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Abstract

When the training and the test data belong to different
domains, the accuracy of an object classifier is significantly
reduced. Therefore, several algorithms have been proposed
in the last years to diminish the so called domain shift be-
tween datasets. However, all available evaluation protocols
for domain adaptation describe a closed set recognition
task, where both domains, namely source and target, con-
tain exactly the same object classes. In this work, we also
explore the field of domain adaptation in open sets, which is
a more realistic scenario where only a few categories of in-
terest are shared between source and target data. Therefore,
we propose a method that fits in both closed and open set
scenarios. The approach learns a mapping from the source
to the target domain by jointly solving an assignment prob-
lem that labels those target instances that potentially belong
to the categories of interest present in the source dataset. A
thorough evaluation shows that our approach outperforms
the state-of-the-art.

1. Introduction
For many applications, training data is scarce due to the

high cost of acquiring annotated training data. Although
there are large annotated image datasets publicly available,
the images collected from the Internet often differ from the
type of images which are relevant for a specific applica-
tion. Depending on the application, the type of sensor or the
perspective of the sensor, the entire captured scene might
greatly differ from pictures on the Internet. The two types
of images are therefore in two different domains, namely the
source and target domain. In order to classify the images in
the target domain using the annotated images in the source
domain, the source and target domains can be aligned. In
our case, we will map the feature space of the source do-
main to the feature space of the target domain. Any clas-
sifier can then be learned on the transformed data of the
source domain to classify the images in the target domain.
This process is termed domain adaptation and is further di-
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Figure 1. (a) Standard domain adaptation benchmarks assume that
source and target domains contain images only of the same set of
object classes. This is denoted as closed set domain adaptation
since it does not include images of unknown classes or classes
which are not present in the other domain. (b) We propose open
set domain adaptation. In this setting, both source and target do-
main contain images that do not belong to the classes of interest.
Furthermore, the target domain contains images that are not related
to any image in the source domain and vice versa.

vided in unsupervised and semi-supervised approaches de-
pending on whether the target images are unlabelled or par-
tially labelled.

Besides of the progress we have seen for domain adap-
tation over the last years [34, 19, 18, 9, 21, 13, 31, 15], the
methods have been so far evaluated using a setting where
the images of the source and target domain are from the
same set of categories. This setting can be termed closed set
domain adaptation as illustrated in Fig. 1(a). An example of
such a closed set protocol is the popular Office dataset [34].
The assumption that the target domain contains only images
of the categories of the source domain is, however, unreal-
istic. For most applications, the dataset in the target domain
contains many images and only a small portion of it might



belong to the classes of interest. We therefore introduce
the concept of open sets [28, 37, 36] to the domain adap-
tation problem and propose open set domain adaptation,
which avoids the unrealistic assumptions of closed set do-
main adaptation. The differences between closed and open
set domain adaptation are illustrated in Fig. 1.

As a second contribution, we propose a domain adapta-
tion method that suits both closed and open sets. To this
end, we map the feature space of the source domain to the
target domain. The mapping is estimated by assigning im-
ages in the target domain to some categories of the source
domain. The assignment problem is defined by a binary lin-
ear program that also includes an implicit outlier handling,
which discards images that are not related to any image in
the source domain. An overview of the approach is given
in Fig. 2. The approach can be applied to the unsupervised
or semi-supervised setting, where a few images in the target
domain are annotated by a known category.

We provide a thorough evaluation and comparison with
state-of-the-art methods on 24 combinations of source and
target domains including the Office dataset [34] and the
Cross-Dataset Analysis [44]. We revisit these evaluation
datasets and propose a new open set protocol for domain
adaptation, both unsupervised and semi-supervised, where
our approach achieves state-of-the-art results in all settings.

2. Related Work
The interest in studying domain adaptation techniques

for computer vision problems increased with the release
of a benchmark by Saenko et al. [34] for domain adapta-
tion in the context of object classification. The first rele-
vant works on unsupervised domain adaptation for object
categorisation were presented by Golapan et al. [19] and
Gong et al. [18], who proposed an alignment in a common
subspace of source and target samples using the proper-
ties of Grassmanian manifolds. Jointly transforming source
and target domains into a common low dimensional space
was also done together with a conjugate gradient minimi-
sation of a transformation matrix with orthogonality con-
straints [3] and with dictionary learning to find subspace
interpolations [32, 38, 47]. Sun et al. [40, 39] presented
a very efficient solution based on second-order statistics
to align a source domain with a target domain. Similarly,
Csurka et al. [10] jointly denoise source and target samples
to reconstruct data without partial random corruption. Shar-
ing certain similarities with associations between domains,
Gong et al. [17] minimise the Maximum Mean Discrepancy
(MMD) [20] of two datasets. They assign instances to latent
domains and solve it by a relaxed binary optimisation. Hsu
et al. [31] use a similar idea allowing instances to be linked
to all other samples.

Semi-supervised domain adaptation approaches take ad-
vantage of knowing the class labels of a few target sam-

ples. Aytar et al. [2] proposed a transfer learning formula-
tion to regularise the training of target classifiers. Exploit-
ing pairwise constraints across domains, Saenko et al. [34]
and Kulis et al. [27] learn a transformation to minimise the
effect of the domain shift while also training target classi-
fiers. Following the same idea, Hoffman et al. [22] consid-
ered an iterative process to alternatively minimise the clas-
sification weights and the transformation matrix. In a differ-
ent context, [7] proposed a weakly supervised approach to
refine coarse viewpoint annotations of real images by syn-
thetic images. In contrast to semi-supervised approaches,
the task of viewpoint refinement assumes that all images in
the target domain are labelled but not with the desired gran-
ularity.

The idea of selecting the most relevant information of
each domain has been studied in early domain adaptation
methods in the context of natural language processing [5].
Pivot features that behave the same way for discriminative
learning in both domains were selected to model their corre-
lations. Gong et al. [16] presented an algorithm that selects
a subset of source samples that are distributed most sim-
ilarly to the target domain. Another technique that deals
with instance selection has been proposed by Sangineto et
al. [35]. They train weak classifiers on random partitions of
the target domain and evaluate them in the source domain.
The best performing classifiers are then selected. Other
works have also exploited greedy algorithms that iteratively
add target samples to the training process, while the least
relevant source samples are removed [6, 42].

Since CNN features show some robustness to domain
changes [11], several domain adaptation approaches based
on CNNs have been proposed [39, 31, 45, 48]. Chopra et
al. [9] extended the joint training of CNNs with source and
target images by learning intermediate feature encoders and
combine them to train a deep regressor. The MMD distance
has been also proposed as regulariser to learn features for
source and target samples jointly [14, 46, 29, 30]. Ganin
et al. [13] added a domain classifier network after the CNN
to minimise the domain loss together with the classification
loss. More recently, Ghifary et al. [15] combined two CNN
models for labelled source data classification and for unsu-
pervised target data reconstruction.

Standard object classification tasks ignore the impact of
impostors that are not represented by any of the object cat-
egories. These open sets started getting attention in face
recognition tasks, where some test exemplars did not appear
in the training database and had to be rejected [28]. Current
techniques to detect unrelated samples in multi-class recog-
nition with open sets have lately been revisited by Scheirer
et al. [37]. [23] and [36] detect unknown instances by learn-
ing SVMs that assign probabilistic decision scores instead
of class labels. Similarly, [49] and [4] add a regulariser to
detect outliers and penalise a misclassification.
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Figure 2. Overview of the proposed approach for unsupervised open set domain adaptation. (a) The source domain contains some labelled
images, indicated by the colours red, blue and green, and some images belonging to unknown classes (grey). For the target domain, we
do not have any labels but the shapes indicate if they belong to one of the three categories or an unknown category (circle). (b) In the first
step, we assign class labels to some target samples, leaving outliers unlabelled. (c) By minimising the distance between the samples of the
source and the target domain that are labelled by the same category, we learn a mapping from the source to the target domain. The image
shows the samples in the source domain after the transformation. This process iterates between (b) and (c) until it converges to a local
minimum. (d) In order to label all samples in the target domain either by one of the three classes (red, green, blue) or as unknown (grey),
we learn a classifier on the source samples that have been mapped to the target domain (c) and apply it to the samples of the target domain
(a). In this image, two samples with unknown classes are wrongly classified as red or green.

3. Open Set Domain Adaptation

We present in this paper an approach that iterates be-
tween solving the labelling problem of target samples, i.e.,
associating a subset of the target samples to the known cat-
egories of the source domain, and computing a mapping
from the source to the target domain by minimising the dis-
tances of the assignments. The transformed source samples
are then used in the next iteration to re-estimate the assign-
ments and update the transformation. This iterative process
is repeated until convergence and is illustrated in Fig. 2.

In Section 3.1, we describe the unsupervised assign-
ment of target samples to categories of the source domain.
The semi-supervised case is described in Section 3.2. Sec-
tion 3.3 finally describes how the mapping from the source
domain to the target domain is estimated from the previous
assignments. This part is the same for the unsupervised and
semi-supervised setting.

3.1. Unsupervised Domain Adaptation

We first address the problem of unsupervised domain
adaptation, i.e., none of the target samples are annotated,
in an open set protocol. Given a set of classes C in the
source domain, including |C − 1| known classes and an
additional unknown class that gathers all instances from
other irrelevant categories, we aim to label the target sam-
ples T = {T1, . . . , T|T |} by a class c ∈ C. We define
the cost of assigning a target sample Tt to a class c by
dct = ‖Sc − Tt‖22 where Tt ∈ RD is the feature repre-
sentation of the target sample t and Sc ∈ RD is the mean of
all samples in the source domain labelled by class c. To in-
crease the robustness of the assignment, we do not enforce
that all target samples are assigned to a class as shown in
Fig. 2(b). The cost of declaring a target sample as outlier is

defined by a parameter λ, which is discussed in Section 4.1.

Having defined the individual assignment costs, we can
formulate the entire assignment problem by:

minimise
xct,ot

∑
t

(∑
c

dctxct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

xct, ot ∈ {0, 1} ∀c, t .

(1)

By minimising the constrained objective function, we ob-
tain the binary variables xct and ot as solution of the as-
signment problem. The first type of constraints ensures that
a target sample is either assigned to one class, i.e., xct = 1,
or declared as outlier, i.e., ot = 1. The second type of con-
straints ensures that at least one target sample is assigned
to each class c ∈ C. We use the constraint integer program
package SCIP [1] to solve all proposed formulations.

As it is shown in Fig. 2(b), we label the targets also by
the unknown class. Note that the unknown class combines
all objects that are not of interest. Even if the unknowns in
the source and target domain belong to different semantic
classes, a target sample might be closer to the mean of all
negatives than to any other positive class. In this case, we
can confidentially label a target sample as unknown. In our
experiments, we show that it makes not much difference if
the unknown class is included in the unsupervised setting
since the outlier handling discards target samples that are
not close to the mean of negatives.



3.2. Semi-supervised Domain Adaptation

The unsupervised assignment problem naturally extends
to a semi-supervised setting when a few target samples are
annotated. In this case, we only have to extend the formula-
tion (1) by additional constraints that enforce that the anno-
tated target samples do not change the label, i.e.,

xĉtt = 1 ∀(t, ĉt) ∈ L, (2)

whereL denotes the set of labelled target samples and ĉt the
class label provided for target sample t. In order to exploit
the labelled target samples better, one can use the neigh-
bourhood structure in the source and target domain. While
the constraints remain the same, the objective function (1)
can be changed to

∑
t

(∑
c

xct

(
dct +

∑
t′∈Nt

∑
c′

dcc′xc′t′

)
+ λot

)
,

(3)
where dcc′ = ‖Sc − Sc′‖22. While in (1) the cost of la-
belling a target sample t by the class c is given only by dct,
a second term is added in (3). It is computed over all neigh-
bours Nt of t and adds the distance between the classes in
the source domain as additional cost if a neighbour is as-
signed to another class than the target sample t.

The objective function (3), however, becomes quadratic
and therefore NP-hard to solve. Thus, we transform the
quadratic assignment problem into a mixed 0-1 linear pro-
gram using the Kaufman and Broeckx linearisation [25]. By
substituting

wct = xct

(∑
t′∈Nt

∑
c′

xc′t′dcc′

)
, (4)

we derive to the linearised problem

minimise
xct,wct,ot

∑
t

(∑
c

dctxct +
∑
c

wct + λot

)
subject to

∑
c

xct + ot = 1 ∀t ,∑
t

xct ≥ 1 ∀c ,

actxct +
∑
t′∈Nt

∑
c′

dcc′xc′t′ − wct ≤ act ∀s, t ,

xct, ot ∈ {0, 1} ∀c, t ,
wct ≥ 0 ∀c, t ,

(5)
where act =

∑
t′∈Nt

∑
c′ dcc′ .

3.3. Mapping

As illustrated in Fig. 2, we iterate between solving the
assignment problem, as described in Section 3.1 or 3.2, and

estimating the mapping from the source domain to the tar-
get domain. We consider a linear transformation, which is
represented by a matrix W ∈ RD×D. We estimate W by
minimising the following loss function:

f(W ) =
1

2

∑
t

∑
c

xct‖WSc − Tt‖22 , (6)

which we can rewrite in matrix form:

f(W ) =
1

2
||WPS − PT ||2F . (7)

The matrices PS and PT ∈ RDxL with L =
∑
t

∑
c xct

represent all assignments, where the columns denote the ac-
tual associations. The quadratic nature of the convex objec-
tive function may be seen as a linear least squares prob-
lem, which can be easily solved by any available QP solver.
State-of-the-art features based on convolutional neural net-
works, however, are high dimensional and the number of
target instances is usually very large. We use therefore non-
linear optimisation [41, 24] to optimise f(W ). The deriva-
tives of (6) are given by

∂f(W )

∂W
=W (PSP

T
S )− PTPTS . (8)

If L < D, i.e., the number of samples, which have been as-
signed to a known class, is smaller than the dimensionality
of the features, the optimisation also deals with an underde-
termined linear least squares formulation. In this case, the
solver converges to the matrix W with the smallest norm,
which is still a valid solution.

After the transformation W is estimated, we map the
source samples to the target domain. We therefore iterate
the process of solving the assignment problem and estimat-
ing the mapping from the source domain to the target do-
main until it converges. After the approach has converged,
we train linear SVMs in a one-vs-one setting on the trans-
formed source samples. For the semi-supervised setting, we
also include the annotated target samples L (2) to the train-
ing set. The linear SVMs are then used to obtain the final
labelling of the target samples as illustrated in Fig. 2(d).

4. Experiments
We evaluate our method in the context of domain adapta-

tion for object categorisation. In this setting, the images of
the source domain are annotated by class labels and the goal
is to classify the images in the target domain. We report
the accuracies for both unsupervised and semi-supervised
scenarios, where target samples are unlabelled or partially
labelled, respectively. For consistency, we use libsvm [8]
since it has also been used in other works, e.g., [12] and
[39]. We set the misclassification parameter C = 0.001 in
all experiments, which allows for a soft margin optimisation
that works best in such classification tasks [12, 39].



4.1. Parameter configuration

Our algorithm contains a few parameters that need to be
defined. For the outlier rejection, we use

λ = 0.5
(
max
t,c

dct +min
t,c

dct
)
, (9)

i.e., λ is adapted automatically based on the distances dct,
since higher values closer to the largest distance barely dis-
card any outlier and lower values almost reject all assign-
ments. We iterate the approach until the maximum number
of 10 iterations is reached or if the distance√∑

c

∑
t

xct |Sc,k − Tt|2 (10)

is below ε = 0.01 where Sc,k corresponds to the trans-
formed class mean at iteration k. In practice, the process
converges after 3-5 iterations.

4.2. Office dataset

We evaluate and compare our approach on the Office
dataset [34], which is the standard benchmark for domain
adaptation with CNN features. It provides three different
domains, namely Amazon (A), DSLR (D) and Webcam (W).
While the Amazon dataset contains centred objects on white
background, the other two comprise pictures taken in an of-
fice environment but with different quality levels. In total,
there are 31 common classes for 6 source-target combina-
tions. This means that there are 4 combinations with a con-
siderable domain shift (A→ D, A→W, D→ A, W→ A)
and 2 with a minor domain shift (D→W, W→ D).

We introduce an open set protocol for this dataset by
taking the 10 classes that are also common in the Cal-
tech dataset [18] as shared classes. In alphabetical order,
the classes 11-20 are used as unknowns in the source do-
main and 21-31 as unknowns in the target domain, i.e.,
the unknown classes in the source and target domain are
not shared. For evaluation, each sample in the target do-
main needs to be correctly classified either by one of the
10 shared classes or as unknown. In order to compare with
a closed setting (CS), we report the accuracy when source
and target domain contain only samples of the 10 shared
classes. Since OS is evaluated on all target samples, we also
report the numbers when the accuracy is only measured on
the same target samples as CS, i.e., only for the shared 10
classes. The latter protocol is denoted by OS∗(10) and pro-
vides a direct comparison to CS(10). Additional results for
the closed setting with all classes are reported in the supple-
mentary material.
Unsupervised domain adaptation We firstly compare the
accuracy of our method in the unsupervised set-up with
state-of-the-art domain adaptation techniques embedded in
the training of CNN models. DAN [29] retrains the AlexNet

A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 87.1 70.7 72.6 77.5 53.9 57.5

DAN [29] 88.1 76.5 77.6 90.5 70.2 72.5
RTN [30] 93.0 74.7 76.6 87.0 70.8 73.0
BP [13] 91.9 77.3 78.3 89.2 73.8 75.9

ATI 92.4 78.2 78.8 85.1 77.7 78.4
ATI-λ 93.0 79.2 79.8 84.0 76.5 77.6
ATI-λ-N1 91.9 78.3 78.9 84.6 74.2 75.6

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 79.4 40.0 45.1 97.9 87.5 88.5

DAN [29] 83.4 53.5 57.0 96.1 87.5 88.4
RTN [30] 82.8 53.8 57.2 97.9 88.1 89.0
BP [13] 84.3 54.1 57.6 97.5 88.9 89.8

ATI 93.4 70.0 71.1 98.5 92.2 92.6
ATI-λ 93.8 70.0 71.3 98.5 93.2 93.5
ATI-λ-N1 93.3 65.6 67.8 97.9 94.0 94.4

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 80.0 44.9 49.2 100 96.5 96.6 87.0 65.6 68.3

DAN [29] 84.9 58.5 60.8 100 97.5 98.3 90.5 74.0 75.8
RTN [30] 85.1 60.2 62.4 100 98.3 98.8 91.0 74.3 76.2
BP [13] 86.2 61.8 64.0 100 98.0 98.7 91.6 75.7 77.4

ATI 93.4 76.4 76.6 100 99.1 98.3 93.8 82.1 82.6
ATI-λ 93.7 76.5 76.7 100 99.2 98.3 93.7 82.4 82.9
ATI-λ-N1 93.4 71.6 72.4 100 99.6 98.8 93.5 80.6 81.3

Table 1. Open set domain adaptation on the unsupervised Of-
fice dataset with 10 shared classes (OS) using all samples per
class [17]. For comparison, results for closed set domain adap-
tation (CS) and modified open set (OS∗) are reported.

model by freezing the first 3 convolutional layers, finetun-
ing the last 2 and learning the weights from each fully con-
nected layer by also minimising the discrepancy between
both domains. RTN [30] extends DAN by adding a residual
transfer module that bridges the source and target classi-
fiers. BP [13] trains a CNN for domain adaptation by a gra-
dient reversal layer and minimises the domain loss jointly
with the classification loss. For training, we use all samples
per class as proposed in [17], which is the standard proto-
col for CNNs on this dataset. As proposed in [13], we use
for all methods linear SVMs for classification instead of the
soft-max layer for a fair comparison.

To analyse the formulations that are discussed in Sec-
tion 3, we compare several variants: ATI (Assign-and-
Transform-Iteratively) denotes our formulation in (1) as-
signing a source class to all target samples, i.e., λ = ∞.
Then, ATI-λ includes the outlier rejection and ATI-λ-N1

is the unsupervised version of the locality constrained for-
mulation corresponding to (3) with 1 nearest neighbour. In
addition, we denote LSVM as the linear SVMs trained on
the source domain without any domain adaptation.

The results of these techniques using the described
open set protocol are shown in Table 1. Our approach
ATI improves over the baseline without domain adaptation
(LSVM) by +6.8% for CS and +14.3% for OS. The im-
provement is larger for the combinations that have larger
domain shifts, i.e. with Amazon. We also observe that ATI



A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 84.4±5.9 63.7±6.7 66.6±5.9 76.5±2.9 48.2±4.8 52.5±4.2

TCA [33] 85.9±6.3 75.5±6.6 75.7±5.9 80.4±6.9 67.0±5.9 67.9±5.5
gfk [18] 84.8±5.1 68.6±6.7 70.4±6.0 76.7±3.1 54.1±4.8 57.4±4.2
SA [12] 84.0±3.4 71.5±5.9 72.6±5.3 76.6±2.8 57.4±4.2 60.1±3.7
CORAL [39] 85.8±7.2 79.9±5.7 79.6±5.0 81.9±2.8 68.1±3.6 69.3±3.1

ATI 91.4±1.3 80.5±2.0 81.1±2.8 86.1±1.1 73.4±2.0 75.3±1.7
ATI-λ 91.1±2.1 81.1±0.4 82.2±2.0 85.5±2.1 73.7±2.6 75.3±1.4

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM 75.5±2.1 36.1±3.7 42.2±3.3 96.2±1.0 81.5±1.5 83.1±1.3

TCA [33] 88.2±1.5 71.8±2.5 71.8±2.0 97.8±0.5 92.0±0.9 91.5±1.0
gfk [18] 79.7±1.0 45.3±3.7 49.7±3.4 96.3±0.9 85.1±2.7 86.2±2.4
SA [12] 81.7±0.7 52.5±3.0 55.8±2.7 96.3±0.8 86.8±2.5 87.7±2.3
CORAL [39] 89.6±1.0 66.6±2.8 68.2±2.5 97.2±0.7 91.1±1.7 91.4±1.5

ATI 93.5±0.3 69.8±1.4 70.8±2.1 97.3±0.5 89.6±2.1 90.3±1.8
ATI-λ 93.9±0.4 71.1±0.9 72.0±0.5 97.5±1.1 92.1±1.3 92.5±0.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM 72.5±2.7 34.3±4.9 39.9±4.4 99.1±0.5 89.8±1.5 90.5±1.3 84.1 58.9 62.5

TCA 85.5±3.3 68.1±5.1 68.6±4.6 98.8±0.9 94.1±2.9 93.6±2.6 89.5 78.1 78.2
gfk 75.0±2.9 43.2±5.1 47.6±4.6 99.0±0.5 92.0±1.5 92.2±1.4 85.2 64.7 67.3
SA 76.5±3.2 49.7±5.1 53.0±4.6 98.8±0.7 92.4±2.9 92.4±2.8 85.7 68.4 70.3
CORAL 86.9±1.9 63.9±4.9 65.6±4.3 99.2±0.7 96.0±2.1 95.0±2.0 90.1 77.6 78.2

ATI 92.2±1.1 75.1±1.7 76.0±2.0 98.9±1.3 95.5±2.3 95.4±2.1 93.2 80.7 81.5
ATI-λ 92.4±1.1 75.4±1.8 76.4±1.8 98.9±1.3 96.5±2.1 95.8±1.8 93.2 81.5 82.3

Table 2. Open set domain adaptation on the unsupervised Office
dataset with 10 shared classes (OS). We report the average and
the standard deviation using a subset of samples per class in 5
random splits [34]. For comparison, results for closed set domain
adaptation (CS) and modified open set (OS∗) are reported.

outperforms all CNN-based domain adaptation methods for
the closed (+2.2%) and open setting (+5.2%). It can also be
observed that the accuracy for the open set is lower than for
the closed set for all methods, but that our method handles
the open set protocol best. While ATI-λ does not obtain any
considerable improvement compared to ATI in CS, the out-
lier rejection allows for an improvement in OS. The locality
constrained formulation, ATI-λ-N1, which we propose only
for the semi-supervised setting, decreases the accuracy in
the unsupervised setting.

Additionally, we report accuracies of popular domain
adaptation methods that are not related to deep learning.
We report the results of methods that transform the data to
a common low dimensionality subspace, including Trans-
fer Component Analysis (TCA) [33], Geodesic Flow Kernel
(GFK) [18] and Subspace alignment (SA) [12]. In addition,
we also include CORAL [39], which whitens and recolours
the source towards the target data. Following the standard
protocol of [34], we take 20 samples per object class when
Amazon is used as source domain, and 8 for DSLR or We-
bcam. We extract feature vectors from the fully connected
layer-7 (fc7) of the AlexNet model [26]. Each evaluation
is executed 5 times with random samples from the source
domain. The average accuracy and standard deviation of
the five runs are reported in Table 2. The results are simi-
lar to the protocol reported in Table 1. Our approach ATI

outperforms the other methods both for CS and OS and the
additional outlier handling (ATI-λ) does not improve the ac-
curacy for the closed set but for the open set.

Impact of unknown class The linear SVM that we em-
ploy in the open set protocol uses the unknown classes of
the transformed source domain for the training. Since un-
known object samples from the source domain are from dif-
ferent classes than the ones from the target domain, using an
SVM that does not require any negative samples might be
a better choice. Therefore, we compare the performance
of a standard SVM classifier with a specific open set SVM
(OS-SVM) [36], where only the 10 known classes are used
for training. OS-SVM introduces an inclusion probability
and labels target instances as unknown if this inclusion is
not satisfied for any class. Table 3 compares the classifi-
cation accuracies of both classifiers in the 6 domain shifts
of the Office dataset. While the performance is compara-
ble when no domain adaptation is applied, ATI-λ obtains
significantly better accuracies when the learning includes
negative instances.

As discussed in Section 3.1, the unknown class is also
part of the labelling set C for the target samples. The la-
belled target samples are then used to estimate the mapping
W (6). To evaluate the impact of including the unknown
class, Table 4 compares the accuracy when the unknown
class is not included in C. Adding the unknown class im-
proves the accuracy slightly since it enforces that the nega-
tive mean of the source is mapped to a negative sample in
the target. The impact, however, is very small.

Additionally, we also analyse the impact of increasing
the amount of unknown samples in both source and target
domain on the configuration Amazon → DSLR+Webcam.
Since the domain shift between DSLR and Webcam is close
to zero (same scenario, but different cameras), they can be
merged to get more unknown samples. Following the de-
scribed protocol, we take 20 samples per known category,
also in this case for the target domain, and we randomly in-
crease the number of unknown samples from 20 to 400 in
both domains at the same time. As shown in Table 5, that
reports the mean accuracies of 5 random splits, adding more
unknown samples decreases the accuracy if domain adapta-
tion is not used (LSVM), but also for the domain adaption
method CORAL [39]. This is expected since the unknowns
are from different classes and the impact of the unknowns
compared to the samples from the shared classes increases.
Our method handles such an increase and the accuracies re-
main stable between 80.3% and 82.5%.

Semi-supervised domain adaptation We also evaluate our
approach for open set domain adaptation on the Office
dataset in its semi-supervised setting. Applying again the
standard protocol of [34] with the subset of source sam-
ples, we also take 3 labelled target samples per class and
leave the rest unlabelled. We compare our method with the



A→D A→W D→A D→W W→A W→D AVG.
OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM OS-SVM LSVM

No Adap. 67.5 72.6 58.4 57.5 54.8 45.1 80.0 88.5 55.3 49.2 94.0 96.6 68.3 68.3
ATI-λ 72.0 79.8 65.3 77.6 66.4 71.3 82.2 93.5 71.6 76.7 92.7 98.3 75.0 82.9

Table 3. Comparison of a standard linear SVM (LSVM) with a specific open set SVM (OS-SVM) [37] on the unsupervised Office dataset
with 10 shared classes using all samples per class [17].

A→D A→W D→A D→W W→A W→D AVG.
OS(10)

ATI-λ (C w/o unknown) 79.0 77.1 70.5 93.4 75.8 98.2 82.3
ATI-λ (C with unknown) 79.8 77.6 71.3 93.5 76.7 98.3 82.9

Table 4. Impact of including the unknown class to the set of classes C. The evaluation is performed on the unsupervised Office dataset with
10 shared classes using all samples per class [17].

number of unknowns 20 40 60 80 100 200 300 400
unknown / known 0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00

LSVM 74.2 70.0 66.2 63.4 61.4 53.9 50.4 48.2
CORAL [39] 77.2 76.4 76.2 74.8 73.7 71.5 70.8 69.7
ATI-λ 80.3 82.4 81.2 81.7 82.5 80.9 80.7 81.9

Table 5. Impact of increasing the amount of unknown samples in
the domain shift Amazon → DSLR+Webcam on the unsupervised
Office dataset with 10 shared classes using 20 random samples per
known class in both domains.

A→D A→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.8±3.2 62.1±7.9 65.9±6.2 76.4±2.1 45.7±5.0 50.4±4.5
LSVM (t) 92.3±3.9 68.2±5.2 71.1±4.7 91.5±4.9 59.6±3.7 63.2±3.4
LSVM (st) 95.7±1.3 82.5±3.0 84.0±2.6 92.4±1.8 72.5±3.7 74.8±3.4

MMD [46] 94.1±2.3 86.1±2.3 86.8±2.2 92.4±2.8 76.4±1.5 78.3±1.3

ATI 95.4±1.3 89.0±1.4 89.7±1.3 95.9±1.3 84.0±1.7 85.1±1.5
ATI-λ 97.1±1.1 89.5±1.4 90.2±1.3 96.1±2.0 84.1±1.8 85.2±1.5
ATI-λ-N1 97.6±1.0 89.5±1.3 90.3±1.2 96.4±1.7 84.4±3.6 85.5±1.5
ATI-λ-N2 97.9±1.4 89.4±1.2 90.1±1.0 92.8±1.6 84.3±2.4 85.4±1.5

D→A D→W
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10)

LSVM (s) 85.2±1.7 40.3±4.3 45.2±3.8 97.2±0.7 81.4±2.4 83.0±2.2
LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 91.5±4.9 59.6±3.7 63.2±3.4
LSVM (st) 91.9±0.7 68.7±2.5 71.2±2.3 98.7±0.9 87.3±2.3 88.5±2.1

MMD [46] 90.2±1.8 69.0±3.4 71.3±3.0 98.5±1.0 85.5±1.6 86.7±1.4

ATI 93.5±0.2 74.4±2.7 76.1±2.5 98.7±0.7 91.6±1.7 92.4±1.5
ATI-λ 93.5±0.2 74.4±2.5 76.2±2.3 98.7±0.8 91.6±1.7 92.4±1.5
ATI-λ-N1 93.4±0.2 74.6±2.5 76.4±2.3 98.9±0.5 92.0±1.6 92.7±1.5
ATI-λ-N2 93.5±0.1 74.9±2.3 76.7±2.1 99.3±0.5 92.2±1.9 92.9±1.7

W→A W→D AVG.
CS (10) OS∗ (10) OS (10) CS (10) OS∗ (10) OS (10) CS OS∗ OS

LSVM (s) 78.8±2.9 32.4±3.8 38.2±3.4 99.5±0.3 88.7±2.2 89.6±1.9 87.1 58.4 62.0
LSVM (t) 88.7±2.2 52.8±6.0 57.0±5.5 92.3±3.9 68.2±5.2 71.1±4.7 90.9 60.2 63.8
LSVM (st) 90.8±1.3 66.2±4.4 69.0±4.1 99.4±0.7 93.5±2.7 94.0±2.5 94.8 78.4 80.3

MMD [46] 89.1±3.2 65.1±3.8 67.8±3.4 98.2±1.4 93.9±2.9 94.4±2.7 93.8 79.3 80.9

ATI 93.0±0.5 71.3±4.6 74.3±4.3 99.3±0.6 96.3±1.8 96.6±1.7 96.0 84.4 85.7
ATI-λ 93.0±0.5 71.5±4.8 73.6±4.4 99.5±0.6 96.3±1.8 96.6±1.7 96.3 84.6 85.7
ATI-λ-N1 93.0±0.6 72.2±4.5 74.2±4.1 99.3±0.6 96.7±2.1 97.0±1.9 96.4 84.9 86.0
ATI-λ-N2 93.0±0.6 72.8±4.2 74.8±3.9 99.3±0.6 95.5±2.2 95.9±2.0 96.6 84.8 86.0

Table 6. Open set domain adaptation on the semi-supervised Office
dataset with 10 shared classes (OS). We report the average and the
standard deviation using a subset of samples per class in 5 random
splits [34].

deep learning method MMD [46]. As baselines, we report
the accuracy for the linear SVMs without domain adapta-

tion (LSVM) when they are trained only on the source sam-
ples (s), only on the annotated target samples (t) or on both
(st). As expected, the baseline trained on both performs
best as shown in Table 6. Our approach ATI outperforms
the baseline and the CNN approach [46]. As in the unsu-
pervised case, the improvement compared to the CNN ap-
proach is larger for the open set (+4.8%) than for the closed
set (+2.2%). While the locality constrained formulation,
ATI-λ-N , decreased the accuracy for the unsupervised set-
ting, it improves the accuracy for the semi-supervised case
since the formulation enforces that neighbours of the target
samples are assigned to the same class. The results with one
(ATI-λ-N1) or two neighbours (ATI-λ-N2) are similar.

4.3. Dense Cross-Dataset Analysis

In order to measure the performance of our method
and the open set protocol across popular datasets with
more intra-class variation, we also conduct experiments on
the dense set-up of the Testbed for Cross-Dataset Analy-
sis [44]. This protocol provides 40 classes from 4 well-
known datasets, Bing (B), Caltech256 (C), ImageNet (I)
and Sun (S). While the samples from the first 3 datasets are
mostly centred and without occlusions, Sun becomes more
challenging due to its collection of object class instances
from cluttered scenes. As for the Office dataset, we take the
first 10 classes as shared classes, the classes 11-25 are used
as unknowns in the source domain and 26-40 as unknowns
in the target domain. We use the provided DeCAF features
(DeCAF7). Following the unsupervised protocol described
in [43], we take 50 source samples per class for training and
we test on 30 target images per class for all datasets, except
Sun, where we take 20 samples per class.

The results reported in Table 7 are consistent with the
Office dataset. ATI outperforms the baseline and the other
methods by +4.4% for the closed set and by +5.3% for the
open set. ATI-λ obtains the best accuracies for the open set.

4.4. Sparse Cross-Dataset Analysis

We also introduce an open set evaluation using the sparse
set-up from [44] with the datasets Caltech101 (C), Pas-



B→C B→I B→S C→B C→I C→S
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 82.4±2.4 66.6±4.0 75.1±0.4 59.0±2.7 43.0±2.0 24.2±3.0 53.5±2.1 40.1±1.9 76.9±4.3 62.5±1.2 46.3±2.7 28.2±1.4

TCA [33] 74.9±3.0 62.8±3.8 68.4±4.0 56.6±4.5 38.3±1.7 29.6±4.2 49.2±1.1 38.9±1.9 73.1±3.6 60.2±1.4 45.9±3.6 29.7±1.6
gfk [18] 82.0±2.2 66.2±4.0 74.3±1.0 58.3±3.1 42.2±1.4 23.8±2.0 53.2±2.6 40.2±1.8 77.1±3.3 62.2±1.5 46.2±3.0 28.5±1.0
SA [12] 81.1±1.8 66.0±3.4 73.9±0.9 57.8±3.2 41.9±2.4 24.3±2.6 53.4±2.5 40.3±1.7 77.3±4.2 62.5±.8 46.1±3.3 29.0±1.5
CORAL [39] 80.1±3.5 68.8±3.3 73.7±2.0 60.9±2.6 42.2±2.4 27.2±3.9 53.6±2.9 40.7±1.5 78.2±5.1 64.0±2.6 48.2±3.9 31.4±0.8

ATI 86.3±1.6 71.4±1.8 80.1±0.7 68.0±1.9 49.2±3.2 36.8±1.2 53.2±3.4 45.4±3.4 81.7±3.7 66.7±4.2 52.0±3.4 35.8±1.8
ATI-λ 86.7±1.3 71.4±2.3 80.6±2.4 69.0±2.8 48.6±2.5 37.4±2.6 54.2±1.9 45.7±3.0 82.2±3.7 67.9±4.2 53.1±2.8 37.5±2.7

I→B I→C I→S S→B S→C S→I AVG.
CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10) CS (10) OS (10)

LSVM 59.1±2.0 42.7±2.0 86.2±2.6 73.3±3.9 50.1±4.0 32.1±3.2 33.1±1.7 16.4±1.1 53.1±2.6 27.9±2.9 52.3±1.8 25.2±0.5 59.3 41.5

TCA [33] 56.1±3.8 40.9±2.9 83.4±3.2 68.6±1.8 49.3±2.6 34.5±3.8 30.6±1.3 19.4±2.1 47.5±3.5 32.0±3.9 45.2±1.9 31.1±4.6 55.2 42.0
gfk [18] 58.7±1.9 42.6±2.4 86.1±2.7 73.3±3.6 49.5±3.6 32.7±3.6 33.3±1.4 16.9±1.5 53.1±3.0 28.6±3.8 52.5±2.0 26.4±1.1 59.0 41.6
SA [12] 58.7±1.8 43.1±1.6 85.9±2.9 72.8±3.1 50.0±3.6 32.2±3.7 34.2±1.1 17.5±1.6 52.5±3.2 29.2±4.2 52.6±2.4 27.1±1.3 59.0 41.1
CORAL [39] 58.5±2.7 44.6±2.5 85.8±1.5 74.5±3.4 49.5±4.8 35.4±4.4 32.9±1.6 18.7±1.2 52.1±2.8 33.6±5.3 52.9±1.8 31.3±1.3 59.0 44.2

ATI 57.9±1.9 48.8±2.3 89.3±2.2 77.1±2.6 55.0±5.0 42.2±4.0 34.9±2.6 22.8±3.1 59.8±1.3 46.9±2.5 60.8±3.4 32.9±2.2 63.4 49.5
ATI-λ 58.6±1.4 48.7±1.8 89.7±2.3 77.5±2.2 55.3±4.3 43.4±4.8 34.1±2.4 23.2±3.2 60.2±2.7 47.3±2.9 60.3±2.4 33.0±1.1 63.6 50.2

Table 7. Unsupervised open set domain adaptation on the Testbed dataset (dense setting) with 10 shared classes (OS). For comparison,
results for closed set domain adaptation (CS) are reported.

C→O C→P O→C O→P P→C P→O AVG.
shared classes 8 7 8 4 7 4
unknown / all (t) 0.52 0.30 0.90 0.81 0.54 0.78

LSVM 46.3 36.1 60.8 29.7 78.8 70.1 53.6
TCA [33] 45.2 33.8 58.1 31.1 63.4 61.1 48.8
gfk [18] 46.4 36.2 61.0 29.7 79.1 72.6 54.2
SA [12] 46.4 36.8 61.1 30.2 79.8 71.1 54.2
CORAL [39] 48.0 35.9 60.2 29.1 78.9 68.8 53.5

ATI 51.6 52.1 63.1 38.8 80.6 70.9 59.5
ATI-λ 51.5 52.0 63.4 39.1 81.1 71.1 59.7

Table 8. Unsupervised open set domain adaptation on the sparse
set-up from [44].

cal07 (P) and Office (O). These datasets are quite unbal-
anced and offer distinctive characteristics: Office contains
centred class instances with barely any background (17
classes, 2300 samples in total, 68-283 samples per class),
Caltech101 allows for more class variety (35 classes, 5545
samples in total, 35-870 samples per class) and Pascal07
gathers more realistic scenes with partially occluded objects
in various image locations (16 classes, 12219 samples in to-
tal, 193-4015 samples per class). For each domain shift, we
take all samples of the shared classes and consider all other
samples as unknowns. Table 8 summarises the amount of
shared classes for each shift and the percentage of unknown
target samples, which varies from 30% to 90%.

Unsupervised domain adaptation For the unsupervised
experiment, we conduct a single run for each domain shift
using all source and unlabelled target samples. The results
are reported in Table 8. ATI outperforms the baseline and
the other methods by +5.3% for this highly unbalanced open
set protocol. ATI-λ improves the accuracy of ATI slightly.

Semi-supervised domain adaptation In order to evaluate
the semi-supervised setting, we take all source samples and
3 annotated target samples per shared class as it is done in
the semi-supervised setting for the Office dataset [34]. The

C→O C→P O→C O→P P→C P→O AVG.
LSVM (s) 46.5±0.1 36.2±0.1 60.8±0.3 29.7±0.0 79.5±0.3 73.5±0.7 54.4
LSVM (t) 53.1±3.7 44.6±2.1 73.7±1.5 40.5±3.0 81.1±2.5 70.5±4.3 60.6
LSVM (st) 56.0±1.3 44.5±1.2 68.9±1.1 40.9±2.2 80.9±0.6 76.7±0.3 61.3

ATI 59.6±1.2 55.2±1.3 75.8±1.2 45.2±1.4 81.6±0.2 77.1±0.8 65.8
ATI-λ 60.3±1.2 56.0±1.2 75.8±1.1 45.8±1.2 81.8±0.2 76.9±1.3 66.1
ATI-λ-N1 60.7±1.2 56.3±1.2 76.7±1.6 45.8±1.4 82.0±0.4 76.7±1.1 66.4

Table 9. Semi-supervised open set domain adaptation on the sparse
set-up from [44] with 3 labelled target samples per shared class.

average and standard deviation over 5 random splits are re-
ported in Table 9. While ATI improves over the baseline
trained on the source and target samples together (st) by
+4.5%, ATI-λ and the locality constraints with one neigh-
bour boost the performance further. ATI-λ-N1 improves the
accuracy of the baseline by +5.1%.

5. Conclusions

In this paper we have introduced the concept of open set
domain adaptation. In contrast to closed set domain adap-
tation, the source and target domain share only a subset of
object classes whereas most samples of the target domain
belong to classes not present in the source domain. We pro-
posed new open set protocols for existing datasets and eval-
uated both CNN methods as well as standard unsupervised
domain adaptation approaches. In addition, we have pro-
posed an approach for unsupervised open set domain adap-
tation. The approach can also be applied to closed set do-
main adaptation and semi-supervised domain adaptation. In
all settings, our approach achieves state-of-the-art results.
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