
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 1

Incremental Learning of Random Forests for
Large-Scale Image Classification

Marko Ristin, Matthieu Guillaumin, Juergen Gall, Member, IEEE and Luc Van Gool, Member, IEEE

Abstract—Large image datasets such as ImageNet or open-ended photo websites like Flickr are revealing new challenges to image
classification that were not apparent in smaller, fixed sets. In particular, the efficient handling of dynamically growing datasets, where
not only the amount of training data but also the number of classes increases over time, is a relatively unexplored problem. In this
challenging setting, we study how two variants of Random Forests (RF) perform under four strategies to incorporate new classes while
avoiding to retrain the RFs from scratch. The various strategies account for different trade-offs between classification accuracy and
computational efficiency. In our extensive experiments, we show that both RF variants, one based on Nearest Class Mean classifiers
and the other on SVMs, outperform conventional RFs and are well suited for incrementally learning new classes. In particular, we show
that RFs initially trained with just 10 classes can be extended to 1000 classes with an acceptable loss of accuracy compared to training
from the full data and with great computational savings compared to retraining for each new batch of classes.

Index Terms—Incremental learning, random forests, large-scale image classification

F

1 INTRODUCTION1

With the ease of capturing and sharing pictures, the digital2

representation of our rich visual world grows and so does the3

need for efficient image classification algorithms that scale4

with the vast digitized visual knowledge. In fact, there has been5

a shift towards large-scale image classification problems in the6

last few years. Datasets with fewer images and classes, such as7

PASCAL VOC [1], give way to more complex and voluminous8

datasets, such as “ImageNet” [2] or “80 Million Tiny Im-9

ages” [3], which comprise millions of images and thousands of10

classes. Larger datasets do not only pose quantitative problems11

that need to be addressed, they also introduce challenges of12

new quality: the classes become finer and are semantically13

and visually more similar. For example, while conventional14

one-vs-all classifiers performed well on small-scale datasets,15

they are now outperformed on large-scale datasets both in16

accuracy and in training time by nearest neighbor or multiclass17

approaches [4], [5], [6], [7].18

Offline classification methods, such as multiclass SVMs [4],19

assume a static setting where the number of training images is20

fixed as well as the number of classes that a model can handle.21

However, the virtual representation, for example due to the22

rapid expansion of the shared visual data in social networks,23

is very dynamic. It is not only the number of the images that24

increases, but also the semantics becomes more complex with25

the emergence of new semantic classes. To add a single class to26

an existing system, static approaches need to retrain the whole27

model, which becomes too expensive for large datasets.28

In this work, we consider a dynamic large-scale scenario29

• Marko Ristin, Matthieu Guillaumin and Luc Van Gool are with the
Computer Vision Laboratory, ETH Zurich, Switzerland.
E-mail: {ristin, guillaumin, vangool}@vision.ee.ethz.ch

• Juergen Gall is with the Computer Vision Group, Univ. of Bonn, Germany.
E-mail: gall@iai.uni-bonn.de

where the number of classes as well as the number of images 30

gradually increase and reach large numbers, i.e., thousand of 31

classes and million of images. This scenario is relevant for 32

many applications where the number of classes is a-priori 33

unknown. During the development, one typically focuses on 34

a few classes that are most relevant. Over time the demands 35

of the users evolve, including the classification of additional 36

classes [8]. For applications that involve open-ended learning, 37

the number of classes even grows continuously. Although one- 38

vs-all classifiers are already a basic framework for incremen- 39

tally learning a dynamically growing number of image classes 40

where adding a new class is achieved by training a new one-vs- 41

all classifier, the computational cost of training a new classifier 42

is high [5]. There are only a few recent approaches [6], [9] 43

that explicitly address the problem of incrementally learning 44

new image classes. As the new data is collected over time, 45

the classifiers evolve and adapt to the new situation without 46

the need of retraining from scratch. Fig. 1 gives an illustration 47

of incremental learning of new classes as it is considered in 48

this work. The multiclass classifier is first trained with training 49

data for a certain number of classes, which results in an initial 50

model that can successfully recognize the initial set of classes. 51

Additional classes can be added at any point by providing 52

training data for novel classes. The model is then updated and 53

classifies the initial and new classes. 54

In [6] a discriminative metric is learned for Nearest Class 55

Mean classification on the initial set of classes and new classes 56

are added using their feature means. The approach, however, 57

assumes that the number of initial classes is relatively large. 58

An alternative multiclass incremental approach based on least- 59

squares SVM has been proposed in [9] where for each class a 60

decision hyperplane is learned. Every time a class is added, the 61

whole set of the hyperplanes is updated, which is expensive 62

as the number of classes grow. In this work, we investigate 63

random forests (RF) [10] for the task of learning incrementally 64

new classes. RFs are intrinsically multiclass and hierarchical 65

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 2

class 1
· · ·

class k class k + 1

· · ·
class k + s class k + s+ 1

· · ·
class k + 2 · s+ 1

· · ·

initial classes

initial training

model M0

incrementation step

incremental training

model M1

incrementation step

incremental training

model M2

· · ·

Fig. 1: The training starts with k initial classes and the corresponding initial model M0 that can classify these k classes.
When a batch of s new classes arrives, the model is incremented to M1 which is now able to discriminate k+ s classes. The
incremental learning scenario is open-ended and training continues as new classes become available.

classifiers, properties which make them suitable for large-scale66

classification problems. Since each tree imposes a hierarchy on67

the feature space, the changes at the deeper levels of the tree68

are more local in the feature space and depend on less data.69

This allows us to update the classifiers very efficiently. In this70

work, we study two variants of RFs with different classifiers71

as their building blocks.72

The first one, inspired by Nearest Class Mean (NCM) clas-73

sification [6] and introduced in [11], implements the decisions74

at each node based on the Voronoi cells formed by a small75

random subset of the class means observed at that node, the76

centroids. The centroids partition the feature space and assign77

a sample either to the left or the right subtree. We refer to these78

forests as Nearest Class Mean Forests (NCMF). Their applica-79

tion is depicted in Fig. 2. As second RF variant, we examine80

linear SVMs as binary classifiers at nodes. To integrate SVMs81

to RFs, we follow the approach proposed in [12] and denote82

them as SVM Forests (SVMF). While the method proposed83

in [12] focuses on offline, fine-grained classification, our aim84

is to examine how SVMFs behave in the setting of large-scale85

image classification and incremental learning. For both RF86

variants, we propose and evaluate efficient updating strategies87

to integrate new classes so as to maintain high accuracy88

at the lowest possible cost for training. Our experiments89

show that both RF variants outperform conventional RFs and90

match state-of-the-art classifiers on the challenging large-scale91

ImageNet dataset [13]. In the context of incrementally learning92

new classes, NCMFs and SVMFs outperform [6], [9].93

A preliminary version of this work appeared in [11]. The94

present work extends incremental learning to SVMFs and95

proposes a novel scheme for updating nodes in a tree based96

on the classification quality of the subtrees. The experimental97

evaluation has been substantially extended and includes the98

impact of the number of initial classes, the order of incremen-99

tally added classes, the batch size of added classes, and the100

dimensionality of feature space.101

The paper is organized as follows. Related work is discussed102

in Section 2. Section 3 introduces the variants of RFs based103

on NCM and SVM classifiers. Approaches to train them104

incrementally are discussed in Section 4. Section 5 presents the105

experimental evaluation and comparison to other approaches106

on the large-scale ImageNet dataset [13].107

x

x

a) b)

c)

Fig. 2: Classification of an image (illustrated by the red cross)
by a single tree of Nearest Class Mean forest (NCMF). (a)
The feature vector is extracted, (b) the image is assigned to
the closest centroid (colors indicate further direction), (c) the
image is assigned the class probability found at the leaf.

2 RELATED WORK 108

Image classification on large datasets is a challenging prob- 109

lem [14], [15], with issues that are not apparent in smaller 110

ones [5]. To address these challenges, the state of the art con- 111

sists in carefully designing a deep Convolutional Network [16] 112

or using advanced high-dimensional features, such as Fisher 113

Vectors [15], [17]. Below we discuss various work related to 114

dealing with large number of classes, large amount of data and 115

various ways in which data gradually become available. 116

Hierarchical classification. When the number of classes is 117

large, various authors propose to exploit a hierarchy either over 118

classes or over input space to improve classification perfor- 119

mance or time complexity of training and testing. An explicit 120

class hierarchy is used in [18] in order to predict not only fine- 121

grained classes at the lowest level of the hierarchy, but falls 122

back to higher coarser levels when fine-grained classification 123

is uncertain. In this scenario, a trade-off between accuracy 124

and specificity determines the output of the classifiers. Instead 125

of performing one-vs-all classification, classifiers can also be 126

stacked in a hiearchy as a decision tree. At each node a sample 127

is compared to a small number of SVM decision boundaries 128

and assigned to one of the child nodes, thus leading to a 129

logarithmic rather than linear complexity [19]. Several works 130

have built on this idea and proposed alternative parameter 131

training methods [20], [21], [22]. 132

Random Forests [10] are the archetype of hierarchical 133

classifiers. They are ensemble classifiers composed of Random 134

Decision Trees, which are independently trained on random 135

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 3

subsets of the data and then combined by averaging their clas-136

sification scores. The decision trees are themselves randomized137

in the selection of weak classifiers at each node of the hierar-138

chy. When the trees are balanced, the RFs are very efficient,139

as the time complexity of classification is logarithmic in the140

number of nodes. RFs have been successfully used in many141

tasks such as image classification [23], vocabulary generation142

through vocabulary trees [24], as feature representation for im-143

age segmentation [25], object detection [26], and fine-grained144

image classification [12], [27]. Our RF variants employ either145

Near Class Mean classifiers [6] (NCM Forest) or linear SVMs146

(SVM Forest) as node classifiers. This is in contrast to axis-147

aligned tests proposed in conventional RFs [10], random linear148

splitting functions proposed in [23] and unsupervised cluster149

centers that disregard class information proposed in [24].150

SVM Forests have been proposed in [12] for fine-grained151

classification where each node of the trees classifies a single152

or a pair of rectangular image regions by a binary SVM, where153

each class is randomly assigned to one of the binary classes.154

Although the SVM Forests slightly differ in our context (the155

trees do not combine SVMs for various image regions, and156

the nodes classify entire images), we show how SVM Forests157

can be incrementally learned.158

Big data. To efficiently handle massive amounts of data,159

there has been a wide development of online learning methods,160

such as stochastic gradient descent [14], [15]. These methods161

iteratively learn from a limited batch of data instances at a162

time and hence remain frugal in terms of memory. The main163

assumption in online learning is that samples are provided164

in a uniformly random sequence, and, as a matter of fact,165

most methods start by randomly permuting the data [28]. This166

i.i.d. assumption allows authors to ignore typical problems167

of sequential data such as stochastic drift and birth or death168

of classes. As a consequence, they typically assume that the169

classes are known and fixed beforehand.170

In particular, online learning has been studied in the context171

of RFs. This is typically done by extending the trees as more172

samples become available. The authors of [29] propose to173

initialize the trees in an extremely random fashion. Statistics at174

the leaves are then updated as the new samples arrive. Various175

methods convert leaves to a splitting node and proceed with176

the training recursively. In [30], an analytically derived upper177

bound is computed in order to select leaves for further training.178

In [31], a simple alternative with a fixed threshold on the179

number of samples is used, and [32] shows empirically that180

such a threshold suffices to select leaves for recursive training181

and obtain good classification accuracy. In [33] the splitting182

nodes are not trained directly by optimizing an objective183

function, but they are sampled instead from a Mondrian pro-184

cess (i.e. a distribution over KD-trees), which allows efficient185

incremental learning. In contrast to [31], [32], the Mondrian186

forests not only update the leaves, but also introduce new187

splitting function within the tree structure. In the context of188

unsupervised vocabulary trees, the number of samples has also189

been proposed in [34] as a criterion to select which leaves need190

to be refined in order to adapt the forest to newly observed191

data. [31] also discards trees based on the out-of-bag error in192

order to progressively adapt to the new data and forget the193

old one. In [35], a Hough Forest is trained by incrementally 194

growing the leaves at each step with user feedback, in an active 195

learning scenario. Like most existing classifiers (e.g., SVM 196

or [12]), active or online learning methods do not consider 197

observing new classes in the data stream, and are typically 198

not straightforward to adapt to this scenario. 199

Transfer learning. The large-scale nature of the datasets 200

such as ImageNet implies uneven distribution of training 201

samples across the classes [2]. Some classes may lack suf- 202

ficient data for robust learning. Transfer learning can be 203

used to address this problem by sharing knowledge between 204

related classes. In [36], the decision hyperplane of a class 205

is regularized towards a subset of the decision hyperplanes 206

of the other classes. For a large dataset with few annotated 207

objects, the localization [37] and segmentation [38] of classes 208

can be propagated by sharing appearance, location distribution 209

and the context of the already labeled objects towards related 210

classes as defined by the class hierarchy of ImageNet. In [39], 211

knowledge is being transfered among classes using similarities 212

based on attributes, textual web queries and semantic related- 213

ness. Although the hierarchical nature of RFs implicitly entails 214

knowledge sharing in higher nodes, our study focuses on the 215

efficient integration of new classes rather than trying to model 216

knowledge sharing explicitly so as to reduce the amount of 217

training data needed for any particular class. 218

Incremental learning, as defined in [6], [9], [40] and our 219

previous work [11], is the scenario where training data is not 220

provided uniformly at random, but where classes are provided 221

in sequence. Typically, a few classes are available to start 222

with and new classes are added afterwards (cf. Fig. 1), in 223

an open-ended fashion. In such a setting, the authors of [6] 224

propose to train a discriminative metric for Nearest Class Mean 225

classification on the initial set of classes and then integrate new 226

classes simply using their data means. This leads to a near- 227

zero cost for integrating new classes and good performance is 228

reported provided that enough initial training data is present to 229

learn a robust metric. In their work [6], the authors initialized 230

the training with as many as 800 classes and experimented 231

with adding 200 new ones. As we show in our experiments 232

in Section 5, such a system struggles when the number of 233

initial classes is relatively small and the amount of new classes 234

increases since the initial metric remains fixed. In contrast, our 235

RFs are designed so that they can be gracefully updated. As 236

we show, the forests can be initially trained with as few as 237

10 classes and the complexity of their structure can be easily 238

increased, if necessary, in order to successfully integrate any 239

number of new classes. 240

An alternative multiclass incremental approach based on 241

least-squares SVM has been proposed in [9]. Building on top 242

of the transfer learning method introduced in [36], the model 243

for a new class, i.e., a decision hyperplane, is constrained to 244

differ as little as possible from a subset of previously trained 245

models. Each incremental step is formulated as an optimization 246

problem where the whole set of the hyperplanes is updated, 247

which is potentially expensive as the number of classes grows. 248

In our case, the update is significantly more efficient, as the 249

update of nodes in a decision tree only depends on a fraction 250

of the data and of the classes. Furthermore, each independent 251

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 4

tree can be learned and updated in parallel. In the case of252

NCMF, the weak classifiers themselves allow for update with253

little computational effort.254

Besides large-scale image classification, which is the focus255

of this work, incremental learning has been recently also256

applied for activity modeling in streaming videos [40]. The257

authors of [40] introduce a system based on the ensemble of258

SVMs and use active user responses to annotate samples of259

the new classes. Once there are enough samples, the old and260

the new models are finally combined by adjusting the model261

weights accordingly. Since the old models do not change, the262

method suffers from similar issues as the method described263

in [6]. With the increasing number of classes, the old models264

will eventually generalize poorly to the new data. Our forests,265

in contrast, are specifically designed to address the issue of266

changing data.267

Compared to previous work, our experiments also put much268

more strain on the systems so as to push the limits of269

incremental learning beyond what has been studied before [6],270

[9]. Unlike [6], where 800 classes are available at initialization,271

we start with a much smaller number of classes (10 or 20) and272

study the influence of the order in which classes are added.273

The experimental evaluation used in [9] considered only a274

sequence of up to 48 classes, where only a single class had275

to be integrated at a time. Instead, we perform the evaluation276

with up to 1000 classes and batches of one or more classes.277

3 RANDOM FORESTS278

Random Forests (RF) [10] consist of T randomized decision279

trees. Each tree and each node at the same depth is trained280

and classifies independently, which makes RFs very efficient at281

training and test time. The trees operate on data instances given282

as d-dimensional vectors ~x ∈ Rd. At each node n of each283

tree, the training data Sn arriving at that node is divided by a284

splitting function fn : Rd 7→ {−1, 1} into two subsets Snfn=−1285

and Snfn=1. The performance of RFs heavily depends on the286

choice of splitting functions, and commonly used ones are287

axis-aligned [10] or linear splitting functions [23]. For training,288

a random set of splitting functions Fn is generated and the289

best one, fn, is selected according to the information gain U :290

fn = argmax
f∈Fn

U(f)

U(f) = H (Sn)−
∑

i∈{−1,1}

|Snf=i|
|Sn|

H(Snf=i)

H(Sn) = −
∑
κ∈K

P (κ|Sn) lnP (κ|Sn)

(1)

where H denotes class entropy and P (κ|Sn) the fraction of291

Sn belonging to the class κ. The left and right children nodes292

are then trained on Snfn=−1 and Snfn=1, respectively, and the293

training continues recursively.294

Given a pre-defined constant µ, the splitting stops when no295

f ∈ Fn satisfies
∣∣∣Snf=−1∣∣∣ > µ and

∣∣∣Snf=1

∣∣∣ > µ. At each296

leaf node l of a tree t, we store the distribution over classes297

observed during the training, i.e., P tl (κ). For classification, the298

feature vector of the image is extracted and passed through299

each tree until it arrives at leaf l(~x). The class probabilities of 300

all trees are averaged and classification is defined by: 301

κ∗(~x) = argmax
κ

1

T

∑
t

P tl(~x) (κ) . (2)

In the following, we describe how different classifiers can 302

be used as splitting functions f in a random forest framework. 303

Namely, we look into classification based on support vector 304

machines (SVM) and a nearest class mean classifier (NCM). 305

3.1 Linear support vector machine (SVM) 306

A linear SVM classifies images represented by a d-dimen- 307

sional feature vector ~x ∈ Rd using a decision hyperplane 308

defined by its normal vector ~w ∈ Rd. The samples are 309

classified in two classes with label y ∈ {−1, 1} depending 310

on which side of the hyperplane they reside: 311

y(~x) = sgn〈~w, ~x〉, (3)

where sgn is the sign function and 〈·, ·〉 is the inner-product. 312

Using a set of training images {xi} and their corresponding 313

labels {yi}, the hyperplane ~w is set by solving the following 314

convex optimization problem. 315

argmin
~w

λ

2
‖~w‖2 + 1

|S|

|S|∑
i=1

max (0, 1− yi · 〈~w, ~xi〉) , (4)

where λ is a cross-validated constant and |S| the number 316

of training samples. Equation (4) is optimized by stochastic 317

gradient descent [28]. 318

3.2 Combining SVM and Random Forests 319

As binary classifiers, SVMs are well suited to serve as splitting 320

functions in RFs. Each node n of the forest is associated with 321

its own hyperplane ~wn and uses fn(~x) = sgn〈 ~wn, ~x〉 to decide 322

whether a sample is passed to the left child node or to the 323

right child node. Such a system is described in [12], where 324

randomness comes from window extraction in the images. 325

Here, we adopt a slightly different approach. 326

To train a node n, all instances {xi} of a class κ observed 327

at n are assigned the same random meta-label yi = yκ ∈ 328

{−1, 1}. An SVM is then trained by solving (4) with all 329

the training instances reaching the node n and corresponding 330

meta-labels to learn a single splitting function f . The random 331

assignments of classes to meta-labels mitigate class imbalance 332

problems and gives us a pool of splitting functions from which 333

we sample a fixed number (20 in our case) and pick the optimal 334

one, fn, following (1). 335

3.3 Nearest Class Mean classifier (NCM) 336

Nearest class mean classifiers (NCM) have shown promising 337

results in large-scale image classification (cf. Section 5, [6]). 338

Based on a simple 1-nearest neighbor classifier, NCM assigns 339

to a sample the label of the class with the closest mean. 340

Since class means are very efficiently computed, the training 341

of NCM has low computational cost. Below we provide a more 342

formal definition of NCM classification. 343

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 5

With an image I being represented by a d-dimensional344

feature vector ~x ∈ Rd, we first compute the class centroid345

cκ for each class κ ∈ K:346

cκ =
1

|Iκ|
∑
i∈Iκ

~xi, (5)

where Iκ is the set of images labeled with class κ. Since there347

is a centroid for each class, the set of centroids C = {cκ} has348

cardinality |C| = |K|.349

NCM classification of an image I represented by ~x is then350

formulated as searching for the closest centroid in feature351

space:352

κ∗(~x) = argmin
κ∈K

‖~x− cκ‖ . (6)

Without additional refinements, the classification of one image353

implies |K| comparisons in Rd. A crucial contribution of [6] to354

improve classification accuracy is to replace the Euclidean dis-355

tance in (6) with a low-rank Mahalanobis distance optimized356

on training data.357

3.4 Combining NCM and Random Forests358

In this section, we propose to use a variation of NCM classi-359

fiers as splitting functions and we name the resulting forests360

NCM Forests. To use them as node classifiers, NCM classifiers361

are modified in two aspects. First, at any particular node, only362

a fraction of the classes will be used, hence speeding up (6)363

and obtaining weak classifiers. Second, the multiclass output364

of NCM is translated into a binary output (left vs. right child)365

by assigning the classes to either side.366

The benefit of such an NCM Forest compared to NCM367

classification is that only a few comparisons are required368

at each node, implicitly encoding a hierarchical structure of369

classes. This results in an improved classifier accuracy that370

alleviates the need for expensive metric learning. Compared to371

the most common variants of Random Forests, NCM Forests372

also offer non-linear classification at the node level.373

More specifically, we perform the following procedure to374

train a node n with its corresponding data Sn. First, we denote375

by Kn a random subset of the classes observed in Sn, and by376

Snκ the subset of Sn of class κ ∈ Kn. Then, for each κ ∈ Kn,377

we compute the corresponding centroids as in Section 3.3:378

cnκ =
1

|Snκ |
∑
i∈Snκ

~xi. (7)

Then, each centroid cnκ is assigned randomly to a left or379

right child node symbolized by a binary value eκ ∈ {−1, 1}.380

The corresponding splitting function f is then defined by:381

f(~x) = eκ∗(~x) where κ∗(~x) = argmin
κ∈Kn

‖~x− cnκ‖ . (8)

We use (1) to select the optimal fn from the pool of split-382

ting functions corresponding to random centroids assignments383

{eκ}. We do not optimize over random choices of Kn for two384

reasons. First, this would force us to compute all class means385

at all nodes. Second, we can exploit reservoir sampling to add386

new classes to Kn in a principled manner. With |Kn|� |K|,387

the forests will perform a low number of the comparisons.388

Our experiments in Section 5 show that the proposed 389

NCM splitting functions outperform standard ones for the 390

task of large-scale image classification. We also show that the 391

classification accuracy of NCMF without metric learning is 392

comparable to the performance of NCM with metric learning 393

(MET+NCM), but the training of the RF is intrinsically 394

parallelizable and thus faster than MET+NCM. Moreover, the 395

main benefit of the approach is the ease of incrementally 396

adding new classes to an already trained multiclass classifier 397

as we discuss in the next section. Classification using a tree 398

of an NCM Forest is illustrated in Fig. 2. 399

4 STRATEGIES FOR INCREMENTAL LEARNING 400

As discussed in Section 2, online learning of Random Forests 401

has been studied for vision applications such as tracking, ob- 402

ject detection, or segmentation [29], [31], [41], [35]. However, 403

these works focus on problems where the number of classes 404

is known beforehand. In this work, we focus on incrementally 405

adding new classes to the forest in the context of large-scale 406

image classification. Without a proper incremental learning 407

mechanism, a multiclass classifier would need to be retrained 408

from scratch every time a new class is added. This makes it 409

potentially very expensive to add new classes, especially as the 410

dataset grows. Below, we devise four strategies for incremental 411

learning applicable for both NCM Forests (NCMF) and SVM 412

Forests (SVMF). These approaches exploit the hierarchical 413

nature of the forests for efficient updating and present gradual 414

trade-offs between the computational efficiency of the update 415

and the accuracy of the resulting classifier. 416

4.1 Update leaf statistics (ULS) 417

Assuming that a multiclass RF has been already trained for 418

the set K of classes, a new class κ′ is added by passing 419

the training images of the new class through the trees and 420

updating the class probabilities Pl(κ) stored at the leaves. 421

Notably, this approach updates only the leaves but does not 422

change the splitting functions or size of the trees. Since the 423

structure of the tree does not change, it is only applicable to 424

situations where the tree is already complex enough to cope 425

with new data. Therefore, it needs enough training data at the 426

initialization that cover well the distribution of all the data. 427

Otherwise, the splitting functions overfit to the initial training 428

data and result in poor performance since the tree does not 429

produce a meaningful hierarchy for the new data. While [29] 430

use extremely randomized trees as initialization point for a 431

tracking application, we train our initial forest on the initially 432

available classes and observe how the approach behaves in 433

image classification. 434

4.2 Incrementally grow tree (IGT) 435

Unlike ULS, Incrementally Grow Tree (IGT) continues grow- 436

ing the trees if enough samples of the new class arrive at a leaf. 437

The previously learned splitting functions remain unchanged, 438

but new splitting nodes can be added. While the newly added 439

splitting functions were trained on samples from K∪κ′, the old 440

splitting functions are based on samples from K. The approach 441

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 6

presented in [35] refined the leaves based on the user feedback.442

Hence it can be assumed that the new training samples are443

drawn from a finer distribution than the coarse initial one. In444

our case, we consider a scenario where new classes appear445

in random order and test how the approach behaves when the446

new data is not necessarily related to the previously observed447

training samples.448

4.3 Retrain subtree (RTST)449

In contrast to ULS and IGT, which do not converge to a forest450

trained on K∪κ′ classes since the tree structure learned for K451

classes is not changed, RTST updates also previously learned452

splitting functions. To this end, a subset of nodes in the trees453

trained on K classes are marked and converted into leaves by454

removing all of their children. By storing references to the455

training samples in leaves, it is efficient to reuse the training456

of the K classes together with the new classes for the newly457

created leaf node and update statistics. As for IGT, the cut458

trees are then grown again, which, in essence, corresponds459

to retraining subtrees with samples from all classes. The460

distribution p(n) which defines the probability that a node n be461

marked for retraining will be further explained in Section 4.5.462

To control the amount of retraining, only a fraction π ∈463

[0, 1] of the subtrees is selected by randomly sampling without464

replacement. If π=1, the trees are completely retrained and465

the training is not incremental anymore. For π=0, RTST is466

the same as IGT.467

4.4 Reuse subtree (RUST)468

While RTST retrains subtrees entirely, we also propose a469

fourth approach that reuses subtrees to reduce the training470

time. Instead of marking full subtrees, RUST updates single471

splitting nodes. The nodes are selected for update as in RTST.472

The incremental training is then performed breadth-first.473

Since updating the splitting function fn might result in a474

redistribution of the training samples from the classes K within475

the subtree of the node, the samples with f ′
n
(~x) 6= fn(~x)476

are removed from the leaves and passed through the subtree477

again, where f ′n is the splitting function after the update. As478

this might create leaves without samples, the trees are cut such479

that each leaf contains a minimum number µ of samples. The480

impact of π and µ is evaluated in Section 5.481

While ULS, IGT and RTST are general approaches that482

work with any type of splitting functions, RUST needs to be483

tailored to NCM Forest (NCMF) and SVM Forest (SVMF).484

4.4.1 RUST for NCMF485

Each splitting node n already stores a function fn where486

the |Kn| centroids have been sampled from K. The splitting487

functions for K ∪ κ′ classes, however, would have been488

sampled from centroids from the larger set of classes. We489

therefore use reservoir sampling [42] to decide if the centroid490

cnκ′ is ignored, added or replaces an element of Kn to form491

K′n, in which case the splitting function is updated as well:492

f ′
n
(~x) = enκ′(~x) with κ′(~x) = argmin

κ∈K′n
‖~x− cnκ‖ , (9)

where enκ′ ∈ {−1, 1} is selected based on (1).493

...

...

...

... ...

...

d) RUST
... ...

...

c) RTST

a) ULS b) IGT

Fig. 3: Illustration of our incremental approaches with NCM
forest: a) Update leaf statistics (ULS), b) Incrementally grow
tree (IGT), c) Retrain subtree (RTST), d) Reuse subtree
(RUST). The colors of the centroids (yellow, green) indicate
the directions associated with the Voronoi cells. The elements
marked in red are modifications to the structure of the tree.
In c), the centroids of the root’s right child are re-computed,
while in d) only a new centroid is added.

4.4.2 RUST for SVMF 494

Each splitting node n stores a function fn(~x) = sgn〈 ~wn, ~x〉. 495

The splitting function is updated by training two SVMs using 496

the previous meta-labels for classes K and assigning samples 497

of the new class κ′ to −1 or 1, respectively. Each SVM is ini- 498

tialized with ~wn. The updated function f ′n(~x) = sgn〈 ~w′n, ~x〉 499

is given by the SVM with the highest information gain (1). 500

Fig. 3 illustrates the four approaches for incremental learn- 501

ing with NCM forests. 502

4.5 Node sampling for partial tree update 503

Updating a splitting node during RTST and RUST implies 504

updating the whole subtree, but updating all N splitting nodes 505

equals the inefficient retraining of the tree from scratch. We 506

therefore investigate three different distributions p(n) that are 507

used to select a node or subtree for updating: 508

a) Uniform. Each splitting node is assigned equal proba- 509

bility: p(n) = 1
N , where N denotes the number of splitting 510

nodes. 511

b) Subtree size. The computational cost of retraining 512

depends on the size of the subtrees. Thus we set the probability 513

of a node n to be updated as inversely proportional to the car- 514

dinality of the subtree Tn with n as root: p(n) ∝ (|Tn|+1)−1 515

where
∑
n p(n) = 1. 516

c) Quality. We measure the quality of a subtree with 517

root node n and corresponding leaves {l ∈ leaves(n)} by the 518

information gain from its root to the leaves. Let Sn be the 519

samples of classes K ∪ κ′ observed at the node n and Sl the 520

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 7

samples observed at a leaf l. The quality Q is then computed:521

Q(n) = H (Sn)−
∑

l∈leaves(n)

∣∣Sl∣∣
|Sn|

H
(
Sl
)
, (10)

where H denotes the class entropy as in (1). Since a splitting522

function is only selected if the information gain is larger than523

zero, Q(n) > 0. The probability of a node n to be updated is524

then inversely proportional to the quality: p(n) ∝ Q(n)−1525

where
∑
n p(n) = 1. Hence we prefer to update subtrees526

which perform poorly, rather than focusing on computational527

effort.528

5 EXPERIMENTS529

We evaluate the NCMF and SVMF Forests and the correspond-530

ing incremental learning approaches discussed in Section 4531

on a challenging large-scale dataset for image classification,532

namely “ImageNet Large Scale Visual Recognition 2010533

challenge benchmark (ILSVRC10)” [13]. It consists of 1k534

categories, between 668 and 3047 training images per class535

and 1.2M in total, and 150 testing images per category. The536

dataset is organized in a class hierarchy based on WordNet.537

In Section 5.1, the impact of the parameters is evaluated in538

detail on a subset with up to 200 categories. As image features,539

we use a bag-of-words (BoW) representation. To this end, we540

use densely sampled SIFT features clustered into 1k visual541

words provided by the benchmark [13]. We normalized the542

BoW features by whitening the features by their mean and543

standard deviation computed over the starting training subset.544

When metric learning [6] is used for comparison, whitening545

is not performed in addition to metric learning. Section 5.2546

compares the approaches to other methods on the entire large-547

scale datasets with all 1k categories. Finally, the impact of548

the dimensionality of the features is evaluated in Section 5.3549

where we use 4k-dimensional features based on Fisher vectors.550

As measure of performance, we use top-1 average accuracy.551

The training time without feature extraction and test time per552

image are measured per tree by wall clock in seconds and553

microseconds, respectively.554

To evaluate incremental learning, we fixed a random permu-555

tation of all categories and used it throughout all experiments1.556

5.1 Parameters557

5.1.1 Offline learning558

We first evaluate parameters of the forests in an offline setting,559

i.e., when all categories are presented at once. We always560

trained 50 trees and, if not stated otherwise, used µ = 10561

minimum training samples at a leaf as stopping criterion. For562

NCMF and SVMF, we sampled 1024 and 20 splitting functions563

without replacement at each node, respectively. For SVMF,564

we optimized the parameters for a linear SVM on the first 50565

categories.566

Splitting function for NCMF. The size of sampled classes567

Kn out of all classes K is an important parameter for NCMF.568

1. We provide the fixed random order at http://www.vision.ee.ethz.ch/
datasets extra/mristin/ilsvrc meta 2010.zip

log2 |K|√
|K|

0.2 · |K|
50 100 200

0.2

0.3

0.4

classes

pe
rf

or
m

an
ce

50 100 200

50

100

150

classes

te
st

tim
e

[µ
s]

a) performance b) test time

Fig. 4: Comparison of a) average classification accuracy and
b) test time for different sizes of Kn ⊂ K. While setting |Kn|
linear to the number of classes performs better than a sublinear
growth, it takes much longer at the test time.

We compared |Kn| ∈
{
log |K|,

√
|K|, 0.2|K|

}
and present the 569

results in Fig. 4. The results show that |Kn| =
√
|K| gives a 570

good trade-off between accuracy and test time and is used for 571

the rest of the paper. 572

Stopping criterion. The minimum number of samples at a 573

leaf µ defines the stopping criterion for growing the trees. The 574

smaller the number, the deeper the trees grow. Fig. 5a) shows 575

that a small number increases the accuracy, but induces more 576

computation at the test time. For the rest of the experiments, 577

we use µ = 10 and compare different forest variants trained 578

and evaluated on 50 classes. 579

NCMF vs. SVMF. While SVMF is most accurate (0.47) as 580

well as fast to evaluate (5.5µs) since only one inner product 581

is performed per node, the SVM hyperplanes required longest 582

training times (70s). NCMF is a good compromise between 583

accuracy (0.43) and training times (2.5s) though it is slower 584

at test time (24.9µs) due to computation of distances to the 585

centroids at a node. Hence, NCMF is more suitable for a 586

system which has to cope with a dynamic environment where 587

new classes arrive frequently, while SVMF is better fit for 588

a more static setting where the decisions about the learned 589

categories are often evaluated. 590

Visualization. At the end of the paper, we visualize a single 591

NCMF tree trained on 50 classes of ILSVRC 2010. Table 15 a)- 592

c) illustrate the centroids stored at three different nodes and 593

Table 15 d) and e) illustrate the path of two test images 594

in the tree where one is correctly classified and the other 595

misclassified. 596

5.1.2 Incremental learning 597

To evaluate the incremental learning approaches presented in 598

Section 4, we train a forest on a pre-defined number k of initial 599

classes and then incrementally add the other classes one by 600

one. The performance is measured whenever the method has 601

learned to recognize a certain number of classes. Since the 602

goal is to match the performance of the forest re-trained at 603

every new class, we measure the performance relatively to 604

that baseline. 605

Comparison of node sampling. While ULS and IGT do 606

not have any extra parameters, RUST and RTST depend on 607

the sampling distribution (uniform, subtree size or quality) 608

as well as on the ratio π of the splitting nodes sampled for 609

update as discussed in Section 4.5. In Fig. 7, we compare 610

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 8

NCMF
SVMF

5 10 20 30

0.4

0.45

µ
pe

rf
or

m
an

ce
5 10 20 30

10

20

µ

te
st

tim
e

[µ
s]

5 10 20 30

0

20

40

60

80

µ

tr
ai

ni
ng

tim
e

[s
]

a) performance b) test time c) training time

Fig. 5: Measurements at 50 classes of a) performance, b) test time and c) training time of NCMF and SVMF baselines with
variable constraints of µ minimal number of training samples at a leaf node. SVMF is much faster at test time and outperforms
NCMF, but takes much longer (28x) to train.

Baseline
k = 3

k = 10

k = 20

30 40 50
80

85

90

95

100

classes

re
l.

pe
rf

or
m

an
ce

30 40 50

15

20

classes

te
st

tim
e

[µ
s]

a) performance b) test time

Fig. 6: Comparison of a) relative performance and b) test time
of RUST applied to a NCMF with nodes sampled by quality
and π = 0.05 starting with k initial classes measured at 30,
40 and 50 classes. Increasing the number of initial classes to
20 is beneficial, but has limited impact.

measurements of the different sampling schemes with RTST611

applied on NCMF and measured when the forest was trained612

to classify 50 classes, starting with 3 initial classes. Sampling613

by quality picks more relevant nodes and hence allows better614

updates with smaller portion π. With updating as little as 5% of615

the nodes sampled according to quality, we achieve a relative616

performance of 96.0% and a short training time of 16.7s.617

Using a uniform distribution, the training time is increased.618

The sampling based on the subtree size as proposed in [11],619

achieves a relative performance of 95.6% for π = 0.5 and620

takes 24.0s to train.621

Further experiments with RUST confirmed these relations.622

While sampling by quality achieved 88.3% relative perfor-623

mance and took 10.3s to train, sampling by subtree size624

achieved 90.7% relative accuracy and needed 15.2s for train-625

ing. In the following, nodes were sampled by quality with626

π = 0.05.627

Comparison of the update strategies. Fig. 8 plots the628

relative performance, test and training time for the baseline629

NCMF and our approaches ‘Update leaf statistics’ (ULS),630

‘Incrementally grow tree’ (IGT), ‘Retrain subtree’ (RTST) and631

‘Reuse subtree’ (RUST) trained from k = 3 initial classes up632

to 50 classes. Splitting nodes were sampled by quality for633

RTST and RUST with π = 0.05. As ULS does not grow the634

trees, its test time is constant and the training time very low,635

but the final relative performance at 50 classes is poor (27.0%).636

IGT extends the trees, yielding higher test and training times,637

but achieves 83.5% relative performance while reducing train-638

ing time of the baseline by a factor of 17 and test time by 2. 639

IGT achieves 36.2% average accuracy, outperforming NCM, 640

KNN, RF and MF [33], cf. Table 1a). RTST re-trains the 641

nodes and achieves the best relative performance (96.0%), 642

but takes longest to train. RUST outperforms IGT (relative 643

performance 88.3%), suggesting that reusing the subtrees is 644

indeed beneficial. It also speeds up the training of the baseline 645

by a factor of 5 and is 1.6× faster to train than RTST. The gap 646

in training times between baseline, RTST and RUST widens 647

with the number of classes. 648

The incremental learning strategies can be applied to NCMF 649

and SVMF. The results for both variants are plotted in Fig. 9. 650

The measurements are performed at the final 50 classes and 651

the results demonstrate not only that the relations between 652

our incremental approaches in relative performance, test and 653

training times are stable across the forest variants, but also 654

reflect the results in Fig. 5. Baseline SVMF outperformed 655

NCMF baseline by roughly 3% (47.2% compared to 43.3%), 656

i.e. it was 1.09× better. The ratios are also similar for perfor- 657

mance of RTST and RUST incremental approaches when they 658

are performed on SVMF and NCMF, respectively: RTST on 659

SVMF 44.6% versus RTST on NCMF 41.6% (1.07× better) 660

and RUST on SVMF 40.0% versus RUST on NCMF 38.3% 661

(1.05× better). 662

Initial classes. The influence of the number of initial classes 663

on RUST of NCMF is shown in Fig. 6. The method is quite 664

insensitive to the number of initial classes and already achieves 665

good performance with only a few. Starting with 3 and 20 666

initial classes gives us the relative performance of 88.3% and 667

91.2%, respectively, a difference of only 2.9%. 668

So far we have used a single random permutation of the 669

classes for the experiments. To evaluate the impact of the 670

initial classes, we evaluate ten random permutations of the 671

previously used 50 classes. The results are plotted in Fig. 10. 672

The standard deviation never exceeded 10% of the mean values 673

of the measurements indicating little impact of the order of the 674

classes, which is desirable for incremental learning. 675

5.2 Large-scale 676

In the following section, we examine the behavior of our 677

forests in experiments involving all 1k classes of ILSVRC10. 678

Before comparing our methods with other approaches, we 679

study how our approaches cope with the batch size. Since in 680

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 9

subtree size
uniform
quality

0 0.5 1

85

90

95

π
re

l.
pe

rf
or

m
an

ce

0 0.5 1

15

20

π

te
st

tim
e

[µ
s]

0 0.5 1
0

20

40

60

80

π

tr
ai

ni
ng

tim
e

[s
]

a) relative performance b) test time c) training time

Fig. 7: Starting with 3 initial classes, additional classes are incrementally learned until 50 classes are reached. RTST incremental
training of NCMF with different schemes used for node sampling is evaluated. Using uniform sampling or subtree quality
instead of subtree size as measure, a smaller number of nodes needs to be updated to achieve a good relative performance.
Only a small portion of nodes (π) needs to be updated to achieve a relative performance of over 95%. Using the quality
criterion in comparison to a uniform distribution results in lower training times.

Baseline
ULS
IGT
RTST
RUST

10 20 30 40 50
0

20

40

60

80

100

classes

re
l.

pe
rf

or
m

an
ce

10 20 30 40 50

10

20

classes

te
st

tim
e

[µ
s]

10 20 30 40 50

0

20

40

classes

tr
ai

ni
ng

tim
e

[s
]

a) relative performance b) test time c) training time

Fig. 8: Measurements at variable number of classes for an incremental training of NCMF starting with 3 initial classes. For
RTST and RUST we used quality weighting with π=0.05. ‘Update leaf statistics’ (ULS) is faster to train and test, but has
inferior performance. ‘Incrementally grow tree’ (IGT) is slower than ULS both at train and test time, but achieves 83.5% of the
baseline’s performance at 50 classes. ‘Retrain subtree’ achieves the best performance (96.0% at 50 classes), but takes longest
to train. ‘Reuse subtree’ (RUST) is a good trade-off between training time and relative performance (88.3% at 50 classes).
The relative differences in training time increase with the growing number of classes.

NCMF
SVMF

ba
sel

ine ULS
IG

T
RTST

RUST
0

0.2

0.4

pe
rf

or
m

an
ce

ba
sel

ine ULS
IG

T
RTST

RUST
0

10

20

te
st

tim
e

[µ
s]

ba
sel

ine ULS
IG

T
RTST

RUST
0

50

100

150

tr
ai

n
tim

e
[s

]

a) performance b) test time c) training time

Fig. 9: Measurements at 50 classes starting with 3 initial classes for various incremental learning approaches and forest
variants. NCMF is much faster to train, but achieves a lower accuracy than SVMF and takes longer at the test time. The
advantages and disadvantages of the forest variants for offline learning (baseline) are the same for incremental learning.

practice multiple classes can and do appear simultaneously,681

it is highly relevant that an incremental approach can handle682

such a setting. We trained our initial forests with 20 classes683

and incrementally updated it with chunks of 1, 10, 20 and684

40 classes. The measurements were carried out whenever the685

forests integrated 100, 500 and 1000 classes. As shown in686

Fig. 11, the training time reduces by training several classes687

at a time. The batch size has a low impact on the relative688

classification accuracy of NCMF whereas SVMF performs689

better when adding only one class for each update.690

We compared NCMF and SVMF with other multi-691

class classifiers using the same features on all 1k classes 692

of the ILSVRC10 dataset. For comparison, we used 693

nearest class mean classifier (NCM), NCM with met- 694

ric learning [6] (MET+NCM), structured-output multi-class 695

SVM [4] (MC SVM), k-nearest neighbors (KNN), Mondrian 696

Forest [33] (MF) and Random Forest with axis-aligned split- 697

ting functions [10] (RF), which in our case outperformed RF 698

with linear splitting functions. The method parameters were 699

optimized by cross-validation for the first 50 classes. 700

The results in Table 1a) show that NCMF and SVMF 701

perform comparable to NCM with metric learning [6]. In par- 702

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 10

3 10 20
80

85

90

95

100

initial classes

re
l.

pe
rf

or
m

an
ce

3 10 20
0

5

10

15

20

initial classes

te
st

tim
e

[µ
s]

10 20 30 40 50
0

5

10

classes

tr
ai

ni
ng

tim
e

[s
]

a) relative performance b) test time c) training time

Fig. 10: Comparison of a) relative performance and b) test time of NCMF RUST. Nodes were sampled by quality with
π = 0.05. Different number of classes were used for initialization and we measured at 50 classes and 10 random permutations
of the classes. c) Training time for 3 initial classes over 10 random permutations of the classes. The small standard deviations
indicate the limited impact of the order of the classes.

s = 1 s = 10 s = 20 s = 40

i) NCMF
100 500 1,000

70

80

90

100

classes

re
l.

pe
rf

or
m

an
ce

100 500 1,000

50

100

classes

te
st

tim
e

[µ
s]

100 500 1,000
0

2,000

4,000

6,000

8,000

classes

tr
ai

ni
ng

tim
e

[s
]

ii) SVMF
100 500 1,000

70

80

90

100

classes

re
l.

pe
rf

or
m

an
ce

100 500 1,000

50

100

classes

te
st

tim
e

[µ
s]

100 500 1,000
0

2,000

4,000

6,000

8,000

classes
tr

ai
ni

ng
tim

e
[s

]

a) relative performance b) test time c) training time

Fig. 11: Comparison of a) relative performance, b) test time and c) training time for RUST based on i) NCMF and ii) SVMF,
respectively, when several classes (s indicates the chunk size) are added simultaneously, starting from 20 initial classes. Training
with multiple classes in a batch can reduce the training time substantially.

ticular, both NCMF and SVMF outperform NCM, MC SVM,703

Mondrian Forest (MF) and conventional Random Forest (RF)704

by a significant margin.705

While we compared different forest variants with other706

approaches in Table 1a), we now compare the incremental707

learning approaches of NCMF and SVMF on all 1k classes708

in Table 1b) and c). Since IGT of NCMF and SVMF already709

outperforms NCM, KNN, MF and RF, we focus on NCM with710

metric learning [6] for incremental learning, which performed711

comparable to SVMF, cf. Table 1a). We start with k = 10712

and k = 20 initial classes. The setting for the incremental713

learning of our forests remains the same, i.e., the whitening714

is estimated on the initial k classes. For METk+NCM, the715

metric is only learned on the initial classes, and the model is716

updated with projected centroids of the new classes. According717

to Table 1, RUST outperforms IGT indicating that updating718

the trees is beneficial. While it was shown in [6] that a metric719

learned on 800 classes is applicable to the other 200 classes,720

the learned metric on up to 20 classes does not generalize721

well, making the method unsuitable for a small initial training722

set. In this case, the three approaches IGT, RUST and RTST 723

applied to either NCMF or SVMF outperform METk+NCM. 724

The relations between incremental training methods on NCMF 725

presented in Fig. 8 are also corroborated in Table 1b) and c). 726

However, the differences between SVMF and NCMF at 1k 727

classes are smaller for RUST than for RTST. The improvement 728

of the SVMF baseline by factor 1.21 over the NCMF baseline 729

is preserved by RTST. At 1k classes, RTST with SVMF is 730

1.20× better than RTST with NCMF. 731

The training and test times of our approaches across forest 732

variants trained from the initial 20 up to 1k classes are 733

given in Table 2. For the same setting, we also plot the 734

absolute and relative performance with respect to training 735

time for all approaches in Fig. 12. Although the baseline 736

SVMF achieves a better accuracy than NCMF (cf. Table 1), 737

NCMF achieves a better relative performance for incremental 738

learning and compensates partially for the differences of the 739

baselines. The plots also show that the presented approaches 740

offer various trade-offs between training time and classification 741

accuracy and the right choice of the approach depends on the 742

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 11

method \ # of classes 50 500 1000

a) baseline

NCM 0.31 0.11 0.07
MET+NCM [6] 0.44 0.19 0.14
MC SVM [4] 0.42 0.10 0.05
KNN 0.28 - -
MF [33] 0.28 0.08 -
RF [10] 0.30 0.09 0.06
NCMF 0.43 0.16 0.11
SVMF 0.47 0.19 0.14

b) k=10

method \ # of classes 50 500 1000
MET10+NCM [6] 0.28 (63.0%) 0.08 (42.8%) 0.05 (39.1%)
NCMF+ULS10 0.25 (58.1%) 0.05 (32.9%) 0.03 (28.6%)
NCMF+IGT10 0.38 (88.7%) 0.12 (74.7%) 0.08 (74.7%)
NCMF+RTST10 0.41 (94.2%) 0.16 (96.6%) 0.11 (97.2%)
NCMF+RUST10 0.39 (90.6%) 0.14 (86.0%) 0.10 (84.9%)
SVMF+ULS10 0.19 (41.1%) 0.04 (19.9%) 0.02 (16.6%)
SVMF+IGT10 0.41 (85.9%) 0.13 (66.2%) 0.09 (65.2%)
SVMF+RTST10 0.43 (91.8%) 0.19 (95.6%) 0.13 (95.9%)
SVMF+RUST10 0.42 (88.1%) 0.14 (71.2%) 0.09 (68.5%)

c) k=20

MET20+NCM [6] 0.32 (68.2%) 0.09 (50.0%) 0.06 (46.2%)
NCMF+ULS20 0.30 (70.0%) 0.07 (43.2%) 0.04 (38.6%)
NCMF+IGT20 0.39 (90.0%) 0.12 (76.6%) 0.09 (75.9%)
NCMF+RTST20 0.41 (95.0%) 0.16 (97.9%) 0.11 (100.1%)
NCMF+RUST20 0.40 (92.1%) 0.14 (88.8%) 0.10 (86.9%)
SVMF+ULS20 0.29 (61.0%) 0.05 (28.3%) 0.03 (24.9%)
SVMF+IGT20 0.43 (90.8%) 0.13 (69.0%) 0.09 (67.1%)
SVMF+RTST20 0.45 (94.5%) 0.19 (97.9%) 0.14 (99.5%)
SVMF+RUST20 0.43 (91.9%) 0.14 (73.1%) 0.10 (69.9%)

TABLE 1: Comparison of baselines and different incremental learning methods measured at 50, 500 and 1k classes of [13]
all starting with the same initial classes. The classification accuracy is reported in the cells, while relative performance to the
corresponding baseline is given as percentage in brackets. The whitening for our methods as well as the metric METk were
learned on k initial classes in b) & c). Incremental methods were trained with batches of 10 classes. We set π = 0.05 and
sample nodes by quality for RUST and RTST. While our baseline versions of NCMF and SVMF match the state-of-the-art
method MET+NCM [6], NCMFs and SVMFs with RUST and RTST consistently outperform MET+NCM [6] for incremental
learning.

training time test time [µs]
NCMF SVMF NCMF SVMF

baseline 3hrs 32hrs 147 7
ULS 19s 23s 57 4
IGT 2min 6min 63 9
RTST 45min 8hrs 143 7
RUST 25min 31min 118 8

TABLE 2: Training and test times for incremental approaches
based on NCMF and SVMF. We initialized with k = 20
classes, trained with batches of s= 10 classes at a time and
measured at 1k classes. Test times are given per image and
tree without feature extraction in microseconds. Training times
are given per tree. For baselines, we indicate the training time
needed for re-training at each batch. In comparison, training
times for 1k classes for MET1000+NCM is 36hrs and MC
SVM is 2.5hrs.

application.743

We also compared our methods with MULTIpLE [9] using744

the publicly available code [43]. MULTIpLE is an incremental745

approach based on least-squares SVM [44]. The approach,746

however, is not suitable for large-scale problems due to its747

memory requirements. On a machine with 50GB RAM, we748

could run the approach for up to 100 classes with 100749

training samples per class. The parameters of the linear SVMs750

were estimated by cross-validation on the first 50 categories751

and fixed through the experiments. Fig. 13 a) shows that752

LSSVM [44] is outperformed by NCMF and SVMF. The753

performance of LSSVM in recognizing 100 classes was 0.25,754

while NCMF and SVMF achieved 0.34 and 0.38.755

We also present in Fig. 13 the results of an experiment756

performed in an incremental setting where we compared757

MULTIpLE with our RTST applied to NCMF and SVMF,758

respectively. The training was initialized with k=10 classes759

and the models were incrementally updated by one class 760

(s=1). Due to aforementioned memory limitations, we limited 761

the number of training samples for MULTIpLE (100 per each 762

individual “source” and “train” set [43], respectively). For our 763

incremental approach, we sampled nodes by quality and set 764

π=0.05 and did not restrict the number of training samples. 765

Both the absolute as well as the relative performance were 766

measured at 50 and 100 classes or when the memory limit 767

was reached, which was the case for MULTIpLE at 70 classes. 768

NCMF and SVMF incrementally trained by RTST outperform 769

MULTIpLE [9] by a margin not only in absolute perfor- 770

mance, but are also better in relative performance measured 771

relatively to the corresponding baseline. MULTIpLE achieved 772

only 84.0% of the performance of LSSVM, while RTST 773

incremental training almost matched the baseline (97.9% and 774

98.4% for NCMF and SVMF, respectively). 775

5.3 Feature dimensionality 776

The BoW features we used so far have a dimensionality of 777

1k. To investigate the impact of feature dimensionality, we 778

employed 4k-dimensional features based on Fisher Vectors 779

(FV), which were also used in [6]. In Fig. 14, the improvement 780

of FV over the 1k ones is reported, measured at 1k classes. In 781

general, all methods benefit from higher dimensional, more 782

complex features. MET+NCM [6] which also performs a 783

dimensionality reduction on the feature space benefits more 784

from the high dimensional features than NCMF or SVMF. 785

While MET+NCM achieves an average accuracy of 0.39, 786

NCMF baseline and SVMF baseline achieve only 0.23 or 787

0.28, respectively. Yet, in the incremental setting, NCMF and 788

SVMF perform better than MET+NCM. As a matter of fact, 789

NCMF+IGT (average accuracy 0.18), NCMF+RUST (0.20) 790

and NCMF+RTST (0.23) outperform MET10 + NCM (0.16), 791

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 12

Baseline ULS IGT RTST RUST NCMF SVMF

10s 10min 1hr 3hr 1dy
0

0.05

0.1

training time

pe
rf

or
m

an
ce

10s 10min 1hr 3hr
0

20

40

60

80

100

training time

re
l.

pe
rf

or
m

an
ce

a) abs. performance b) rel. performance

Fig. 12: Comparison of a) absolute and b) relative performance with respect to training time of our incremental methods
based on NCMF and SVMF. We initialized with k = 20 classes, trained with batches of s=10 classes at a time and measured
at 1k classes. Training times are given per tree. The absolute performance shows that the presented approaches offer various
trade-offs between training time and classification accuracy. In this scenario, however, there are also a few combinations that
are not Pareto optimal, namely SVMF+ULS, SVMF+RUST, and NCMF. The relative performance shows that NCMFs retain
the accuracy better than SVMFs for incremental learning and compensate partially for the lower absolute accuracy of NCMFs
for offline learning.

LSSVM [44] NCMF SVMF
MULTIpLE [9] RTST (NCMF) RTST (SVMF)

50 100

0.3

0.5

classes

pe
rf

or
m

an
ce

50 100
80

85

90

95

100

classes

re
l.

pe
rf

or
m

an
ce

a) abs. performance b) rel. performance

Fig. 13: Comparison of a) absolute and b) relative perfor-
mance of MULTIpLE [9] and its baseline LSSVM [44] with
our baseline forests NCMF and SVMF and their incrementally
trained variants obtained by RTST. All incremental methods
were initialized with k = 10 classes and the models were
incremented by one class (s = 1). The measurements were
performed at 50 and 100 classes. MULTIpLE runs out of
memory at 70 classes. The relative performance was measured
to the respective baseline. NCMF and SVMF outperform
MULTIpLE [9] and LSSVM [44] both in absolute and relative
performance.

and the same holds for SVMF+IGT (0.20), SVMF+RUST792

(0.21) and SVMF+RTST (0.22). Fig. 14 b) shows that the793

relative performance of the incremental learning approaches794

is quite stable although FV improve the absolute performance795

and increase the feature dimensionality. Increasing the dimen-796

sionality by a factor of 4 resulted in 2-4 times longer training797

times of our forests.798

MET+NCM [6] NCMF SVMF
BoW (1k-dim) FV (4k-dim)

M
ET+NCM

M
ET10

+NCM

ba
sel

ine

ULS1
0

IG
T10

RTST10

RUST10

0

0.1

0.2

0.3

0.4

pe
rf

or
m

an
ce

a) abs. performance

M
ET10

+NCM
ULS1

0

IG
T10

RTST10

RUST10

0

20

40

60

80

100

re
l.

pe
rf

or
m

an
ce

b) rel. performance

Fig. 14: Comparison of a) absolute and b) relative perfor-
mance of our methods using 1k-dim bag-of-words and 4k-dim
Fisher Vectors (FV). Incremental models started with 10 initial
classes and used batches of s = 10 new classes. Performance
is measured at 1k classes. We compare against MET+NCM [6]
learned on all 1k classes and MET10+NCM where the metric
is learned only on the 10 initial classes.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 13

a)
..
.

(3
ce

nt
ro

id
s)

b) c) d)

..
.

..
.

(1
0

no
de

s)
(4

no
de

s)

ga
rb

ag
e

tr
uc

k
ga

rb
ag

e
tr

uc
k

3

e)

..
.

..
.

(8
no

de
s)

(4
no

de
s)

Pe
rs

ia
n

ca
t

Pe
ki

ng
es

e
7

Fi
g.

15
:

V
is

ua
liz

at
io

n
of

a
si

ng
le

N
C

M
F

tr
ee

tr
ai

ne
d

on
50

cl
as

se
s

of
IL

SV
R

C
20

10
.I

n
th

e
fir

st
th

re
e

ro
w

s,
w

e
sh

ow
so

m
e

of
th

e
ce

nt
ro

id
s

st
or

ed
at

a
no

de
at

a)
de

pt
h

0
(r

oo
t)

,b
)

de
pt

h
10

an
d

c)
de

pt
h

15
.W

e
ill

us
tr

at
e

ea
ch

ce
nt

ro
id

by
th

e
th

re
e

cl
os

es
t

tr
ai

ni
ng

im
ag

es
of

its
Vo

ro
no

i
ce

ll
ob

se
rv

ed
at

th
e

no
de

.I
f

th
e

ce
ll

co
nt

ai
ns

le
ss

th
an

th
re

e
im

ag
es

as
in

b)
,

al
l

im
ag

es
ar

e
sh

ow
n.

T
he

as
si

gn
ed

ro
ut

in
g

di
re

ct
io

n
of

th
e

sp
lit

tin
g

fu
nc

tio
n

of
th

e
no

de
is

in
di

ca
te

d
by

th
e

bo
rd

er
st

yl
e;

da
sh

ed
m

ea
ns

le
ft

an
d

do
tte

d
ri

gh
t,

re
sp

ec
tiv

el
y.

Sp
lit

tin
g

at
a)

de
pt

h
0

is
ve

ry
ge

ne
ra

l
an

d
be

co
m

es
m

or
e

an
d

m
or

e
sp

ec
ifi

c
as

w
e

m
ov

e
to

de
ep

er
no

de
s

b)
an

d
c)

.I
n

d)
an

d
e)

,w
e

sh
ow

tw
o

te
st

im
ag

es
on

th
e

le
ft

ha
nd

si
de

w
ith

un
kn

ow
n

gr
ou

nd
-t

ru
th

la
be

l
an

d
th

ei
r

pa
th

s
th

ro
ug

h
th

e
tr

ee
.

O
nl

y
th

e
no

de
s

at
de

pt
hs

4-
6

as
w

el
l

as
th

e
fin

al
no

de
ar

e
di

sp
la

ye
d

an
d

th
ey

ar
e

re
pr

es
en

te
d

by
th

e
ce

nt
ro

id
cl

os
es

t
to

th
e

te
st

im
ag

e.
E

ac
h

ce
nt

ro
id

is
ag

ai
n

vi
su

al
iz

ed
by

th
re

e
im

ag
es

.I
n

d)
,t

he
ce

nt
ro

id
s

be
co

m
e

m
or

e
pr

ec
is

e
al

on
g

th
e

pa
th

an
d

ve
ry

ac
cu

ra
te

at
th

e
fin

al
no

de
w

he
re

th
e

im
ag

e
is

co
rr

ec
tly

cl
as

si
fie

d.
In

e)
,t

he
im

ag
e

is
m

is
cl

as
si

fie
d

as
Pe

ki
ng

es
e.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, JANUARY XXXX 14

6 CONCLUSION799

In this paper, we have examined how two variants of Random800

Forests (RF), namely Nearest Class Mean Forests (NCMF)801

and SVM Forests (SVMF), perform for large-scale multiclass802

image classification. As we have shown, both variants outper-803

form NCM classification, multiclass SVM and conventional or804

Mondrian RFs in such a challenging setting. While our forests805

achieve competitive results in a setting where all classes are806

known a-priori, efficient techniques to incrementally add new807

classes to NCMF and SVMF are also proposed. In particular,808

the ability to reuse subtrees allows us to add new classes at a809

fraction of the cost of retraining a complete NCMF, while810

preserving the overall accuracy. Similarly, an incremental811

technique that retrains selected SVMF subtrees maintains a812

very high relative performance. We have performed extensive813

experiments in the context of image classification when the814

number of classes grows over time. Since NCMF and SVMF815

are quite insensitive to the number of initial classes and to the816

order in which the classes are added, they are well suited for817

incremental learning. For training, we assume that all previous818

training samples are accessible and decorrelate the features819

given the initial training data. This limitation can be overcome820

by keeping only a subset of the data at each step and including821

local feature decorrelation and selection in each split node.822

ACKNOWLEDGMENTS823

The authors acknowledge financial support from the CTI project824

(15769.1 PFES-ES), DFG Emmy Noether program (GA 1927/1-1),825

DFG project (GA 1927/2-2 FOR 1505) and Toyota.826

REFERENCES827

[1] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-828

serman, “The PASCAL visual object classes (VOC) challenge,” IJCV,829

2010.830

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:831

A large-scale hierarchical image database,” in CVPR, 2009.832

[3] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A833

large data set for nonparametric object and scene recognition,” TPAMI,834

2008.835

[4] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid, “Good practice836

in large-scale learning for image classification,” TPAMI, 2013.837

[5] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, “What does classifying more838

than 10,000 image categories tell us?” in ECCV, 2010.839

[6] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Distance-based840

image classification: Generalizing to new classes at near-zero cost,”841

TPAMI, 2013.842

[7] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “SUN843

database: Large-scale scene recognition from abbey to zoo,” in CVPR,844

2010.845

[8] A. Bendale and T. Boult, “Towards open world recognition,” in CVPR,846

2015.847

[9] I. Kuzborskij, F. Orabona, and B. Caputo, “From N to N+1: Multiclass848

transfer incremental learning,” in CVPR, 2013.849

[10] L. Breiman, “Random forests,” Machine Learning, 2001.850

[11] M. Ristin, M. Guillaumin, J. Gall, and L. Van Gool, “Incremental851

learning of NCM forests for large-scale image classification,” in CVPR,852

2014.853

[12] B. Yao, A. Khosla, and L. Fei-fei, “Combining randomization and854

discrimination for fine-grained image categorization,” in CVPR, 2011.855

[13] A. Berg, J. Deng, and L. Fei-Fei, “Large scale visual recognition chal-856

lenge 2010,” http://www.image-net.org/challenges/LSVRC/2010, 2010,857

[Online; accessed 1-Nov.-2013].858

[14] J. Sanchez and F. Perronnin, “High-dimensional signature compression859

for large-scale image classification,” in CVPR, 2011.860

[15] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang,861

“Large-scale image classification: Fast feature extraction and SVM862

training,” in CVPR, 2011.863

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification 864

with deep convolutional neural networks,” in NIPS, 2012. 865

[17] J. Sanchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifi- 866

cation with the Fisher vector: Theory and practice,” IJCV, 2013. 867

[18] J. Deng, J. Krause, A. Berg, and L. Fei-Fei, “Hedging your bets: Opti- 868

mizing accuracy-specificity trade-offs in large scale visual recognition,” 869

in CVPR, 2012. 870

[19] S. Bengio, J. Weston, and D. Grangier, “Label embedding trees for large 871

multi-class tasks,” in NIPS, 2010. 872

[20] J. Deng, S. Satheesh, A. C. Berg, and L. Fei-fei, “Fast and balanced: 873

Efficient label tree learning for large scale object recognition,” in NIPS, 874

2011. 875

[21] B. Liu, F. Sadeghi, M. Tappen, O. Shamir, and C. Liu, “Probabilistic 876

label trees for efficient large scale image classification,” in CVPR, 2013. 877

[22] R. Salakhutdinov, A. Torralba, and J. Tenenbaum, “Learning to share 878

visual appearance for multiclass object detection,” in CVPR, 2011. 879

[23] A. Bosch, A. Zisserman, and X. Muñoz, “Image classification using 880

random forests and ferns,” in ICCV, 2007. 881

[24] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary 882

tree,” in CVPR, 2006. 883

[25] A. Vezhnevets, V. Ferrari, and J. M. Buhmann, “Weakly supervised 884

structured output learning for semantic segmentation,” in CVPR, 2012. 885

[26] N. Razavi, J. Gall, and L. Van Gool, “Scalable multi-class object 886

detection,” in CVPR, 2011. 887

[27] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101: Mining 888

Discriminative Components with Random Forests,” in ECCV, 2014. 889

[28] A. Vedaldi and B. Fulekerson, “VLFeat: An open and portable library 890

of computer vision algorithms,” http://www.vlfeat.org/, 2008, [Online; 891

accessed 1-Nov.-2013]. 892

[29] M. Godec, P. Roth, and H. Bischof, “Hough-based tracking of non-rigid 893

objects,” in ICCV, 2011. 894

[30] P. Domingos and G. Hulten, “Mining high-speed data streams,” in 895

SIGKDD, 2000. 896

[31] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-line 897

random forests,” in OLCV, 2009. 898

[32] S. Schulter, C. Leistner, P. M. Roth, L. Van Gool, and H. Bischof, 899

“Online Hough-forests,” in BMVC, 2011. 900

[33] B. Lakshminarayanan, D. Roy, and Y. W. Teh, “Mondrian forests: 901

Efficient online random forests,” in NIPS, 2014. 902

[34] T. Yeh, J. Lee, and T. Darrell, “Adaptive vocabulary forests for dynamic 903

indexing and category learning,” in ICCV, 2007. 904

[35] A. Yao, J. Gall, C. Leistner, and L. Van Gool, “Interactive object 905

detection,” in CVPR, 2012. 906

[36] T. Tommasi, F. Orabona, and B. Caputo, “Safety in numbers: Learning 907

categories from few examples with multi model knowledge transfer,” in 908

CVPR, 2010. 909

[37] M. Guillaumin and V. Ferrari, “Large-scale knowledge transfer for object 910

localization in ImageNet,” in CVPR, 2012. 911

[38] M. Guillaumin, D. Kuettel, and V. Ferrari, “ImageNet auto-annotation 912

with segmentation propagation,” IJCV, 2014. 913

[39] M. Rohrbach, M. Stark, and B. Schiele, “Evaluating knowledge transfer 914

and zero-shot learning in a large-scale setting,” in CVPR, 2011. 915

[40] M. Hasan and A. K. Roy-Chowdhury, “Incremental activity modeling 916

and recognition in streaming videos,” in CVPR, 2014. 917

[41] A. Wang, G. Wan, Z. Cheng, and S. Li, “An incremental extremely 918

random forest classifier for online learning and tracking,” in ICIP, 2009. 919

[42] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. 920

Softw., 1985. 921

[43] I. Kuzborskij, F. Orabona, and B. Caputo, “From N to N+1: Mul- 922

ticlass transfer incremental learning (code),” http://idiap.ch/∼ikuzbor/ 923

code/cvpr13 code.zip, 2013, [Online; accessed 23-May-2014]. 924

[44] J. Suykens and J. Vandewalle, “Least squares support vector machine 925

classifiers,” Neural Processing Letters, 1999. 926

Marko Ristin obtained his PhD from the ETH Zurich, Switzerland. 927

Matthieu Guillaumin is a post-doctoral researcher in the Computer 928

Vision Laboratory of ETH Zurich, Switzerland. 929

Juergen Gall is professor at the University of Bonn and head of the 930

Computer Vision Group. 931

Luc Van Gool is professor at the Katholieke Universiteit Leuven in 932

Belgium and the ETH in Zurich, Switzerland, where he leads research 933

in computer vision. 934

