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Abstract—The paper introduces Hough forests which are random forests adapted to perform a generalized Hough transform in an
efficient way. Compared to previous Hough-based systems such as implicit shape models, Hough forests improve the performance
of the generalized Hough transform for object detection on a categorical level. At the same time, their flexibility permits extensions of
the Hough transform to new domains such as object tracking and action recognition. Hough forests can be regarded as task-adapted
codebooks of local appearance that allow fast supervised training and fast matching at test time. They achieve high detection accuracy
since the entries of such codebooks are optimized to cast Hough votes with small variance, and since their efficiency permits dense
sampling of local image patches or video cuboids during detection. The efficacy of Hough forests for a set of computer vision tasks is
validated through experiments on a large set of publicly available benchmark datasets and comparisons with the state-of-the-art.

Index Terms—Hough transform, object detection, tracking, action recognition.
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1 INTRODUCTION

D ETECTING objects like pedestrians in unconstrained
images or videos, tracking them over time, and

recognizing their actions are challenging tasks due to
high intra-class variations in shape, appearance, scale,
viewpoint, and pose, but also due to occlusions, illumi-
nation changes, and background clutter. Nevertheless,
there has been considerable progress over the last years,
particularly in the field of object detection in static im-
ages, e.g., [1], [2], [3], [4], [5], [6], [7], [8], [9]. Based on the
success of such systems, recent works in tracking and in
action recognition have extended many successful ideas
into the spatio-temporal domain [10], [11], [12], [13], [14],
[15]. In this paper, we present a unified framework that
can be used for class-level object detection in images,
object localization/tracking through videos, and action
recognition in videos.

Our work is related to several ideas reoccurring in the
literature. Firstly, the idea of local appearance codebooks [16]
forms the basis of many detection systems, including the
bag-of-words approach [17] and approaches that model
the geometric relations of object parts [8], [18]. Such
codebooks are used to classify the local appearance of
interest points into a discrete number of visual words
that represent an object class. At test time, the appear-
ances of interest points in image or video are matched
to words in the visual codebooks, and the remainder of

• J. Gall, A. Yao, N. Razavi, and L. Van Gool are with the Department of
Information Technology and Electrical Engineering, ETH Zurich, Switzer-
land. E-mail: {gall,yaoa,nrazavi,vangool}@vision.ee.ethz.ch

• L. Van Gool is also with the Department of Electrical Engineering/IBBT,
K.U. Leuven, Belgium.

• V. Lempitsky is with the Department of Engineering Science, University
of Oxford, United Kingdom. E-mail: victorlempitsky@gmail.com

the detection process is based on the classifier trained on
the word representation.

The second idea is the use of the Hough transform
for object detection. Originally developed for detecting
straight lines [19], Hough transforms were generalized
for detecting generic parametric shapes [20] and then
further for detecting object class instances [21], [22],
[23], [24], [25], [26]. These days, “Hough transform”
usually refers to any detection process based on additive
aggregation of evidence (Hough votes) coming from local
image/video elements. Such aggregation is performed
in a parametric space (Hough space), where each point
corresponds to the existence of an instance in a particular
configuration. The Hough space may be a product set
of different locations, scales, aspects, etc. The detection
process is then reduced to finding maxima peaks in the
sum of all Hough votes in the Hough space domain,
where the location of each peak gives the configuration
of a particular detected object instance (Fig. 1).

The Implicit Shape Model of Leibe et al. [27] serves as
a natural baseline for our work as it combines the two
ideas of appearance codebooks and Hough transform in
a natural way. During training, they augment each visual
word in the codebook with the spatial distribution of the
displacements between the object center and the respec-
tive visual word location. At detection time, these spatial
distributions are converted into Hough votes within the
Hough transform. Over the years, many adaptations of
the implicit shape model have been proposed, focusing
on improving voting and hypotheses generation [21],
[23], [25], [26], [28].

The Hough forests introduced in this work provide an
alternative way for the combination of machine learning
and Hough transform. Hough forests are sets of decision
trees learned on the training data. Each tree in the Hough
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forest maps local appearance of image or video elements
to its leaves, where each leaf is attributed a probabilistic
vote in the Hough space. In line with the general random
forest paradigm [29], [30], the training process for each
tree is governed by a combination of randomization and
optimization strategies.

The set of leaves in the Hough forest can thus be re-
garded as an implicit appearance codebook that has been
directly optimized for Hough-based detection (Fig. 2).
This is in contrast to the explicit codebook learned within
the ISM approach, which employs a fully unsupervised
clustering process that is based solely on appearance.
For the whole range of detection tasks, this paper
demonstrates the gains in detection accuracy brought by
codebook optimization for Hough-based detection.

Similar to general random forests, Hough forests are
efficient to learn and to apply. The combination of the
tree structure and simple binary tests makes training
and matching against the codebook very fast, whereas
clustering-based learning of explicit codebooks is con-
siderably more expensive in memory and time. Further-
more, the detection process can afford not to be restricted
to sparse interest points, but process local image or
video elements densely, so that each image or video
element casts a Hough vote. Similar to other studies [31],
[32], we found that dense sampling leads to improved
detection accuracies and is particularly advantageous in
the presence of non-idealities such as low resolution
and motion blur. Finally, in line with other kinds of
random forests [33], [34], Hough forests allow easy on-
line adaptation and we demonstrate how it can be used
for object instance tracking in videos.

Preliminary versions of this paper appeared in [35]
for object detection, [36] for tracking, and [37] for action
recognition. The present paper contains a more general
formulation of Hough forests that covers all three appli-
cations and a more in-depth discussion on multi-class
handling, feature sharing, and on-line adaptation. Fi-
nally, we show that the general Hough forest framework
is capable of handling multiple viewpoint aspects within
the same framework, whereas Leibe et al. [38] construct
separate detectors for each aspect and fuse the responses
of such detectors in a post-processing step. The resulting
single detector is not only more convenient, but also
achieves higher accuracy in multi-aspect detection tasks.

2 RELATED WORK

Detection. Codebook-based detectors learn the mapping
from image features into a Hough space where detection
hypotheses are obtained by local maxima. To this end, a
codebook of local appearance is trained by clustering a
training set of image features and storing their relative
location with respect to the object center. The spatial dis-
tribution can be estimated by a non-parametric Parzen
estimate [21] or a mixture of Gaussians [26]. Given a
codebook, a max-margin framework can be used to re-
weight the votes for better detection [23]. While [21]

clusters the sparse image features only based on ap-
pearance, the spatial distribution of the image features is
used as cue for the clustering in [24], [39]. Hough forests
that were originally presented in [35] use a random
forest framework [30] instead of clustering for codebook
creation. A similar approach has been independently
developed in [40].

Sliding window approaches, in combination with
many image features, tend to dominate object detec-
tion benchmarks like PASCAL VOC 2007 [41] in terms
of accuracy. However, the exhaustive search can be
too demanding for some applications with respect to
memory or runtime requirements. While there has been
significant effort to reduce this burden, e.g., by using
cascades [2], [9] or branch-and-bound techniques [8],
the Hough-based approaches are still very attractive for
fast object detection due to their inherent efficiency, and
they can also be further optimized by using similar
techniques due to the relation between sliding window
and Hough-based object detection [26].

Improvements of the implicit shape models include
systems designed for the detection of multiple object
aspects. While the segmented training data is used in [42]
to cluster the shapes, [43] train a codebook for each
aspect-view as in [38] but link the aspects together by
appearance. In a separate direction, [44] proposes a non-
maxima suppression scheme for Hough-based detection
that copes better with multiple occluding instances.

The idea of replacing generative codebooks with ran-
dom forests has been also investigated in the context of
image classification and semantic segmentation in [45],
[46], [47], [48]. Most similar to Hough forests are the
classification random forests used to obtain the unary
potentials within the LayoutCRF method [49].

Tracking. Random forests have also been used for
real-time tracking [50] where the forest is trained for a
single target object. The approach, however, is instance-
specific and does not generalize to other objects of the
same class. In [33] an on-line update procedure for
random forests has been proposed to segment humans
in videos. The on-line random forests have been also
combined with optical flow and template matching for
object tracking [34].

Codebook-based detectors have the added benefit of
robustness to occlusions. Since only a small set of local
patches is required to locate the object, the detection is
still reliable when the object is partially occluded. The
idea of voting has been exploited for tracking in [51]
where the template of the object is represented by a set
of local patches. Each patch is tracked independently and
the patches vote for the center of the object.

Action Recognition. Using spatio-temporal interest
points for action recognition has become very popu-
lar, e.g., cuboids [10], 3D Harris corners [52], 3D Hes-
sians [53], and 3D salient points [54]. Most of these
are extensions of their 2D counterparts used in object
detection, and many methods follow a traditional ob-
ject detection approach. After detecting interest points
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(a) (b) (c) (d)

Fig. 1: For each of the three patches emphasized in (a), the pedestrian class-specific Hough forest casts weighted votes about the possible location
of a pedestrian (b) (each color channel corresponds to the vote of a sample patch). Note the weakness of the vote from the background patch
(green). After the votes from all patches are aggregated into a Hough space (c), the pedestrian can be detected (d) as a peak in this image.

at multiple scales, feature descriptors are computed,
clustered, and assigned to a codebook to be used in
some bag-of-words representation [10], [11], [12], [13],
[55]. Others have tried to model the spatio-temporal
relationships of the features directly [56], [57].

The use of trees and forests for action recognition
has been previously explored. In [58], a shape-motion
prototype tree is built from shape-motion descriptors;
in [59], a vocabulary forest is constructed with local static
and flow features, while in [60] a sphere/rectangle tree
is built with spatio-temporal interest point features. All
three works use trees as indexing structures for perform-
ing efficient nearest-neighbor search in either a prototype
space [58] or in a feature space in the bag-of-words
context [59], [60]. Actions are classified by weighting
the n-nearest neighbors and localized either from a fore-
ground segmentation [58] or from the features’ spatial
information either stored during the training stage [59]
or extracted at the test stage [60].

3 HOUGH FORESTS

Hough forests consist of a set of random trees [30] that
are trained to learn a mapping from densely-sampled
D-dimensional feature cuboids to their corresponding
votes in a Hough space H ⊆ RH . The Hough space
encodes the hypothesis h for an object/action position
in scale(time)-space and class. The term cuboid below is
used in a generalized sense and refers to a local image
patch (D = 2) or video spatio-temporal neighborhood
(D = 3) depending on the task.

Let I further denote the mapping from
the input domain y ∈ Ω ⊆ RD to the features(
I1(y), I2(y), ..., IF (y)

)
∈ RF , i.e., I denotes the

appearance of an image/video. Here, each If is a
feature channel and F is the total number of feature
channels. The leaves of the trees, {L}, model the
mapping from the appearance of the cuboid centered at
y to the probabilistic Hough vote:

L : (y, I) 7→ p
(
h|L(y)

)
. (1)

Here, p
(
h|L(y)

)
is the distribution of Hough votes

within the Hough space H. Learning the mapping L
is described in Section 3.1 and using it for detection in

Section 3.2. In case of images, i.e., when D = 2, and a
2D Hough space, i.e., when h encodes only the image
position x, the detection is illustrated in Fig. 1 and the
leaves of the Hough forest in Fig. 2.

3.1 Training
For training, we assume that for each class c ∈ C, a
set of training examples is available. For the positive
classes, we additionally assume that a D-dimensional
bounding box is provided to determine the center and
the size of the positive examples. Each tree T in the
Hough forest T = {Tt} is then constructed from a set
of feature cuboids {Pi = (Ii, ci,di)} that are randomly
sampled from the examples where,
Ii are the extracted features for a cuboid of fixed size

in RD,
ci is the class label for the exemplar, the cuboid is

sampled from,
di is a displacement vector from the cuboid center to

the center of the training exemplar.
The negative instances have their own class label and a
pseudo displacement di = 0. We scale the positive exam-
ples to a unit size, so that the longest spatial dimension
is about su = 100. Without loss of generality, we assume
in this section that the aspect ratio for a class is fixed and
that the size of an object can be represented by a scale
factor s/su. In the experiments, we will give an example
where the aspect ratio is an additional dimension of the
Hough space. The dimensions of the cuboids that we use
are 16× 16 for object detection and 16× 16× 5 for action
detection. This size of cuboids provides a good balance
between discriminability of their appearance, allowing
inference of the relative location with low ambiguity,
and repeatability, allowing good generalization during
learning.

Each leaf node L stores the probability of the cuboids
belonging to the object class p

(
c|L
)
, estimated by the

proportion of feature cuboids per class label reaching
the leaf after training, and DL

c = {di}ci=c, the cuboids’
respective displacement vectors. Each non-leaf node of
a tree is assigned a binary test in relation to the cuboid
appearance I during training. The binary test is defined
by a comparison of two feature values at locations
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Fig. 2: Visualization of some leaves of a tree for detecting cars (side-view; two classes). Each leaf node L stores the probability of a patch
belonging to the object class p(c|L), estimated by the proportion of patches from the positive (red) and negative examples (blue) reaching the
leaf after training. For the positive class, the displacement vectors d ∈ DL

c are shown (green). The leaves of the Hough forest form a discriminative
class-specific codebook: the positive training examples falling inside each of the first three leaves can be associated with different parts of a car.

p ∈ RD and q ∈ RD in feature channel f with some offset
τ . The binary test at a non-leaf node can be defined as

tf,p,q,τ (I) =
{

0 if If (p) < If (q) + τ
1 otherwise. (2)

The random trees in Hough forests are constructed
according to a standard random forest framework [30].
Construction begins at the root by choosing a binary
test, splitting the training cuboids according to the test
results and then constructing children nodes. At each
subsequent child node, the same procedure continues
recursively, with each node being designated as a non-
leaf node until the termination criteria is met, i.e., the
child node is of a maximum depth, or there are less than
a minimum number of cuboids remaining. Upon ter-
mination as a leaf, the remaining cuboids’ information,(
p
(
c|L
)
, DL

c

)
c∈C

, is stored (Fig. 2); otherwise, another
binary test is chosen and the cuboids are split again.
Since the cuboids from all classes c ∈ C that pass the
binary tests and arrive at a certain leaf share the same
appearance, the probabilities p

(
c|L
)

represent the degree
of sharing between the classes.

The ideal binary test should split the cuboids in such
a way as to minimize the uncertainty of their class
label and displacement vectors. To do this, we use
two measures to evaluate the uncertainty for a set of
cuboids A = {Pi = (Ii, ci, di)}. The first measure aims to
minimize class uncertainty

U1 (A) = − |A| ·
∑
c∈C

p
(
c|A

)
ln
(
p
(
c|A

))
, (3)

where |A| is the number of cuboids in set A and p
(
c|A

)
is the proportion of cuboids with label c in set A. Note
that minimzing this expression for a node corresponds
to maximizing the information gain. The second mea-
sure aims to minimize the uncertainty of displacement
vectors:

U2 (A) =
∑
c∈C

 ∑
d∈DA

c

∥∥∥∥∥∥d − 1
|DA

c |
∑

d′∈DA
c

d′

∥∥∥∥∥∥
2
 . (4)

Note that the displacement vectors of the negative class
(d = 0) have no impact on the measure.

At each node during training, a pool of binary tests{
tk
}

is generated with random values of f , p, q, and τ .

Then, either class or displacement uncertainty is chosen
at random to be minimized at that given node. The set
of cuboids arriving at the node is evaluated with all
binary tests in the pool and the binary test satisfying
the following minimization objective is chosen:

argmin
k

(
U?

( {
Pi

∣∣tk = 0
} )

+ U?

( {
Pi

∣∣tk = 1
} ))

, (5)

where ? indicates the chosen uncertainty measure for the
node (U1 or U2). By randomly selecting the uncertainty
measure, nodes decreasing both class and displacement
uncertainty are interleaved throughout the tree. As such,
cuboids being stored at the leaves tend to have low
variation both in class label and in displacement; hence,
they vote with low uncertainty into the Hough-space.

In [40] a weighted objective function is proposed to
minimize both uncertainties. Although the impact of the
two objective functions (3) and (4) can be controlled
by an additional weighting parameter, we show in the
experiments that, in general, this does not result in better
performance. Furthermore, replacing (4) by a more ex-
pensive information-theoretic displacement uncertainty
measure as in [40] also does not improved the perfor-
mance significantly. We finally remark that the trees are
not guaranteed to be balanced and are not perfectly
balanced in practice. There is, however, a bias towards
balanced trees, as both splitting criteria (3) and (4) have
biases towards equal-size partitions.

3.2 Detection

For detection, extracted D-dimensional feature cuboids
are passed through each tree in the Hough forest; the
leaves that the cuboids arrive in are then used to cast
votes to the Hough space H ⊂ RH . Fig. 1 illustrates
the voting for object detection in an image. To begin
with, consider a cuboid P(y) = (I(y), c(y),d(c(y)))
located at position y ∈ RD, where I (y) are the extracted
features for the cuboid, c(y) the unknown class label,
and d(c(y)) the displacement of the cuboid from the
unknown object’s center. Based on the appearance I(y),
the cuboid ends in a leaf L(y). Let h(c,x, s) be the
hypothesis for the object belonging to class c ∈ C
with size s and centered at x ∈ RD. We are interested
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in the conditional probability p
(
h|L

)
1, which can be

decomposed as follows:

p
(
h(c,x, s)|L(y)

)
=
∑
l∈C

(
p
(
h(c,x, s)| c(y) = l, L(y)

)
p
(
c(y) = l|L(y)

))
= p
(
h(c,x, s)| c(y) = c, L(y)

)
p
(
c(y) = c|L(y)

)
(6)

= p

(
x = y − s

su
d(c)| c(y) = c, L(y)

)
p
(
c(y) = c|L(y)

)
,

where su is the unit size from the training data.
Both factors in (6) are estimated during training. While

p
(
c|L
)

is estimated by the proportion of feature cuboids
per class label reaching the leaf after training, the distri-
bution p

(
h| c, L

)
can be approximated by a sum of Dirac

measures δd for the displacement vectors d ∈ DL
c :

p
(
h(c,x, s)|L(y)

)
= (7)

p
(
c(y) = c|L(y)

)∣∣∣DL(y)
c

∣∣∣
 ∑

d∈D
L(y)
c

δd

(
su(y − x)

s

) .

For the entire forest T , we pass the appearance of the
cuboid I(y) through all trained trees and average the
probabilities (7) coming from the different leaves [30]:

p
(
h| I(y)

)
=

1
T

T∑
t=1

p
(
h|Lt(y)

)
, (8)

where Lt(y) is the corresponding leaf for tree Tt. To
integrate the votes coming from all extracted cuboids
of the input domain Ω ⊆ RD, we accumulate them into
the Hough image H:

p
(
h| I

)
∝
∑
y∈Ω

p
(
h| I(y)

)
. (9)

Note that the sum is not a probability measure since
it does not integrate to one. However, we are only
interested in the modes of p

(
h| I

)
that can be obtained

by searching for local maxima without estimating the
normalization factor. The maxima can be searched by
applying a Parzen estimator with a Gaussian kernel K:

p̂
(
h| I

)
=

∑
h′∈N (h)

wh′ · K (h − h′) , where (10)

wh′ =
∑
y∈Ω

T∑
t=1

∑
d∈D

Lt(y)
c

p
(
c(y)= c|Lt(y)

)
T
∣∣∣DLt(y)

c

∣∣∣ δd

(
su(y − x)

s

)
.

The weight of a hypothesis wh′ accumulates all votes
that support the same hypothesis h′(c,x, s) ∈ H. After all
votes are cast, p̂

(
h| I

)
represents the sum of the weights

of the hypotheses in the neighborhood of h weighted
by a Gaussian kernel K. While the location of a local
maximum ĥ(c,x, s) encodes class, position, and size of

1. In the text, we use the abbreviated forms p
(
h|L
)

, p
(
h| c, L

)
,

and p
(
c|L
)

for p
(
h(c,x, s)|L(y)

)
, p
(
h(c,x, s)| c(y) = c, L(y)

)
, and

p
(
c(y) = c|L(y)

)
, respectively.

the object, the value p̂(ĥ| I) serves as confidence measure
for each hypothesis.

The accumulation of the probabilities in (9) is non-
probabilistic, however, the summation is preferred over
multiplication due to better stability in practice. A more
probabilistic treatment, corresponding to multiplying
the robust estimates of the probabilities and allowing
principled recovery of multiple detections in the same
image/video is also possible [44].

4 APPLICATIONS

We present three applications of the Hough forests,
namely object detection (Section 4.1), tracking (Sec-
tion 4.2), and action recognition (Section 4.3).

4.1 Object Detection
For object detection, the input data is an image, i.e.,
Ω ⊆ R2, the estimated parameters are pixel location and
size, i.e., H ⊆ R3, and there are two classes, a positive
and a negative one. In our particular training setup,
the positive examples were rescaled, so that the size of
the largest bounding box dimension su = 100. 20 000
random binary tests were considered for each node. Each
tree was trained on about 25 000 positive and 25 000
negative patches. To bias our training to work better
on hard examples, we used the following boosting-
like procedure. For the first 5 trees, the patches were
randomly sampled from all available examples. Then the
constructed Hough forest was applied to the training
data and the 400 positive and negative instances that
were harder to classify were acquired. These were used
to construct the next 5 trees and added to the previous
5. We applied this procedure once more, resulting in a
forest of 15 trees. For detection, we used a Gaussian
kernel with σ2 = 9 (10). In a multi-scale setting, the
additional third dimension was filtered with σ2 = 1. At
test time, 4–5 scales with equal spacing were used to
handle the variety of object sizes in the test data.

The performance curves were generated by changing
the acceptance threshold on the hypotheses vote strength
p(ĥ| I). We rejected the detection hypotheses with cen-
ters inside the bounding boxes detected with higher
confidence in order to avoid multiple detections of the
same instance. We adhered to the experimental protocols
and detection correctness criteria established for each of
the datasets in previous works.

UIUC cars. The UIUC car dataset [61] contains images
of side views of cars. UIUC-Single contains 210 cars of
approximately same scale and UIUC-Multi 139 cars at
multiple scales. For patch appearance, 3 channels were
used (intensity, absolute value of x- and y-derivatives).
Applying this forest for the detection achieved an im-
pressive 98.5% EER for UIUC-Single and 98.6% for
UIUC-Multi, thus exactly matching the state-of-the-art
performance reported recently in [62] (Table 1).

More importantly, the Hough forest considerably out-
performed the Hough-based implicit shape model [21]
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Methods UIUC-Single UIUC-Multi
Hough-based methods

Implicit Shape Model [21] 91% –
ISM+verification [21] 97.5% 95%

Boundary Shape Model [24] 85% –
Max-margin HT+verif. [23] 97.5% –

Random forest based method
LayoutCRF [49] 93% –

State-of-the-art
Mutch and Lowe CVPR’06 [63] 99.9% 90.6%

Lampert et al. CVPR’08 [62] 98.5% 98.6%
Karlinsky et al. CVPR’10 [64] 99.5% –

Hough Forests
Hough Forest 98.5% 98.6%

HF - Weaker supervision 94.4% –
HF - Sparse 95.5% –

HF - Weighted [40] 98.5% –

TABLE 1: Performance of different methods on the two UIUC car
datasets at recall-precision equal error rate (EER). The Hough forest
outperforms the previous Hough-based and random forest based
methods and achieves the state-of-the-art.

(a) TUD Pedestrian dataset (b) Weizmann Horse dataset

Fig. 3: Hough forests demonstrate a competitive performance with
respect to the previous state-of-the-art methods on two challenging
datasets.

(even with an additional MDL verification step) and
boundary-shape model approach [24] as well as the
random-forest based LayoutCRF method [49]. It has
to be mentioned, however, that these related methods
used smaller subsets of the provided training data. In
the case of the ISM and the LayoutCRF, this is due
to the necessity of obtaining pixel-accurate annotations.
Additionally, in the case of ISM and the boundary-
shape model [24] this might be due to the computational
burden of constructing and processing generative code-
books. As Hough forests are not limited by these factors,
we used the complete set of provided training data,
possibly accounting for some part of the improvement.

TUD pedestrians, multi-scale Weizmann Horses. To
assess Hough forests performance on more challenging
articulated classes, we evaluated our method on the TUD
pedestrian datasets [65]. The dataset contains partial
occlusions and variations in scales, poses, clothing styles,
and weather conditions. In addition to the 400 positive
training images with pedestrians, we used training back-
ground images from the INRIA dataset [3]. Otherwise,
we followed the experimental protocol of [65] and tested
on 250 images with 311 pedestrians in it. We have also
considered the Weizmann Horses dataset [66] containing
the near-side views of horses in natural environments
under varying scale and strongly varying poses. We
used the training-testing split (100 horse images and 100
background image for training, 228 horse images and

228 background images for testing) as suggested in [39].
We have considered the following 16 feature channels:

3 color channels of the Lab color space, the absolute
values of the first and second-order derivatives in x-
and y-direction and nine HOG [3] channels. Each HOG
channel was obtained as the soft bin count of gradient
orientations in a 5 × 5 neighborhood around a pixel.
To increase the invariance under noise and articulations
of individual parts, we further processed the above-
introduced 16 channels by applying the min and the max
filtration with 5 × 5 filter size, yielding C = 32 feature
channels (16 for the min filter and 16 for the max filter).

The performance of different methods including ours
is shown in Fig. 3(a). For TUD pedestrians, our method
(recall-precision EER = 86.5%, AUC = 0.87, recall at 90%
precision = 85%) achieves competitive results compared
to the state-of-the-art methods [65], [67] and performs
significantly better than the implicit shape model-based
method [68] (reproduced from [65]). It should be noted
that the competing methods require additional annota-
tion for training. While [65], [67] are based on an explicit
model with joint annotation, the ISM-based approach
[68] relies on silhouettes. Again, these systems were
trained on a subset of the training data. For an image
from the TUD dataset, our system requires 6 seconds
(720 × 576 pixel resolution; 4 scales (0.3, 0.4, 0.5, 0.6)).

For the multi-scale Weizmann Horse dataset, the per-
formance of the Hough forest was clearly better than the
related work of Shotton et al. [69] (Fig. 3(b)). Neverthe-
less, we have tried two more improvements addressing
the two challenges of this dataset. Firstly, the positions
of the bounding box centers are not stable with respect
to the horse bodies, which leads to a certain smearing of
votes. To address this, we ran our detector on the posi-
tive training images and recentered the bounding boxes
to the peaks of the response. After that the forest was
retrained. Secondly, the aspect ratios of the boxes varied
considerably due to the articulations and variations in
the viewpoint. To address this, we performed voting in a
4D Hough space, where the 4th dimension corresponded
to the aspect ratio multiplier. As can be seen from
Fig. 3(b), both improvements increased the performance
considerably (recall-precision EER went from 91% to
93.9%, AUC from 0.96 to 0.98, recall at 90% precision
from 91.5% to 95.1%). For comparison, the recursive
compositional model [70] reports AUC = 0.982.

PASCAL VOC 2007. We have tested the Hough forests
on the categories “car” and “tvmonitor” of PASCAL
VOC’07 [41] where an average precision of 0.166 and
0.215 has been achieved for object detection, which is
considerably lower than the state-of-the-art. As other
Hough transform-based approaches, the method strug-
gles with the variation of the data that contains many
truncated examples. However, techniques described in
Section 2 like non-maxima suppression [44] or an addi-

2. Note that the performance numbers recently reported in [64] are
not comparable to ours as they correspond to a simpler single-scale
version of the Weizmann Horse dataset.
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(a) Leuven car (b) Amsterdam

Fig. 4: The Hough forest outperforms the multi-view approach of Leibe
et al. [38] on two challenging car datasets. The boost in performance is
comparable to the use of geometric scene information (ground plane).

tional verification step as in [23] can be combined with
Hough forests to improve the detection results.

Impact of displacement supervision and feature den-
sity. Several previous approaches have used random
forests as discriminative codebooks [45], [46], [47], [48],
[50]. Hough forests differ from them as they store the
displacement vectors at leaves and use them at runtime
to perform voting. Furthermore, the displacement in-
formation is used as supervision during training since
half of the binary tests are chosen to minimize the
displacement uncertainty (4). We therefore addressed the
question whether such additional supervision matters.
To this end, we built forests where all binary splits
were chosen to minimize the class uncertainty (3), a
commonly used criteria for building random forests. The
leaf information and the detection procedure remained
as before. The performance of the new forests form the
HF-weaker supervision entries in Table 1 (UIUC-Single)
and Fig. 3(a) (TUD). A considerable drop in performance
compared to fully-supervised Hough forests is observed,
suggesting that displacement vectors were a valuable
supervision during training.

When the randomized selection between the two un-
certainty measures for training is replaced by a weighted
objective function of both measures (HF-weighted [40]),
a similar performance is achieved (Table 1). Although
an optimal setting of the weighting parameter might
improve the results for some datasets, the additional
parameter needs to be either manually set as in [40] or
estimated from training data.

For evaluating the impact of the feature density, we
trained and tested the Hough forests only on interest
points extracted by a Hessian-Laplace detector (HF-
sparse) as in [21]. Although the performance decreases
when sparse features are used, it is still better than
ISM without verification (Table 1). This shows that using
dense features improves the performance, but also that
Hough forests outperform ISM even for sparse features.

Multiple aspect views. Multiple aspect views, where
the views are annotated in the training data, can be
handled by assigning each view a class label, i.e., C =
{0, v1, . . . , vn} where 0 is the label for the negative class
and vi the label for the viewpoints. Hence, the estimated

parameters are pixel location, scale, and viewpoint, i.e.,
H ⊆ R4. The viewpoint annotation is necessary to obtain
an accurate bounding box estimation for the detection
without additional postprocessing. For testing, we use
the Leuven and Amsterdam car dataset [38]. For training,
1471 cars annotated with 7 different view aspects are pro-
vided. The Leuven dataset consists of 1175 images and
is very challenging due to low resolution, strong partial
occlusion between parked cars, motion blur, and contrast
changes between brightly lit areas and dark shadows.
The Amsterdam sequence consists of 290 images.

We report the results of the Hough forest in Fig. 4.
As previously, the Hough forest outperforms the cluster-
based codebook approach of Leibe et al. [38] (ISM). The
detection performance almost matches the performance
of ISMs when geometric scene information (ground
plane) is provided. Additionally, the Hough forest leads
to an arguably more “compact” system since it trains
one codebook for all views, whereas [38] constructs a
codebook for each view and fuses the responses of the
detectors in a post-processing step.

Note that neither [38] nor the Hough forests are spe-
cific to multi-aspect view detection but treat the views
as different classes. In general, better detection perfor-
mances can be achieved by taking additional extensions
into account as mentioned in Section 2. For instance,
the non-maxima suppression scheme proposed in [44]
improves the results for the TUD pedestrian dataset
(Fig. 3(a)) and the multi-view detector can be made more
efficiently by exploiting back-projection [71]. Multi-class
handling is evaluated more in-depth in Section 4.3, in
the context of action recognition.

4.2 Tracking
An object can be tracked by assembling the detections
to tracks, e.g., by using the confidence p̂(h| I) (10) as
observation for a particle filter [72], [73]. Besides the
position x and scale s of the object, dynamic parameters
like velocity v and acceleration a are also estimated. We
denote the state vector by e = (x, s,v,a). For tracking,
one seeks the posterior distribution for a current frame
It, i.e., p(et|Ht, . . . , H0) where Ht = p(h| It). The pos-
terior is approximated by a set of particles {ek} and is
estimated by the recursive equation:

p
(
et|Ht, . . . ,H0

)
∝ p
(
Ht| et

)
p
(
et| et−1

)
p
(
et−1|Ht−1, . . . ,H0

)
, (11)

i.e., after predicting the particles {ek} according to the
dynamical model p

(
et| et−1

)
, the particles are weighted

by the likelihood wk = p̂(h(xk, sk)| It) ∝ p
(
Ht| ek

)
(10).

Since the normalization factor is unknown, the weights
are normalized such that

∑
k wk = 1 before the re-

sampling [73]. An example is given in Fig. 6(a).

4.2.1 On-line Adaptation
This, however, is not the most efficient way since an off-
line trained detector as in Section 4.1 tries to solve a
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(a) (b) (c)

Fig. 5: In order to track an instance of a class, like a certain person from
the class pedestrians, we adapt on-line a class-specific Hough forest to
the instance. (a) Blue box indicates the instance of interest. (b) Voting
image obtained by an off-line trained Hough forest for pedestrians. (c)
Voting image obtained by the instance-specific Hough forest. The peak
at the center of the instance is better visible than in (b).

(a) (b) (c)

Fig. 6: On-line adaptation of the Hough forest. (a) After updating
the particles, the multi-modal posterior distribution is approximated.
The weights of the particles are indicated by color (yellow: high, red:
low). The target is marked by a blue dot. (b) Based on the posterior,
the voting space is labeled (blue: foreground, red: background, green:
uncertain). The intensity of the background (red) has been increased for
a better visibility. In reality, the maximum of the background is much
lower than for the foreground. (c) Votes that contributed to the detected
local maxima are used to update the instance-specific statistics. In this
example, there are two strong foreground maxima (blue) such that the
votes for the other instance are also taken into account for the update.

much more difficult task than object tracking, namely
identifying any instance of the class in any image. For
tracking, the statistics of the target object E and the
background are very similar between successive frames.
By updating the statistics stored in the leaves of the
Hough forest (7), it can be adapted to the target, which
is a specific instance of the class.

As in [21], [71], one can collect the entries of the leaves,
d ∈ DL

c , that voted for a given object hypothesis; these
entries can be regarded as a signature for the target of
interest. Since a change of pose and appearance can lead
to an activation of very different tree leaves, we learn
the statistics for the target and the background over
time, i.e., we update on-line the probability of each entry
of the leaves for belonging to the target. By taking the
target-specific statistics into account during voting, the
target can be distinguished from other instances in the
background yielding a higher detection confidence for
the target, see Fig. 5.

To this end, we estimate p
(
hE |L(y)

)
, i.e., the proba-

bility that a hypothesis is caused by the target object E.
Similar to (7), we get

p
(
hE |L(y)

)
=

1∣∣∣DL(y)
c

∣∣∣
( ∑

d∈D
L(y)
c

δd

(
su(y − x)

s

)
· (12)

. . . p
(
hE =h(d,y)| c(y)= c, L(y)

)
· p
(
c(y)= c|L(y)

))
,

where p
(
hE = h(d,y)| c(y) = c, L(y)

)
is the probability

that the vote cast by d belongs to the target. For the
adaptation only p

(
hE = h| c, L

)
needs to be estimated

since the other terms are already computed off-line (7).
For estimation, we count the number of times an

entry of a leaf d ∈ DL
c votes for the target instance

Ωd,E =
{
y|h(d,y) = hE

}
and the number of times it

votes for other objects Ωd,{E =
{
y|h(d,y) 6= hE

}
:

p
(
hE =h(d,y)| c(y)= c, L(y)

)
=

|Ωd,E |
|Ωd,E | +

∣∣Ωd,{E

∣∣ . (13)

When the entry has not been previously activated for
voting, we assume a 0.5 chance that the patch belongs
to E, see Fig. 7.

In order to compute (13), we assign a label to each
h based on the posterior distribution (11) as illustrated
in Fig. 6. Namely 1 (blue) or −1 (red) if we are confident
that it either belongs to the instance or it does not. When
the posterior is greater than zero but relatively low, we
assign the label 0 (green) to it. After labeling the elements
in the Hough space, we search for strong local maxima in
the positive and the negative cluster. The elements of the
cluster labeled with 0 are discarded. Finally, we collect
the votes that contributed to the local maxima and add
them to the corresponding sets Ωd,E and Ωd,{E .

Note that the update performs only a re-weighting
of the entries in the Hough forest. It neither changes
the stored displacement vectors d nor does it add new
displacements to the leaves. On the one hand, the local-
ization accuracy does not suffer from the updates as it
might happen for other on-line learning approaches. On
the other hand, instances that are not localized a-priori
by the detector cannot be tracked since new observations
are not added. In the worst case, a target with an a-priori
weak confidence is confused by another hypothesis with
a-priori higher confidence.

4.2.2 Experiments
For a quantitative evaluation, we use two standard
datasets i-Lids [75] and PETS09 [76] that have been
recorded in an underground station and a public place.
The sequences contain several instances (persons) of the
class (pedestrians). For comparison, we apply the tracker
with on-line adaptation and a particle filter without
any adaptation (No Update), i.e., using the class-specific
Hough forest only. For the Hough forest, we used only
the first 5 trained trees for the TUD pedestrian dataset
due to efficiency. The depth of each tree is 15 and the
average number of entries per leaf is 11.4. All trackers
run with 50 particles and are initialized by a given
bounding box. As an estimate, we take the strongest
mode of the posterior. The accuracy is measured by
taking the intersection-union ratio of the estimated and
ground-truth bounding box for each frame. The results
in Fig. 8 show the benefit of the on-line adaptation of a
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Fig. 7: The probabilities p(hE = h(d)| c, L) for the first 2500 entries d ∈ DL
c of the leaves L of a single tree. The probabilities are estimated

on-line by (13) for two different persons after 100 frames. They give an instance-specific signature that can be used to improve tracking, see
Fig. 5. While entries with probability > 0.5 are specific to the instance, probabilities < 0.5 indicate entries specific to the background. Entries
with probability equal to 0.5 belong mainly to leaves that have not been activated during tracking.

Accuracy (%) On-line Adaptation No Update [51] [74] [14] [15]
i-Lids(easy) 67.4 ± 13.5 66.9 ± 12.8 42.9 ± 18.1 25.0 ± 21.2 0.9 ± 8.8 28.5 ± 18.9
i-Lids(medium) 65.4 ± 12.2 45.9 ± 33.9 73.7 ± 8.0 23.1 ± 31.0 6.7 ± 21.1 35.9 ± 36.6
i-Lids(hard) 65.9 ± 15.0 53.2 ± 15.2 28.5 ± 33.9 21.0 ± 31.9 6.7 ± 21.4 34.8 ± 37.7
PETS09 60.3 ± 15.3 31.3 ± 29.9 8.7 ± 20.5 9.6 ± 24.3 13.2 ± 26.9 8.4 ± 22.2

TABLE 2: Mean and standard deviation of the tracking accuracy.

(a) i-Lids easy [75] (b) i-Lids medium [75]

(c) i-Lids hard [75] (d) S2.L1 PETS09 [76]

Fig. 8: Tracking accuracy for 4 sequences over time. Mean and standard
deviation are given in Table 2. On the easy sequence, the class-specific
Hough forest and the on-line adaptation perform well. In sequences
medium, hard, and S2.L1, the scene is more crowded. This is a situation
where on-line adaptation outperforms the class-specific Hough forest.

Feature Particle filter Voting On-line Adaptation
180msec. 0.3msec. 235msec. 63msec.

TABLE 3: Since votes with zero probability are not cast, voting with
on-line adaptation is 2.8 times faster than voting with the class-specific
Hough forest (851msec.).

class-specific Hough forest to the target instance. While
simple sequences without ambiguities can be handled
by a class-specific Hough forest, more complex scenes
with several instances cannot be tracked without the
on-line adaptation. Note that the on-line adaptation
reduces the computation time, see Table 3. The results
for the fragment tracker [51] and some on-line boosting
approaches [14], [15], [74] are given in Table 2. How-
ever, we have to emphasize that the publicly available
implementations neither handle scale nor make use of
any off-line training.

4.3 Action Recognition
Hough forests can also be applied to localize and recog-
nize human actions in unconstrained video, i.e., Ω ⊆ R3.

Fig. 9: After tracking, the video data is normalized by scale and
position of the human. The normalized action tracks are used as input
data for the action recognition.

To facilitate the recognition, we first track the human
as described in Section 4.2 without on-line adaptation
unless otherwise noted. Since humans show a large
variation in pose and appearance, particularly for sports
clips, the likelihood (11) can be enriched with some addi-
tional color and texture information [77]. After tracking
the human, the video data is normalized into spatial-
and scale-invariant action tracks as illustrated in Fig. 9.

For training, we assume that for all action classes
C = {c1, . . . , cn} a set of training sequences is available.
Each training example is annotated such that it can be
transformed into a normalized action track and contains
roughly one action cycle, i.e., it is annotated by a 2D
bounding box for each frame, the action label, and the
temporal boundaries of the action cycle. For testing,
the trained Hough forest is applied to a normalized
action track to obtain the class label c and the spatio-
temporal location (x, t) of the action, i.e., H ⊆ R4.
Despite having spatially localized tracks, we vote in the
spatial dimensions as well, in order to enforce spatio-
temporal consistency of the Hough votes for hypotheses
generation.

To achieve time-scale invariance, the action tracks can
in theory be either up- or down-sampled accordingly
and the same Hough forest can then be applied to label
actions at differing speeds. We note, however, that action
speeds typically do not vary more than by a factor
of two (disregarding framerate variations). Furthermore,
the system has some tolerance built in through variation
in speed of the training data. Therefore, in our current
work, we found it unnecessary to apply the Hough forest
at multiple time scales.
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4.3.1 Experiments
We evaluated our system on six datasets, covering a
variety of action recognition scenarios. The first two,
Weizmann [78] and KTH [79], are popular benchmarks
used in action recognition and consist of single persons
performing actions in front of static backgrounds. Cur-
rent state-of-the-art recognition systems have saturated
the performance on these two datasets, but we include
their evaluation for comparison purposes against other
systems. We also evaluate our system on four more
challenging datasets: the UCF sports dataset [80], the
UCR Videoweb Activities Dataset [81], the UT-Tower
Dataset [82], and the TUM Kitchen Dataset [83].

We evaluated our system’s ability to apply the correct
action label to a given video sequence and call this
classification. Classification was measured with three
variations of training and testing data: (A) training and
testing on tracks generated from ground-truth annota-
tions (B) training on tracks from ground truth and testing
on automatically extracted tracks and (C) training and
testing on automatically extracted tracks. We refer to
these as data variations A, B, and C, respectively.

For the KTH and UCF sports dataset, we also evaluate
the accuracy of detections in the automatically extracted
action tracks and call this localization. The localization
evaluation is the same as [59]; a detection is considered
correct if (1) the action track that it belongs to was cor-
rectly classified and (2) the intersection-union ratio of the
detection and ground truth bounding box is greater than
0.5. As a measure of localization, we present the average
precision. For action recognition, we used the same six
feature channels in all datasets: intensity, absolute value
of x-, y- and time derivatives and the absolute value of
the optical flow in the x- and y-direction.

Weizmann and KTH. The Weizmann dataset consists
of 90 videos of nine actors performing ten different
actions. Evaluations were done with a leave-one-out
cross-validation. The KTH dataset consists of 599 videos
of 25 actors performing six actions. Evaluations were
done with a five-fold cross-validation, using 20 actors
for training and five for testing. As each sequence lasts
several hundred frames, we limited each sequence to
only one or two cycles of the action in our evaluation.

Classification results for the three variations A, B, and
C are shown in Table 4 and compared with the state-of-
the-art. In addition, the confusion matrices for variation
B are shown in Fig. 10. In this case, we report an
average classification of 95.6% for Weizmann and 92.0%
for KTH, both of which are comparable with state-of-the-
art action recognition systems. The closest comparison is
that of [60], in which a random forest of 50 trees were
trained as a comparison against the “sphere/rectangle”
trees; our performance, with only 5 trees in the random
forest, is significantly higher and highlights the strength
of the Hough-voting framework.

Localization results of each action in the dataset are
presented in Table 5; both our method and the vocabu-
lary forest method [59] achieve an average precision of

Fig. 10: Confusion matrices for Weizmann and KTH dataset using
ground truth action tracks for training and automatically extracted
action tracks for testing (data variation B).

Method Weizmann KTH
Hough forest (A) 97.8% 93.5%
Hough forest (B) 95.6% 92.0%
Hough forest (C) 92.2% 93.0%
voc. forest [59] - 93.2%
SR tree [60] - 90.3%
random forest [60] - 72.9%
prototype tree [58] 100% 93.4%
temp. segment [84] - 81.2%
Niebles et al. [13] 90.0% 83.3%
Schindler et al. [85] 100% 92.7%
Laptev et al. [12] - 91.8
Liu et al. [11] - 93.8%
Ommer et al. [86] 97.2% 87.9%

TABLE 4: Comparison of KTH and Weizmann classification with other
methods. Results of all other methods presented are comparable with
data variation B, with the exception of [85] (A) and [86] (C).

0.89 over all classes in the KTH dataset.
Broadcast Sports: UCF Sports. The UCF sports dataset

is a collection of 150 broadcast sports sequences from
network news videos. Evaluations were done with a
five-fold cross-validation. Due to an unequal number of
sequences in each action category, each fold consisted of
approximately one-fifth of the total number of sequences
per category.

Classification results over the three variations of train-
ing and testing data are shown in Table 6 and com-
pared with the results reported from other methods. We
outperform [80] and [87], and have comparable results
with [32] and [57] despite our use of much simpler
features (their best results were achieved using 3D-HOG
descriptors). While the differences between the variants
B and C are not significant, B and C perform worse than
A. The difference can be explained by the accuracy of the
tracker on UCF that is worse than on other datasets. The
confusion matrix for variation B is shown in Fig. 11(a,c)
along with some example classification results. There
is some confusion between running and kicking, since
kicking sequences often open with an individual running
before kicking a ball. Similarly, walking and golfing
sequences are also confused since several walking se-
quences are drawn from individuals walking on a golf
course, suggesting that the trees take some context into
account when splitting the cuboids.

Localization results for the UCF dataset are presented
in Table 7; no other works at this time have published a
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(a) (b) (c) (d) (e)

Fig. 11: (a) Confusion matrix for UCF sports dataset using data variation B. (b) Probability of feature sharing between action classes. (c) Example
classifications. (d) Confusion matrix for Videoweb Activities dataset with some example classifications (e).

Method Box Clap Jog Run Walk Wave
Hough forest 0.88 0.96 0.84 0.72 0.95 0.98
voc. forest [59] 0.98 0.97 0.79 0.78 0.86 0.96

TABLE 5: Comparison of KTH localization results

Method Mean Performance
Hough forest (A) 86.6%
Hough forest (B) 81.6%
Hough forest (C) 79.0%
Rodriguez et al. [80] 69.2%
Yeffet & Wolf [87] 79.2%
Wang et al. [32] 85.6%
Kovashka & Grauman [57] 87.3%

TABLE 6: Comparison of UCF classification with other methods.
Results of all methods presented are comparable with B, with the
exception of Rodriguez et al. [80], which is comparable with A.

similar evaluation for comparison. Over all classes, we
achieve an average precision of 0.54. The low average
precision can be attributed to the fact that the ground
truth annotations have changing aspect ratios, while
we assumed a fixed aspect ratio when generating the
action tracks. This is particularly relevant for the sports
in which people have irregular and rapidly changing
articulations, such as diving, kicking, and the swing-
ing classes. Classification performance in these classes,
however, are still very high as the fixed aspect ratio is
sufficient to capture the action.

To illustrate the amount of feature sharing among
classes, we passed the training cuboids Pi for a class
ci through the trees and averaged the probabilities for
all classes cj , i.e., 1

N

∑
Pi

p
(
cj |L(Pi)

)
. The obtained ma-

trix is shown in Fig. 11(b). The diving and weight-
lifting classes are very distinct and share little to no
features with other actions. On the other hand, the two
gymnastics swing classes are very similar to (and only
with) each other, and as such, share features with each
other. There are also less distinct groupings, such as
walking, golfing, skateboarding, and kicking, suggesting
that both body position and context are accounted for in
the feature sharing. For example, walking, golfing, and
skateboarding all involve upright individuals with legs
in relatively straight alignment with the body. On the
other hand, several walking sequences are drawn from
people walking on golf courses with green fields, which
also resemble the soccer fields in the kicking sequences.

Surveillance: UCR Videoweb Activities. The UCR

Class Precision Class Precision
Dive 0.52 Kick 0.28
W.Lift 1 Run 0.37
Walk 0.67 Ride 0.66
Golf 0.77 Swing 1 0.44
Sk. Board 0.39 Swing 2 0.26

TABLE 7: UCF localization results

Videoweb Activities Dataset consists of about 2.5 hours
of video from four to eight cameras in various surveil-
lance scenarios. From this footage, we selected 110 se-
quences of eight actions that not only illustrate changes
in body configuration (sitting down, standing up), but
also interaction with the environment (entering and
exiting a car, opening and closing a trunk), interaction
with other people (shaking hands) and interaction with
objects (tossing a ball). Evaluations were done with a
five-fold cross-validation in the same manner as the UCF
sports dataset. As our system handles only monocular
views, we treat the same action instance recorded by
different cameras as different sequences. As this is a
newly released dataset, there are no other works with
comparable results that we know of.

We achieve an average performance of 91.2%, 88.4%,
and 92.2% for variations A, B, and C. The confusion ma-
trix for the variation B is shown in Fig. 11(d,e), together
with some example classification results. As expected,
there are some confusions between action pairings such
as sit down/stand up, enter/exit car, and open/close
trunk. This performance is remarkable considering the
small size of the people in the surveillance sequences
(typically 40 to 60 pixels high).

Aerial Footage: UT-Tower Dataset. The UT-Tower
Dataset [82] is a collection of videos taken from the top
of a 90 meter tall tower. There are 12 actors performing 9
actions and, due to the distant view, the average height
of the actors is only around 20 pixels. Due to the low
resolution, we tracked the individuals based on fore-
ground masks included in the dataset and train and test
as per variation C. We achieved an overall classification
performance of 95.4%. The confusion matrix and sample
images are shown in Fig. 12(a,b). There is some confusion
between similar actions such as standing and pointing
or wave1 and wave2 but all other actions are classified
correctly.
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(a) (b) (c) (d)

Fig. 12: (a,b) Confusion matrix and sample images from UT-Tower Dataset. (c) Confusion matrix for fused results according to the max-rule for
TUM Kitchen Dataset. (d) Normalized action confidences for two camera views as well as fused confidences for frames 500-900 of episode 0-11.

In-house monitoring: TUM Kitchen Dataset. Al-
though the action recognition system as described in 4.3
is meant only for monocular videos, we extended it for a
multi-view scenario. A separate Hough forest is trained
for each of the cameras in the multi-view setup; the
output per view is a confidence score of each action class
over time, normalized such that the confidences over all
classes at any time point sum up to 1 (see Fig. 12(d)). A
classifier combination strategy is then used to combine
the outputs from the multiple views [88]. The motivation
for fusing the single views is that actions which are
ambiguous in one view, e.g., due to self-occlusion, may
be more distinguishable from another view.

We apply the extended multi-view algorithm to the
TUM Kitchen Dataset [83] that contains 20 episodes
of recordings from 4 views of 4 subjects setting a ta-
ble. The dataset is particularly challenging for action
recognition as the actions are more subtle than those
of KTH, Weizmann, UCF Sports, etc. In this dataset,
the cameras are fixed and background subtraction was
used to generate silhouettes of the person performing
the action. Bounding boxes are then extrapolated around
the silhouette and the trajectory of the bounding boxes
is smoothed to build the track.

Training was done on episodes 1-0 to 1-5, all of which
are recorded from subject 1 and testing was done on
episodes 0-2, 0-4, 0-6, 0-8, 0-10, 0-11, and 1-6, which are
recorded from all 4 subjects. For the action recognition,
we use the 9 labels that are annotated for the ‘left
hand’ [83] and further split the idle/carry class according
to whether the subject is walking or standing.

Results of the action recognition for the individual
cameras as well as the fused results are shown in Table 8.
For classifier fusion, we use the max-rule that gave the
best performance compared to other standard ensemble
methods [88], though results were similar for all the
methods. The confusion matrix for the fused classifier is
shown in Fig. 12(c). Fig. 12(d) shows examples of action
confidences for two single views and for the fused views.

Dense cuboid sampling. We have investigated our
system’s performance with respect to decreased cuboid
sampling rates on the TUM dataset. In Fig. 13(a), the
average classification performance is plotted with re-
spect to sampling density. Since we are using dense
sampling in three dimensions, there is considerable over-

C1 C2 C3 C4 Fused
Subject 1 54.2% 49.3% 56.9% 56.4% 57.4%
Subject 2 53.2% 50.1% 45.6% 56.0% 58.5%
Subject 3 69.0% 71.8% 65.2% 66.6% 74.0%
Subject 4 61.9% 52.9% 61.0% 61.0% 70.6%
Average 59.6% 56.0% 57.2% 60.0% 65.1%

TABLE 8: Individual camera and fused action recognition performance
for subjects 1-4; fused performance is higher than any individual
camera view for each subject.

(a) Sampling density (b) Cuboid size

Fig. 13: (a) Performance decreases when cuboid sampling is reduced.
At 1 (dense), 10−2, 10−3, and 10−4, the average overlaps of two
nearest cuboids are 91%, 56%, 39%, and 7%, respectively. (b) The
performance is not very sensitive to the cuboid size.

lap between cuboids. Performance does not drop until
around one percent of the original sampling density but
from this point onwards, the performance decrease is
graceful. This shows that the amount of data processing
can be reduced by a factor up to 100 for time-critical
applications. The classification performance with respect
to the cuboid size is shown in Fig. 13(b).

On 100 frames of the KTH dataset, it takes around 10s
to classify pre-existing action tracks with dense sampling
and 170s to generate an action track.

5 CONCLUSION

We have presented a general Hough forest framework that
can be applied to object detection, tracking, and action
recognition. In our experiments, we have evaluated the
performance on 6 datasets for object detection, 4 datasets
for tracking, and 6 datasets for action recognition3. While
the performance for detection and tracking is mainly
compared to related methods, a thorough evaluation
with comparison to the state-of-the-art is given for action
recognition. Furthermore, we have shown that Hough
forests handle multi-class/multi-aspect view problems,

3. All experiments are based on the available source code: www.
vision.ee.ethz.ch/∼gallju/projects/houghforest/houghforest.html.
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share features among classes, and can be easily adapted
on-line to a specific instance, which are generally desir-
able properties.

We conclude that Hough forests are a simple yet
efficient tool for the three applications. Although they
are not very specific to one single task, they perform
well compared to the state-of-the-art for all three tasks.
In particular, the performance on action recognition is
impressive since many object detectors designed for
images like sliding window cannot be easily extended
to the spatio-temporal domain. Compared to cluster-
based codebooks like [21], a significant improvement of
the performance has been observed on all datasets. The
boost in performance can be explained by the ability of
the Hough forests to process a larger amount of training
examples and sampling them densely. Another improv-
ing factor is the use of the displacement distribution
of the sampled cuboids for supervision during training.
More importantly, Hough forests not only outperform
cluster-based codebooks for object detection, but also
make new applications like action recognition feasible
for Hough-based methods.

The present work has addressed the creation of code-
books for Hough-based detection, but not the detection
scheme or any kind of post-processing. However, it is ob-
vious that techniques like non-maxima suppression [44]
can be combined with Hough forests to improve the
detection results. Exploiting the relations between slid-
ing window and Hough-based object detection [26] is
another promising approach for improving the detec-
tion accuracy. One of the most important limitations
of the current implementation seems to be the star-
voting model, i.e., voting for the center of the object.
The star model is very good for rigid objects but parts of
deformable or articulated objects in rare poses are treated
as parts with rare appearance. While the star model
works still well for objects with limited pose variations
like pedestrians, objects with high pose variations are
difficult to detect without separating pose and appear-
ance in a more principled way.

In general, Hough forests provide an excellent balance
between high detection accuracy and time efficiency both
at training and test time. Similar to random forests, it is
expected that an implementation of a Hough forest on a
GPU [34], [89] would give an extra significant speed-up.
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