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Abstract

Unsupervised categorization of objects is a fundamental
problem in computer vision. While appearance-based meth-
ods have become popular recently, other important cues like
functionality are largely neglected. Motivated by psycho-
logical studies giving evidence that human demonstration
has a facilitative effect on categorization in infancy, we pro-
pose an approach for object categorization from depth video
streams. To this end, we have developed a method for cap-
turing human motion in real-time. The captured data is then
used to temporally segment the depth streams into actions.
The set of segmented actions are then categorized in an un-
supervised manner, through a novel descriptor for motion
capture data that is robust to subject variations. Further-
more, we automatically localize the object that is manip-
ulated within a video segment, and categorize it using the
corresponding action. For evaluation, we have recorded a
dataset that comprises depth data with registered video se-
quences for 6 subjects, 13 action classes, and 174 object
manipulations.

1. Introduction

Challenging computer vision tasks like object detec-
tion [7] or action recognition [24] consist of recognizing
and localizing objects or motions of a specific class in im-
ages or videos. This means that the objects of interest are
already categorized and the instances within a class are as-
sumed to share a certain similarity, which is usually learned
from the appearance. What we propose is different from
such classic paradigm in two important ways: We believe
that the way objects are used should count at least as much
as their appearance for their categorization. As shown in
the literature, for applications like autonomous robotics, a
categorization based on functional similarity is more task-
relevant [29, 27, 16]. These approaches learn rather the af-
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Figure 1. Our approach extracts manipulated objects from video
data and categorizes them according to their functionality (a). To
this end, the motion of the subject is captured in real-time and
the video sequences are segmented and clustered in an unsuper-
vised manner. In this work, the processing is performed on low-
resolution depth data (b).

fordance [13] than the appearance of objects. Moreover, we
want to build a system that does not make use of prior infor-
mation about the objects, to achieve more generality. This
is inspired by unsupervised methods for object recognition,
also referred to as object discovery techniques [3 1], which
categorize objects from a set of unlabeled data, instead of
relying on a given categorization. While unsupervised cat-
egorization of objects using an appearance-based similarity
measure has been of particular interest in the last years [31],
categorizing based on functional similarity in an unsuper-
vised fashion, which is addressed in this work, has received
little attention.

Our approach is motivated by psychological studies that
give evidence that human demonstration has a facilita-
tive effect on categorization in infancy. In the study of
Booth [4], infants had to discriminate objects of two cat-
egories that were similar in appearance. When the manip-
ulator was visible, infants were more likely to learn to dif-
ferentiate between the two categories. They learned it also
more rapidly than infants that observed only static objects
or object manipulations without the additional cue of the
human agent.

In this work, we follow the concept of a human agent
as stimulus for object categorization as illustrated in Fig. 1.
To this end, we introduce a 3D upper body tracker that cap-



tures the motion of the human agent automatically and in
real-time. As input data, we rely on depth streams which
are captured by a low-resolution depth sensor. Such sen-
sors are recently becoming widely available and inexpen-
sive. Based on the extracted motion of the agent, we tem-
porally segment the data, extract the manipulated objects,
and categorize the objects based on the segmented motions.
The categorization is performed in an unsupervised manner.
In this work, we present four main contributions:

e We propose an approach for unsupervised categoriza-
tion of objects based on depth data streams and ex-
tracted motion capture data.

e To capture the agent, we propose a novel depth-
based approach for real-time pose tracking that com-
bines the benefits of body part detection and efficient
skeleton-based pose estimation. In contrast to previous
work [12], our approach handles occlusions, which is
essential for observing object manipulations.

e For functional categorization, we introduce a novel
similarity measure for human motions. To this end,
we extract a set of key poses and transform each mo-
tion segment into a string of key poses. The human ac-
tions are then compared using a modified Levenshtein
distance [ 18] that takes the distance of key poses into
account. This measure is more robust to variations
among subjects than classical dynamic time warping
approaches [25] applied to motion data directly.

e We evaluate the approach for object categorization on a
newly recorded dataset that comprises depth and video
data of 6 subjects, 13 action classes, and 174 object
manipulations.'

The concept of categorizing objects based on the hu-
man motion observed during object manipulation has sev-
eral practical advantages. In autonomous robotics, home
assistance, or scene understanding, modeling all potential
categories a-priori exceeds the capacity of many platforms.
In our approach, a-priori knowledge is required only for
the human agent in terms of the human motion capture ap-
proach. Additional objects are extracted and categorized
according to their relevance which is inferred from the cap-
tured agent.

2. Related Work

Markerless Motion Capture Recent surveys [19] reveal
that markerless motion capture is a very active field of re-
search. Our tracking approach is mostly related to the work

IThe dataset is publicly available at http://www.vision.ee.
ethz.ch/~gallju/projects/dyncat/dyncat.html.

of Bregler et al. [5] where the kinematic chain is repre-
sented by twists. We also use twists since they can be el-
egantly linearized for pose estimation. Since the original
work [5] relies on local optimization and optical flow as
feature, it is prone to tracking errors. To overcome these
limitations, a multi-layer approach [ 1] has been proposed.
While the first layer uses a global optimization technique
for pose estimation that is related to [0], the second layer
refines the silhouette and the pose using local optimization
and twists. Although the approach performs very well on
the HumanEva benchmark [28], it is not suitable for real-
time applications.

Recently a few techniques for pose estimation from time-
of-flight (TOF) cameras have been proposed. In [17, 35],
variants of the iterative closest point algorithm have been
used for upper body estimation. While these works rely
on local optimization, which makes them prone to errors,
Ganapathi et al. [ 12] propose using body part detectors [23]
for full body motion capture. The detectors make the ap-
proach robust to local minima but it is assumed that the per-
son is not occluded. Since the algorithm is implemented on
a GPU, framerates around 5 frames per second are achieved.
Our approach combines local optimization with twists [5]
and body parts detectors. In contrast to [12], a triangulation
of the surface is not needed and the detections can be sparse.
This is very important in the context of object manipulation
where body parts like hands are frequently occluded.

Another important point is that the use of key poses has
already been suggested in the human tracking literature [9,

]. They have mostly been used to improve and initialize
the tracking algorithm, while in our case they are adopted
as action descriptors. A related idea has also been presented
in [32], where 3D exemplars have been used to generate 2D
sequences used for supervised action recognition.

Functional Similarity Functional similarity has been al-
ready proposed in the 90’s for object recognition [29, 27],
where objects are modeled in terms of functional parts.
While [29] associates functionality with specific shape
primitives, recent approaches extract features that are rel-
evant for functionality from video data.

When the video sequences are already labeled with the
object class and the motion class that are involved in object
manipulation, motion and appearance cues can be combined
to improve object and action recognition [20, 14, 8]. Differ-
ently than in our case, in [16] it is assumed that objects and
actions of interests are already categorized, whereas the re-
lations between the two types of categories are unknown.
The relations are inferred from video data and represented
as pairs between action and object classes like “drink-cup”
or “drink-glass”. The learned relations can then be used for
object and action recognition.

There are only few works that have addressed ob-
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Figure 2. Pose estimation from depth data. (a) Depth image with detections. While the face (blue) can be reliably detected, the hand
detections (red) are sparse due to occlusions and previously unobserved object contact. (b) Depth discontinuities extracted from depth
data. (c) Contours of the model. The contours and the depth discontinuities are matched to obtain correspondences. (d) Correspondences
obtained from depth matching along projection rays (yellow), contour matching (green), and the body part detectors (red). (e) Estimated

pose overlaid on the intensity image.

ject clustering based on functional similarity. In [21],
appearance-based categorization is applied to video data
where tracked feature points are segmented and used as fea-
tures for categorization. While this approach categorizes
moving objects like a car or a tram directly from observed
motion patterns, the works described in [22, 30, 1, 33] are
more in the spirit of categorization based on agent-produced
motions. In [22], human trajectories in an office environ-
ment are used to segment the camera views into regions
where similar human behaviors have been observed. This
concept has been extended to street scenes to categorize and
label elements like roads or sidewalks that are very similar
in appearance [30]. In [1], a rule-based approach is pro-
posed to extract scene graphs that represent spatio-temporal
correlations between objects. It is assumed that all the rele-
vant objects can be segmented and the scene graphs model
whether the regions are visible, connected, or occlude each
other. This approach, however, does not generalize to real-
world data since it takes any segmented region into account
and does not distinguish between relevant and irrelevant re-
gions. In [33], activities are inferred from the used objects
that are observed and identified by video and RFID sensors.

3. Pose Estimation

Pose estimation is performed on depth data (see Fig. 2).
In our setup, we acquire the data with a low-resolution depth
sensor. Such sensors are becoming widely available and
are already part of consumer products like video game con-
soles. However, any source of depth data, e.g., acquired
by a stereo setup, could be used as well. For tracking,
we rely on a skeletal model of the human body with 10
degrees-of-freedom for the joints and 6 additional param-
eters for the rotation and translation of the torso. The pa-
rameters are denoted by ©. The skeleton is surrounded by
a 3D triangle surface mesh that is generated from a statisti-
cal body model [15]. To this end, we use the rough height
(£5cm) and the gender of the person to morph the model.
Currently, gender and height are provided, but it would be
also feasible to estimate such parameters directly from the
depth data, e.g., as in [2]. Finally, skinning weights wy,

are computed [3] that specify the influence of a bone k
on a vertex V;, i.e., a mesh transformation is obtained by
V! =3, wi, T (©)V;, where T}, (©) is the transformation
matrix for bone & obtained from the pose parameters O.

Since the camera is calibrated, each depth value can be
expressed as a 3D point X . Having the vertices of the model
V; associated to some 3D point X;, we can solve for the
human pose using the twist representation exp(@é =24 +9€
for the transformations 7'(©) [5] by minimizing
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where the vertex V; on limb £; is influenced by ny, joints
according to the kinematic chain. Due to the linearization
of the twists, i.e., exp(@é) ~ I+ 0§A, we can efficiently
optimize over all pose parameters.

Correspondences (X;,V;) are established by searching
for the closest point of each visible vertex V; in the depth
image. This can be done very efficiently by following the
projection ray of V;. When a depth value z is on the ray,
we take the closest 3D point X among all the depth values
within a 12x12-pixel neighborhood of z. This only matches
the model to the data, but the data should also explain the
model. Hence, we match the edge pixels extracted from the
depth image with the edge pixels extracted from the pro-
jected surface. This can be efficiently performed by com-
puting a distance field in the image domain. For each edge
pixel that matches a projected vertex, we get a correspon-
dence. Due to occlusions and to the presence of objects,
the matching can lead to correspondences with wrong depth
values. To reduce wrong correspondences, we reject them
when the Euclidean distance or the depth distance between
the two 3D points is larger than 200 mm or 50 mm, re-
spectively. The extraction of correspondences is shown in
Fig. 2(b-d).

Since local optimization is prone to errors, we integrate
detectors for the head and the hands; see Fig. 2(a). To this
end, we trained two object detectors [10], one for hands and
one for heads. As features, we use the raw depth data and



the intensity image. For training, we captured around 2500
examples with a depth camera. While heads can be reli-
ably detected, hands are more difficult to detect and very
often occluded during object manipulation. Having a detec-
tion of a body part in the depth image, we establish corre-
spondences between the vertices of the body part and the
detection. Since our method is mainly driven by the local
optimization, temporal sparse detections are sufficient to re-
cover from tracking errors. Hence, we set very high detec-
tion thresholds, namely 2.5 for the hands and 2 for the face,
to achieve low recall and high precision for the detectors.

For initialization, we use the detected head for an initial
estimate of the global translation and rotation. We then es-
timate the torso using Eq. (1), and the full pose in a second
step. After initialization, the pose parameters O, are esti-
mated for each frame where the previously estimated pa-
rameters ©;_; are used to initialize the optimization. For
estimation, we iterate the two steps of computing correspon-
dences and optimization using Eq. (1) several times. In our
experiments, we used 10 iterations.

4. Functional Categorization

Dataset Using the outcome of the tracking algorithm, we
have built a dataset. This dataset includes 6 subjects who
perform a set of actions using several objects of different
appearances and functionalities. The possible actions are
“Pour liquid in a cup”, “Drink with the left hand”, “Drink
with the right hand”, “Use a brush”, “Use a remote con-
trol”, “Use a roller”, “Use a puncher”, “Use a calculator”,
“Make a phone call”, “Wear headphones”, “Play with a
videogame”, “Take a picture”, “Use a pen”. We asked the
subjects to perform about 30 actions, therefore some ac-
tions are repeated using objects with the same functionality
but with a different appearance. Then each action has been
manually labeled with an action label, to provide an evalu-
ation testbed for the clustering and classification phases.

(b)
Figure 3. Similarity matrix for all the actions in our training dataset, ordered by action class (low values are red). (a) Using the dynamic
time alignment proposed in the ACA algorithm does not give good results for similar actions performed by different subjects. (b) The key
pose based representation gives a good clustered representation of all the actions in the dataset, which cannot be achieved if consecutive,
identical key poses are not merged together (c).

()

Temporal Segmentation The collected sequences are
then initially segmented using Aligned Cluster Analysis
(ACA) [34], a very powerful technique for segmenting mo-
tion capture data. It allows to decompose an arbitrary mo-
tion capture stream by a single subject into a set of dis-
jointed segments, each of which is corresponding to one out
of a set of possible actions, in a semi-supervised way. In fact
only few parameters, like the total number of actions k and
their length range need to be provided. We chose to adopt
this algorithm because it has a couple of very useful prop-
erties: 1) It works even if actions have an arbitrary and not
pre-defined length and 2) it is robust to noise and to speed
variation in the actions. Thanks to this pre-processing step,
all the training data are split into single actions, which will
form the basis of our functional categorization algorithm.

Categorization Although ACA works very well for split-
ting actions performed by a single subject, its similarity
measure based on dynamical time alignment is not pow-
erful enough to evaluate the similarity between actions per-
formed by different subjects. This can be better evaluated
by analyzing Fig. 3(a), where we show the similarity matrix
computed on all the actions in our dataset, performed by 6
different subjects and ordered by class. Hence, we propose
an algorithm that can better handle this situation in order to
model actions in a subject-independent way, which is a key
component to achieve an unsupervised action clustering.

To this end, we studied an action descriptor which can
cope very well with variations among subjects and allows
to compute similarities between different segments in a fast
and principled way. What we propose is to cluster all the
input poses, which once concatenated build the different ac-
tions, into a set of N key poses. To do this, we adopt the K-
means algorithm, using as distance between poses the Eu-
clidean distance of the normalized direction vectors of the
limbs. In our experiments, the vector representation per-
formed slightly better than twists or joint angles.



Insertion Deletion Substitution

A B A B C A B —> A C
} A
c c

Wi (C,2) = min(d(A,C), d(B,C)) | Wo (B,2) = min(d(A,B), d(B,C)) Ws (C,2) = d(B,C)

Figure 4. Illustration of the insertion, deletion, and substitution
operation weights Wi, Wp, and Ws.

Each pose in the sequence is then substituted by the cor-
responding key pose, which in our case is the mean of the
cluster which the pose belongs to. To have a short represen-
tation which is still consistent with the action but indepen-
dent of its duration (e.g., a phone call can last 10 seconds
or 5 minutes, but anyway should belong to the same class),
we merge all the consecutive poses which are represented
by the same key pose into a single one. Also this choice
can be better motivated by analyzing the similarity matri-
ces shown in Fig. 3(b,c). The matrices clearly show that
merging consecutive key poses helps in achieving a better
distinction between different actions.

An action is therefore represented as an L-dimensional
vector A of key poses, where 1 < L < ocoand 4A; # A;y1
forall 1 < i < L — 1. We can now introduce the concept
of distance between actions, which we formulate as a varia-
tion of the Levenshtein distance [18]. The Levenshtein dis-
tance between two strings is defined as the minimum num-
ber of edits needed to transform one string into the other,
with the allowable edit operations being insertion, deletion,
or substitution of a single character. What we propose in
our case is to consider actions as strings of key poses and
give a weight Wi, Wp, or Wy to the operations depending
on the distance between the key poses that they involve. We
define then:

(P, Ay) ifi=1,
Wi(P,i) = { min(d(P, A;_1),d(P, A;)) if2<i<L,

d(P, Ay ifi=L+1

d(P, Ay) ifi=1,
Wp(P,i) = { min(d(P, Ai_1),d(P, A1) if2<i<L,

d(P, A1) ifi=1
Ws(P,i) = d(P, A;),

where P is the key pose we need to insert, delete, or substi-
tute at position ¢ in the action string A, and d indicates the
Euclidean distance between poses. The weights and corre-
sponding operations are illustrated in Fig. 4.

Now that a dissimilarity measure between actions has
been defined, it can be used to discover, in an unsuper-
vised way, the data structure. Given the complete dis-
similarity matrix that can be computed using our modified
Levenshtein distance, clustering the training data becomes
straightforward. We chose to adopt the hierarchical ag-

glomerative clustering algorithm, using weighted average
linkage, but many other techniques could have been used.
The clustering results at this point only depend on the num-
ber of key poses that have been adopted and on a thresh-
old, namely the cutoff, that is basically a stopping criterion
for the clustering algorithm. An additional implementation
choice that we made is to discard all the clusters that contain
less than 3 elements, because they would not be descriptive
enough. In case of our training data, we know the frue data
structure and we can use it to quantitatively evaluate the re-
sults obtained by the clustering algorithm (Sec. 6).

5. Object Localization

After temporal segmentation and clustering of the data,
we use the estimated pose to localize the object that is ma-
nipulated within a segment. To this end, we evaluate the
variance of the hand positions as trajectories in the 3D space
and assume that the hand with the highest variation manip-
ulates the object. We mask then all depth values that are
within a distance of 250 mm of the active hand and not part
of the human. After filtering the mask, we extract connected
components and compute the bounding box. In order to ob-
tain the object in a rather static state without motion blur,
we discard elements with depth variations in a temporal
neighborhood. The object localization is directly inferred
from the human poses and additional scene knowledge is
not used. In our implementation, we take currently only the
first 30 frames of each segment into account.

6. Experiments

Setup To collect our dataset, we synchronized and cali-
brated a TOF camera and a standard RGB one (which is
used only for visualization purposes). Data has then been
collected by asking the subjects to perform a set of actions
using the objects we provided. One important characteristic
of our set of objects is that it contains objects with similar
appearance and different functionality, e.g., cell phone and
videogame, and objects with different appearance and very
similar functionality, e.g., cell phone and landline phone.
The set of possible actions has already been described in
Sec. 4.

Tracking For evaluating the markerless motion capture
approach proposed in Sec. 3, we have annotated the head
and the hands for 2 sequences of our recorded dataset. The
3D ground truth is obtained by manually annotating every
10t" depth image. For a sequence without occlusions (2113
frames), we get an error of 84.3 + 9.0 mm. A few frames
of the sequence are shown in Fig. 5. For a sequence with
occlusions (462 frames), the error is 85.8 4+ 7.9 mm. The



current implementation runs at 12 fps?. It requires 25 msec.
for the face and hand detections, while the optimization in-
cluding computing correspondences takes 60 msec. Higher
frame rates can be achieved by parallelizing the detectors
and speeding-up the closest point search for optimization.

Categorization As explained in Sec. 4, we cluster the
training data using a hierarchical agglomerative clustering
algorithm based on our modified Levenshtein distance. This
approach depends on two parameters: The number of key
poses used to describe the input sequences has an influ-
ence on the similarity matrix and therefore on the clustering.
A lower number of key poses will increase the similarity
between different actions and therefore generate few large
clusters. On the other hand, a larger number of key poses
will differentiate more the activities and bias the algorithm
towards many small clusters. Another parameter is the cut-
off threshold of the clustering algorithm, which indicates
until which level of the hierarchy smaller clusters should
be merged, and therefore also has an impact on the cluster
sizes. To evaluate the effects of these parameters and the
quality of the resulting clustering, we computed the condi-
tional entropy of the outcome when varying the number of
key poses and the cutoff threshold, as shown in Fig. 6(a).
To compute the entropy value, we used the manual label-
ing of the training dataset, so that it basically measures how
much uncertainty remains in the true class given the esti-
mated clusters.

Obviously, we cannot use such measure for setting the
parameters of our approach, since this would imply know-
ing the true class labels. Instead, we impose a fixed cutoff
threshold and state that not more than 20% of the input data
should have been removed. The amount of removed se-
quences depends on the clustering fragmentation, because
all the sequences belonging to clusters made of less than 3
elements are not considered. The number of removed se-
quences can be better evaluated in Fig. 6(b), and leads us to
choose K = 30 key poses for all our experiments.

Classification The categorization obtained on the training
data can also be used as a basis to perform action classi-
fication experiments. We have developed such classifica-
tion experiments in two different setups: In the first, the
subjects were asked to execute some actions chosen among
the ones that built the dataset, without physically using the
objects. In the second setup, we performed leave-one-out
cross validation where we used 1 subject for testing and the
other 5 for training. The classification score depends on the
relative frequency of a certain action class within a clus-
ter, which we denote by p(a|c), normalized by its maximal
value among all the clusters. More formally, we define the

2CPU: Intel Core2Quad 2.83GHz (single thread); Graphics Card:
NVIDIA GeForce 9800 GT.
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Figure 6. (a) Conditional entropy of the obtained clustering de-
pending on the number of key poses. Results are shown for dif-
ferent cutoff values, depicted in different line styles. (b) Num-
ber of sequences removed from the training data depending on the
adopted number of key poses. A larger number of key poses gen-
erates more smaller clusters which are removed if composed by
less than 3 elements.

score S of the classification of an action a to a cluster ¢ as

plalc)
max.,cc plale;)’

S(cla) = (2)
where C'is the set of all the clusters.

To classify a new sequence, we compute the average
modified Levenshtein distance from the sequence to all the
elements in each cluster, and then choose the cluster ¢ for
which this average distance is lowest. Then, knowing from
the manual labeling the true class a of this sequence and of
the actions belonging to ¢, we can compute our classifica-
tion score S(c|a) as described by Eq. (2). The experimental
results are given in Tables 1 and 2. It is interesting to note
that the classification results for the leave-one-out experi-
ment are only slightly better than the ones obtained in the
testing sequences in which the objects were not used. The
same experiments have been carried on using ACA [34],
and the obtained recognition rates averaged over all the sub-
jects and all the actions are 16.2% for sequences without
physical objects and 9.7% for sequences with objects.

Object Localization and Categorization Finally, we
evaluate the object localization algorithm described in
Sec. 5. To this end, we annotated the manipulated objects
by a bounding box in the first frame of each action segment
of the dataset. We denote the object as correctly localized
when the ratio of intersection over union is greater than 0.5.
For our dataset, we obtained 75.6% for recall and 83.9% for
precision. By merging the outcome of the localization step
and the action clustering approach and by assigning each
object to the corresponding action, we obtain our unsuper-
vised object categorization. An overview of a subset of the
extracted and categorized objects is given in Fig. 7.

7. Conclusions

In this work, we have proposed an approach that auto-
matically extracts objects from depth data streams and cat-



Figure 5. Depth images and estimated poses projected onto the intensity images.

Subj | Pour | Drink R | Brush | Phone | Remote | Headph. | Roller | Calc. | Puncher | Play | Pic Pen | Drink L | Avg
1 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.86 | 0.00 | 0.00 - 0.78
2 1.00 - 0.00 1.00 0.50 1.00 0.67 1.00 0.00 0.29 | 1.00 | 0.86 0.57 0.66
3 1.00 - 0.50 1.00 0.00 1.00 1.00 0.00 0.20 0.86 | 0.50 | 0.00 1.00 0.59
4 0.00 - 1.00 1.00 0.50 1.00 1.00 0.00 0.27 0.86 | 1.00 | 1.00 1.00 0.72
5 0.50 - 0.50 0.83 0.50 1.00 0.00 1.00 0.17 1.00 | 0.50 | 0.86 1.00 0.66
6 0.17 1.00 1.00 0.43 0.50 0.00 0.67 1.00 1.00 0.29 | 1.00 | 0.00 - 0.59
Avg | 0.61 1.00 0.58 0.88 0.50 0.83 0.72 0.67 0.44 0.69 | 0.67 | 0.45 0.89 0.69

Table 1. Action classification results on testing sequences in which subjects were not using the physical objects. The maximum score of
1 is obtained if an action is assigned to the cluster in which the frequency of that action is the highest among all the clusters. The lowest
score of 0 is obtained when an action is assigned to a cluster in which that action is not represented.

egorizes them according to their functionality in an unsu-
pervised manner. The functionality is inferred from the
captured human motion observed during object manipula-
tion. Our experiments have shown that the categories ob-
tained by our method have a semantic interpretation. Our
current approach is limited by the detail of motion that is
captured. For instance, functionalities that differ in subtle
hand motions cannot be extracted from the low-resolution
depth data. However, this is not a principled limitation of
our approach, which can also be applied to high resolution
color data. In general, we regard functionality as a comple-
mentary cue to appearance for unsupervised object catego-
rization. The obtained functional categories can be further
processed to obtain finer categories based on appearance or
to infer the relation between functionality and appearance.
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Subj | Pour | Drink R | Brush | Phone | Remote | Headph. | Roller | Calc. | Puncher | Play | Pic Pen | Drink L | Avg
1 0.56 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.60 | 1.00 | 0.92 0.00 0.83
2 0.30 1.00 1.00 1.00 0.25 0.00 0.50 1.00 0.50 1.00 | 1.00 | 0.00 1.00 0.66
3 0.64 1.00 0.50 1.00 0.50 1.00 1.00 1.00 0.23 0.60 | 1.00 | 1.00 1.00 0.81
4 0.50 1.00 0.21 0.75 0.50 1.00 0.00 1.00 0.62 0.50 | 0.50 | 0.86 0.25 0.59
5 0.01 1.00 0.50 0.21 0.50 1.00 1.00 1.00 0.00 0.94 | 1.00 | 0.50 1.00 0.67
6 0.80 1.00 0.93 1.00 0.50 1.00 0.50 1.00 1.00 0.00 | 1.00 | 0.86 1.00 0.81
Avg | 047 1.00 0.63 0.83 0.54 0.83 0.67 1.00 0.56 0.61 | 0.92 | 0.69 0.71 0.73

Table 2. Action classification results on training sequences in which subjects were using the physical objects. If a subject has performed
the same actions several times, an average of the classification score is given for that action. Before computing these results, each subject
has been removed from the training dataset.

Figure 7. A subset of objects that have been extracted from the dataset and categorized according to the human motion observed during
object manipulation. Each column shows a representative set of objects that are in the same class. The objects of classes like headphones,
camera, or calculator are similar in appearance and functionality. The cups have a relatively high intra-class variation with respect to
appearance, the variation is even higher for the telephones. Both classes are well categorized by our approach since their functionality
involves similar motions. The roller and the brushes have been assigned to the same class. Although they are different in appearance
and functionality, the observed movements in the dataset are very similar. The same applies to the pen and the videogame. Note that the
“videogame” objects are basically smart phones that have been used for gaming instead of calling.
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