.4±1.4 62.9±1.3 23.6±1.0 39.0±1.4 66.9±1.1 25.3±0.9

I→B I→C I→S S→B S→C S→I AVG
LSVM 39.3±1.4 70.8±1.5 24.6±1.8 16.6±1.0 26.1±2.0 26.3±0.7 39.0

TCA [67] 36.4±1.2 66.3±2.3 22.2±1.4 13.8±1.4 23.2±1.5 23.2±1.5 34.9
gfk [3] 38.8±1.3 70.9±1.1 24.4±1.4 16.3±0.9 26.7±1.8 26.1±1.0 38.9
SA [66] 39.0±1.3 71.1±1.3 24.2±1.4 16.0±0.9 26.8±1.9 26.4±1.1 38.9

CORAL [27] 39.0±1.2 71.2±1.3 24.9±1.6 16.8±1.0 27.4±2.2 27.7±0.5 39.4

ATI 39.7±1.8 74.4±1.6 25.9±2.1 18.3±1.1 37.1±3.2 35.0±1.0 42.8
ATI-λ 39.8±1.8 74.8±1.5 25.8±2.0 18.7±0.7 37.4±2.9 34.8±0.8 43.2

TABLE 19
Testbed dataset [17] with 40 common classes and 12 domain shifts.

contains 1000 reviews labelled as positive and another set of
1000 reviews as negative. We use the data provided by [39],
which extracts bag-of-words features from the 400 words
with the largest mutual information across domains. We
report the mean accuracy over 20 splits, where for each
run 1600 samples are randomly selected for training and
the other 400 for testing. The results in Table 20 show that
our approach not only works very well for image and video
data, but it can also be applied to other types of data. This
demonstrates the versatility of the proposed approach.

B→E D→B E→K K→D AVG.
LSVM 75.5±1.6 78.2±2.5 83.1±1.8 73.3±1.8 77.5

TCA [67] 76.6±2.2 78.5±1.6 83.8±1.5 75.0±1.4 78.5
gfk [3] 77.0±2.0 79.2±1.8 83.7±1.7 73.7±1.9 78.4
SA [66] 75.9±1.9 78.4±2.1 83.0±1.7 72.1±1.9 77.4
CORAL [27] 76.2±1.7 78.4±2.0 83.1±2.0 74.2±3.0 78.0

ATI 79.9±2.0 79.2±1.9 83.7±2.1 75.6±1.9 79.6
ATI-λ 79.6±1.4 79.0±1.8 83.6±2.1 74.4±1.7 79.2

TABLE 20
Accuracies of 4 domain shifts on the Sentiment dataset [18] using the

bag-of-words features and the protocol from [39].

5 CONCLUSIONS

We have introduced the concept of open set domain adap-
tation in the context of image classification and action
recognition. In contrast to closed set domain adaptation, we
do not assume that all instances in the source and target
domain belong to the same set of classes, but allow that each
domain contains instances of classes that are not present in
the other domain. We furthermore proposed an approach
for unsupervised and semi-supervised domain adaptation
that achieves state-of-the-art results for open sets and com-
petitive results for closed sets. In particular, the flexibility
of the approach, which can be used for images, videos and
other types of data, makes the approach a versatile tool for
real-world applications.
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