
When will you do what? - Anticipating Temporal Occurrences of Activities

Yazan Abu Farha, Alexander Richard, Juergen Gall
University of Bonn, Germany

{abufarha,richard,gall}@iai.uni-bonn.de

Abstract

Analyzing human actions in videos has gained increased
attention recently. While most works focus on classifying
and labeling observed video frames or anticipating the very
recent future, making long-term predictions over more than
just a few seconds is a task with many practical applications
that has not yet been addressed. In this paper, we propose
two methods to predict a considerably large amount of fu-
ture actions and their durations. Both, a CNN and an RNN
are trained to learn future video labels based on previously
seen content. We show that our methods generate accurate
predictions of the future even for long videos with a huge
amount of different actions and can even deal with noisy or
erroneous input information.

1. Introduction
In the last years, we have seen a tremendous progress

in the capabilities of computer systems to classify and seg-
ment activities in videos, e.g. [25, 22, 10]. These systems,
however, analyze the past or in the case of real-time sys-
tems the present with a delay of a few milliseconds. For
applications, where a moving system has to react or interact
with humans, this is insufficient. For instance, collabora-
tive robots that work closely with humans have to antici-
pate the activities of a human in the future. In contrast to
humans that are very good in anticipating activities, devel-
oping methods that anticipate future activities from video
data is very challenging and has just recently received an
increase of interest.

Current works anticipate activities only for a very short
time horizon of a few seconds. While early activity detec-
tion addresses the problem of inferring the class label of an
action at the point when the activity starts or shortly there-
after [23, 5, 14, 24], other works predict the class label of
the action that will happen next [19, 6, 9]. In the recent work
[15], the starting time of the future activity is estimated as
well.

In this work, we go beyond the recognition of an ongoing
activity or the anticipation of the next activity. We address

the problem of anticipating all activities that will be happen-
ing within a time horizon of up to 5 minutes. This includes
the classes and order of the activities that will occur as well
as when each activity will start and end. Figure 5 shows a
few example predictions.

To address this problem, we propose two novel ap-
proaches for this task. In both cases, we first infer the ac-
tivities from the observed part of the video using an RNN-
HMM [22]. The first approach builds on a recurrent neu-
ral network (RNN) that predicts for a given sequence of in-
ferred activities the remaining duration of the ongoing ac-
tivity as well as the duration and class of the next activity.
The anticipated activities are then fed back to the RNN in
order to anticipate activities for a longer time horizon. The
second approach builds on a convolutional neural network
(CNN). To this end, we convert the temporal sequence of
inferred activities in a matrix that encodes both the length
and the action label information. The CNN then predicts a
matrix that encodes the length and the action labels of the
anticipated activities. In contrast to the RNN approach, the
CNN approach anticipates all activities in one pass.

We have evaluated the two approaches on two challeng-
ing datasets that contain long sequences and large varia-
tions. Both approaches outperform by a large margin two
baselines, a grammar based baseline and a nearest neighbor
baseline. While the RNN and CNN perform similarly for a
long time horizon of more than 40 seconds, the RNN per-
forms better for shorter time horizons less than 20 seconds.
Both approaches also outperform the method of [30] that
does not anticipate activities directly but visual representa-
tions of future frames, which can then be used to classify
the activities.

2. Related Work
Predicting future frames, poses or image segmentations

in videos has been studied in several works [20, 16, 13,
31, 11, 27, 18, 29, 33, 32, 17, 12]. Approaches that pre-
dict future frames at a pixel-level, however, are limited to
a few frames. Instead of predicting frames, a deep network
is trained in [30] to predict visual representations of future
frames. The predicted visual representations can then be
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used to classify actions or objects using standard classifiers.
This approach, however, is also limited to a very short time
horizon of only 5 seconds. This work has been extended in
[3], where they use an encoder-decoder network to predict
a sequence of future representations based on a history of
previous frames. To get the predicted actions, the output
of the encoder-decoder network is passed through another
network that generates the action labels.

The task of early activity detection is also related, but
it assumes that a partial observation of the ongoing activ-
ity is available, and the goal is to recognize this activity
with the least possible amount of observations [23, 5]. Re-
cent approaches for this task use Long Short-Term Memory
(LSTM) networks with special loss functions that encour-
age early activity detection [14, 24].

A slightly longer time horizon is considered for ap-
proaches that predict the next action that will happen. [9]
predict future actions from hierarchical representations of
short clips or still images. They encode the observed frames
in a multi-granular hierarchical representation of move-
ments, and train different classifiers at each level in the hi-
erarchy in a max-margin framework. Recently, [15] train a
deep network to predict the future activity and its starting
time from a sequence of preceding activities. Their model
relies on appearance based and motion based features ex-
tracted from the observed activities to predict what will hap-
pen next in the future. [35] combine on-wrist motion sens-
ing and visual observations to anticipate daily intentions.
In [7], observed activities are modeled with spatio-temporal
graphs which are used for anticipating object affordances,
trajectories, and sub-activities. Besides of activities, antici-
pating goal states from first person videos has also been ad-
dressed. [21] model the human behavior with a Markov De-
cision Process (MDP) and use inverse reinforcement learn-
ing to infer all elements of the MDP and the reward function
from first person vision videos. Then, they use the learned
MDP to anticipate goal states and the length of trajectories
towards them. Inverse reinforcement learning is also used
in [36] for visual sequence forecasting.

Other works investigate future prediction in the sports
domain. For example, [34] use augmented hidden condi-
tional random field to predict the location of future events
in sports, like predicting shot location in tennis. Recently,
a framework has been introduced in [2] to predict the next
move of players or the location of the ball in the immediate
future from sports videos.

In contrast to previous work that anticipate the next ac-
tivity only within a short time horizon of a couple of sec-
onds, we address the problem of anticipating a sequence
of activities including the start and end points within time
horizons of up to 5 minutes.

Figure 1. Proposed approach for future action prediction. From the
observed frames, action labels are inferred by a decoder. The fu-
ture predictor predicts from the inferred frame labels ct1 the labels
cTt+1 that are yet to come.

3. Anticipating Activities
Our goal is to anticipate from an observed video what

will happen next in the video for a given time horizon,
which can take up to 5 minutes. As shown in Figure 5,
we aim to predict for each frame in the future the la-
bel of the activity that will happen. More formally, let
xT
1 = (x1, . . . , xT ) be a video with T frames. Given the

first t frames xt
1, the task is to predict the actions happening

from frame t+1 to T . That is, we aim to assign action labels
cTt+1 = (ct+1, . . . , cT ) to each of the unobserved frames.

3.1. Inferring Observed Activities

Instead of predicting the future actions cTt+1 directly
from the video frames xt

1, we first infer the actions
c1, . . . , ct for the given frames x1, . . . , xt and then predict
the future actions ct+1, . . . , cT from the inferred actions ct1
as it is illustrated in Figure 1. This has the advantage that we
can separately study the impact of the network, which infers
activities from observed video sequences, and the network
that anticipates the future activities. In our experiments, we
will also show that the predictor network performs worse if
activities are directly anticipated from the observed video
frames.

For inferring the activities ct1 from xt
1, we use a hy-

brid RNN-HMM approach [22]. In contrast to [22], which
train the method in a weakly supervised setting, we train the
model fully supervised since in our training set each video
frame xt is labeled with a class ct.

For inferring the activities cTt+1 from ct1, we investigate
two architectures. The first architecture is based on a re-
current neural network (RNN) and will be described in Sec-
tion 3.2. The second architecture is based on a convolu-
tional neural network (CNN) and will be described in Sec-
tion 3.3.

The source code for both the RNN and CNN mod-



Figure 2. Architecture of the RNN system. The input is a sequence
of (length, 1-hot class encoding)-tuples. The network predicts the
remaining length of the last observed action and the label and
length of the next action. Appending the predicted result to the
original input, the next action segment can be predicted.

Figure 3. Training data is generated by cutting the ground-truth
segmentations at random points and using the left part as input
and the next action segment to the right of the cut as ground-truth
for the prediction.

els is publicly available at https://github.com/
yabufarha/anticipating-activities.

3.2. RNN-based Anticipation

We can interpret future action prediction as a recursive
sequence prediction: As input sequence, the RNN obtains
all observed segments and predicts the remainder of the last
segment as well as the next segment. This is repeated until
the desired amount of future frames is reached.

More precisely, for each observed segment, the RNN
gets its class label in form of a 1-hot encoding and the
corresponding segment length, which is normalized by the
video length, as input. Sequentially forwarding all those
segments, three output predictions are made: the remaining
length of the last observed segment as well as a label and
a length for the next segment. This prediction is concate-
nated with the observed segments to form a new input for
the network. The new input is again forwarded through the
network to produce the next prediction. The final result is
obtained by repeatedly forwarding the previously generated
prediction until the desired amount of frames is predicted,
see Figure 2.

As RNN architecture, we use two stacked layers of 256

gated recurrent units and fully connected layers at the input
and output. As output layer for both length predictions, re-
maining length of current action and length of next action,
we use a rectified linear unit to ensure positive length out-
puts. The label prediction is done via a softmax layer as
usual for classification tasks.

RNN Training. The training data generation for the RNN
is illustrated in Figure 3. Given a ground-truth labeling of
a training sequence with n action segments, n − 1 training
examples are generated out of it. For a segment i < n, a
random split point is defined. Everything before this point
is encoded as a sequence of i tuples containing the length of
the observed segment and its label as 1-hot encoding. Each
such sequence is an input training example for the network.
For segment i + 1, another random split point is defined.
The values between the first and second split point define
the target the network should predict: A triplet consisting
of the remaining length of segment i (lr), the length of the
next action i+ 1 from its start up to the split point (ln), and
the label of the next action (c). By processing each training
sequence like this, a large amount of input tuple sequences
and target triplets is generated.

As loss for a single training example, we use

L = − log p̂c + (lr − l̂r)2 + (ln − l̂n)2, (1)

where l̂r denotes the predicted remaining length of the cur-
rent action, l̂n denotes the predicted length of the next ac-
tion, and p̂c the predicted class probability of the next ac-
tion. For training, we minimize the loss, which is summed
over all training examples, by backpropagation through
time.

3.3. CNN-based Anticipation

The CNN-based anticipation approach aims at predict-
ing all actions directly in one single step, rather than relying
on a recursive strategy such as the RNN. The given frame-
wise labels ct1 are encoded in a matrix X with C columns
and S rows. While the columns correspond to the C ac-
tion classes, the rows correspond to action segments. The
number of rows for an action segment of length l is given
by b ltSc and, for each row s, Xsc = 1 for the label c of
the corresponding action segment and zero otherwise. The
matrix is filled in the order the actions occur as illustrated
in Figure 4. We set S large enough such that each action
segment covers at least one row.

The matrix X that encodes the observed labels ct1 is for-
warded through a CNN which consists of two convolutional
layers and two fully connected layers. The convolutional
layers have 8 and 16 feature maps respectively and perform
a 5 × 1 convolution followed by a rectified linear unit and
max pooling. After the fully connected layers, the output
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Figure 4. Architecture of the CNN-based anticipation approach. Both the input sequence and output sequence are converted into a matrix
form where C denotes the number of classes and S corresponds to the number of video segments of a certain length. The binary values of
the matrix indicate the label of each video segment.

layer is reshaped to a matrix Y , which has the same size as
matrix X , and each row of Y is `2 normalized. We further
apply a 1D Gaussian filter along each column for temporal
smoothing. We will show in the experiments that the addi-
tional smoothing reduces the effect of spurious predictions
of very short segments, see Figure 10. To convert Y back
into a sequence of labels cTt+1, we compute for each row

ĉs = argmax
c

Ysc (2)

and concatenate ĉs where each row corresponds to bT−t
S c

frames.

CNN Training. Since the CNN approach predicts all ac-
tions directly while the RNN uses a recursive strategy, we
also have to prepare the training data slightly differently.
For each video in the training set, we generate 4 training ex-
amples by using the first 10%, 20%, 30%, and 50% of the
video, respectively, as observation and the following 50%
of the video as ground-truth for the prediction. For each
training example, we convert the sequence of action labels
ct1 into the matrix X and the labels of the following 50% of
the video frames into the ground-truth matrix Y . To train
the network, we use the squared error criterion over all out-
put elements

L =
1

SC

∑
s,c

(Ysc − Ŷsc)2, (3)

where Ŷ is the prediction of the network. We found this
loss in combination with the row-wise `2-normalization
of the output more robust than a standard softmax output
with cross-entropy loss which we attribute to the smooth-
ing properties of the softmax function, see Section 4 for an
evaluation.

4. Experiments

4.1. Setup

We conduct our experiments on two benchmark datasets
for action recognition. The Breakfast dataset [8] contains
1, 712 videos of 52 different actors making breakfast. Over-
all, there are 48 fine-grained action classes and about 6 ac-
tion instances for each video. The average duration of the
videos is 2.3 minutes. We use the four splits as proposed in
[8].

The 50Salads dataset [28] contains 50 videos with 17
fine-grained action classes. With an average length of 6.4
minutes, the videos are comparably long and contain 20 ac-
tion instances per video on average. Following [28], we use
five-fold cross-validation.

The longest video in both datasets is 10 minutes. As
evaluation metric, we report the accuracy of the predicted
frames as mean over classes (MoC).

Video Representation. We evaluate our systems on two
settings. The first is with ground-truth observations, i.e. the
observed labels are the ground truth annotation. This set-
ting allows for a clean analysis of the prediction capabili-
ties of our systems. As a second setting, we consider the
labels of the observed part of the videos to be obtained us-
ing the decoder from [22]. This way, already the observed
labels can contain errors and prediction is much harder as
previous errors are propagated into the future. In order to
obtain the decoded labels from [22], we compute improved
dense trajectories over the observed frames xt

1 and then re-
duce the dimensionality to 64 using PCA. After that, Fisher
vectors are computed for each frame using a temporal win-
dow of size 20. For Fisher vectors computation, a Gaus-
sian mixture model (GMM) with 64 Gaussians is built us-
ing 150, 000 random samples of the dense trajectory fea-
tures. Power- and `2-normalization are applied, and at the



end, the dimensionality is again reduced to 64 using PCA.

Parameters. For the CNN approach, we set the number
of rows S of the matrix X to 128 for Breakfast. This en-
sures that each action segment covers at least one row. Since
the average video length for 50Salads is about four times
larger than for Breakfast, we use 512 for 50Salads. Since
increasing S and therefore sampling at a finer temporal res-
olution did not significantly change the results, we stick to
these values for the remainder of the paper. For the post-
processing, we use Gaussian smoothing with σ = 3 for
Breakfast and σ = 13 for 50Salads. For the RNN approach,
the normalized length input is scaled by the average num-
ber of actions in the videos to ensure numerical stability. In
all experiments, the Adam optimizer is used with a learning
rate of 0.001.

Baselines. We define two baselines for future action pre-
diction to compare against our two proposed systems. The
first baseline uses a grammar and the mean length of each
action class. The mean length of each action class is esti-
mated from the training data. The finite grammar generates
all action sequences that have been observed during train-
ing. This is the same grammar as proposed in [22]. Given
the observed actions ct1, either based on the ground truth or
on the action decoder [22], we randomly select an action
sequence from the grammar that has ct1 as prefix. We then
predict action labels cTt+1 such that the labels are consistent
with the chosen action sequence of the grammar. Each ac-
tion class from the chosen grammar path that has not been
observed, i.e. that is to appear in the future, is added with its
mean class length to the prediction until all required frames
from t+ 1 to T are predicted.

As a second baseline, we use a nearest neighbor ap-
proach. We search the nearest neighbor in the training set
using frame-wise error of the observed part as distance, and
use the remaining part as future prediction.

4.2. Prediction with Ground-Truth Observations

In order to provide a fair evaluation, we first assume that
the observed segmentation ct1 of the video is perfect, i.e.
that the observed labels do not contain any errors. While
this is not the case in most realistic settings, it allows to get
a clean evaluation how well the systems can predict the fu-
ture. With noisy observations, the results are more delusive
as errors in the observed part are propagated to the future.

In Table 1 and Figure 6, the results on Breakfast and
50Salads are shown. Both the RNN model and the CNN
model show good performance compared to the baseline.
Independent of the fraction of the video that has been ob-
served, i.e. 20%, or 30%, however, the RNN outperforms
the CNN in most cases. In general, the RNN is better for

Table 1. Results for future action prediction with ground-truth ob-
servations. Numbers represent accuracy as mean over classes.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast
Grammar 0.4892 0.4033 0.3624 0.3146 0.5266 0.4215 0.3844 0.3309

Nearest-Neighbor 0.4378 0.3726 0.3492 0.2984 0.4412 0.3769 0.3570 0.3019
RNN model 0.6035 0.5044 0.4528 0.4042 0.6145 0.5025 0.4490 0.4175
CNN model 0.5797 0.4912 0.4403 0.3926 0.6032 0.5014 0.4518 0.4051

50Salads
Grammar 0.2869 0.2165 0.1832 0.1037 0.2671 0.1459 0.1169 0.0925

Nearest-Neighbor 0.2521 0.2105 0.1634 0.1317 0.2212 0.1715 0.1838 0.1471
RNN model 0.4230 0.3119 0.2522 0.1682 0.4419 0.2951 0.1996 0.1038
CNN model 0.3608 0.2762 0.2143 0.1548 0.3736 0.2478 0.2078 0.1405
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(b) Results on 50Salads
Figure 6. Results for future action prediction with ground-truth
observations.

short term prediction, i.e. 10%, or 20%, while the CNN per-
forms similarly or even sometimes better than the RNN for
longer prediction. The reason lies in the recursive structure
of the RNN predictions: once a segment is predicted, it is
appended to the observed part and used as input to predict
the next sequence. Consequently, if the RNN outputs an
erroneous prediction at some point, this error is likely to
propagate through time. The CNN, on the contrary, uses
the observed part of the video to predict all future actions
directly, so errors are less likely to propagate from one seg-
ment to another. However, this slightly better performance
of the CNN comes with the drawback of favouring long ac-
tion segments over short ones. The behaviour can also be
observed in the qualitative results in Figure 5 (a) and (c).
For example in the case of (c), the CNN tends to miss small
action segments, whereas the RNN seems to be more reli-
able.



(a) Results on Breakfast with ground-truth observation (b) Results on Breakfast without ground-truth observation

(c) Results on 50Salads with ground-truth observation (d) Results on 50Salads without ground-truth observation
Figure 5. Qualitative results for the future action prediction task for both, RNN and CNN with and without ground-truth observations.

4.3. Prediction without Ground-Truth Observa-
tions

In this section, we evaluate the performance of our pro-
posed systems given noisy annotations. In contrast to the
clean ground-truth observations from the previous section,
we now assume that the observed part of the video has been
decoded using the system of [22] and, thus, ct1 is not per-
fect anymore but is likely to contain errors. The mean over
frames accuracy of [22] when observing 20% of the video,
for instance, is only 37% on Breakfast and 67% on 50Sal-
ads. While the accuracy when observing 30% of the video
is 43% on Breakfast and 68% on 50Salads.

Compared to the amount of noise in the observed video
labeling, the prediction results are still surprisingly stable,
see Table 2 and Figure 7. While the drop in performance
on the Breakfast dataset (Table 1 vs. Table 2) is compara-
bly large, both systems still achieve a good performance

Table 2. Results for future action prediction without ground-truth
observations. Numbers represent accuracy as mean over classes.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast
Grammar 0.1660 0.1495 0.1347 0.1342 0.2110 0.1818 0.1746 0.1630

Nearest-Neighbor 0.1642 0.1501 0.1447 0.1329 0.1988 0.1864 0.1797 0.1657
RNN model 0.1811 0.1720 0.1594 0.1581 0.2164 0.2002 0.1973 0.1921
CNN model 0.1790 0.1635 0.1537 0.1454 0.2244 0.2012 0.1969 0.1876

50Salads
Grammar 0.2473 0.2234 0.1976 0.1274 0.2965 0.1918 0.1517 0.1314

Nearest-Neighbor 0.1904 0.1610 0.1413 0.1037 0.2163 0.1548 0.1347 0.1390
RNN model 0.3006 0.2543 0.1874 0.1349 0.3077 0.1719 0.1479 0.0977
CNN model 0.2124 0.1903 0.1598 0.0987 0.2914 0.2014 0.1746 0.1086
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(b) Results on 50Salads
Figure 7. Results for future action prediction without ground-truth
observations.

compared to the baseline. On 50Salads, the overall loss
of accuracy compared to the system with perfect observa-
tions is surprisingly small. This can on the one hand be
attributed to the better performance of the decoder [22]. On
the other hand, the inter-class dependencies on 50Salads are
very strong, making it easier for both RNN and CNN to
learn valid action sequences.



Figure 8. Performance of the models on videos with different
lengths from the Breakfast dataset without ground-truth observa-
tions for the case of observing 30% of the videos and predicting
the following 50%.

Table 3. Accuracy over next, 2nd action, and 3rd action for 30%
observation and 50% prediction for Breakfast without ground-
truth observations. The action is correctly detected if the IoU of
the predicted action segment with the annotated action segment is
> 0.5.

1st action 2nd action 3rd action
Grammar 0.2232 0.1325 0.1117

Nearest-Neighbor 0.2295 0.1323 0.1234
RNN 0.2643 0.1773 0.1792
CNN 0.2595 0.1603 0.1425

We would also like to put emphasis on the qualitative re-
sults for noisy observations, see Figure 5 (b) and (d). Partic-
ularly, the case of (d) is interesting: the decoder mistakenly
predicted incorrect label for the last observed segment. For
both models, RNN and CNN, this error propagates further
to future segment predictions.

As the videos have different lengths, the proposed mod-
els might behave differently depending on the length of the
videos. An evaluation on three categories of videos from
Breakfast based on the prediction length is shown in Fig-
ure 8 for the case of observing 30% of the video and pre-
dicting the 50% that follows. While the models perform
well on both short and long videos, they achieve a better
performance for shorter videos. This is mainly because the
duration of the predicted future is less for shorter videos,
which makes the prediction task much easier compared to
long video sequences. A similar behaviour can also be ob-
served when considering the number of actions that are pre-
dicted in the future. As shown in Table 3, the accuracy drops
as we predict more in the future.

4.4. Analysis of the CNN Model

Model Architecture Compared to commonly used CNN
architectures such as VGG-16 or ResNet, our model is com-
parably small. We stick to this simple architecture since
we have very limited amount of training data, and complex
models would easily overfit on the training set. A compari-

Table 4. Comparing different loss functions for the CNN model
on Breakfast with ground-truth observations. Numbers represent
accuracy as mean over classes.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

CNN (cross-entropy) 0.5177 0.4280 0.3940 0.3625 0.5499 0.4838 0.4324 0.3858
CNN (squared loss) 0.5797 0.4912 0.4403 0.3926 0.6032 0.5014 0.4518 0.4051

son of our architecture to a VGG-16 [26] on Breakfast with
and without ground truth annotation is provided in Figure 6
and Figure 7, respectively. The performance of our archi-
tecture compared to VGG-16 is clearly better with an im-
provement up to 9% when using the ground truth annota-
tion as observations. Note that our architecture already has
around 6m parameters due to the fully connected layers at
the end.

Loss Function Our choice of the loss function for the
CNN based model is a squared loss preceded by an `2 nor-
malization layer. However, for classification tasks, a soft-
max with cross-entropy loss is usually used. Since the fu-
ture action prediction task can be viewed as special kind of
classification, a softmax layer trained with the cross-entropy
loss seems a more suitable choice on first glance. Yet, a
comparison of both loss types shows a clear superiority of
the squared loss combined with the `2 normalization layer,
see Table 4. We attribute this to the smoothing properties of
the softmax layer. Even large differences of the input val-
ues to a softmax layer lead to comparably small differences
in the output probability distribution. This is a desirable ef-
fect in classification tasks. For our task, however, it leads
to frequent changes of the maximizing label index, which
corresponds to over-segmentations. The effect can also be
observed in Figure 9. While strong over-segmentation can
be observed for the softmax output, this effect nearly com-
pletely vanishes using the `2 normalization layer. Never-
theless, even with the `2 normalization layer, a small over-
segmentation effect is still visible in some cases, which can
be eliminated by the post-processing step as shown in Fig-
ure 10.

4.5. Future Prediction Directly from Features

So far, we considered observations that are either frame-
wise ground truth action labels, or those labels that are ob-
tained by decoding the observed frame-wise features. In
this section, we evaluate the performance of our models
when applied directly on the observed frame-wise features
and compare it to the two-step approach. We only use the
CNN model for this evaluation. Originally, the input of the
model is a matrix with C columns that correspond to the
number of classes, and S rows that represent the temporal
resolution. Each row is a 1-hot encoding that represents
the action label of the corresponding frames in the observed
sequence. When applying this model to features directly,



Figure 9. Results of the CNN model using the cross-entropy loss vs. the squared-error loss.

Figure 10. Results of the CNN model with and without post-processing.

C is equal to the dimensionality of the features, which is
64 in our case for the Fisher vectors features. S is kept at
128 as before. The observed video features are down- or
upsampled to have exactly 128 frames. We use the same
training protocol that is used for the previous experiments,
by considering the set {10%, 20%, 30%, 50%} as obser-
vation percentages, and the target is always the 50% that
follows immediately after the observations. Table 5 shows
the results of the CNN model when applied on features di-
rectly compared to the two-step approach. As shown in the
table, using the two-step approach outperforms the direct
prediction from features by a large margin, i.e. up to +5%.
Predicting the future directly from features is a harder prob-
lem since the model has to recognize the observed actions
and capture the relevant information to anticipate the future,
while for the two-step approach these two tasks are decou-
pled. This allows to use a strong decoding model to recog-
nize the observed actions, and restricting the future predic-
tor to capture the context over action classes only instead of
frame-wise features. A similar conclusion was reached by
[4] where semantic labels of the unseen parts are predicted
in the spatial domain of an image. It has been shown that
segmenting the observed part of the image first and then
using the segmented image for prediction achieves better
results than using the RGB image directly.

Table 5. Results for future action prediction directly from features
on the Breakfast dataset. Numbers represent accuracy as mean
over classes.

Observation % 20% 30%
Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

CNN (features) 0.1278 0.1162 0.1121 0.1027 0.1772 0.1687 0.1548 0.1409
CNN (w/o GT obs.) 0.1790 0.1635 0.1537 0.1454 0.2244 0.2012 0.1969 0.1876

4.6. Comparison with the State-of-the-Art

To the best of our knowledge, long term future action
prediction has not been addressed before. Most works focus
on predicting the immediate future. Vondrick et al. [30],
for instance, train a model to predict AlexNet features of a
frame one second in the future. Based on these predictions,
an SVM is trained to determine the action label of the future
frame.

Since [30] train their future prediction model on 600h
of videos from the web, which are not made publicly avail-

able, we use the recent Kinetics network to generate deep
CNN features that have shown to generalize extremely well
on several action recognition datasets and are the current
state-of-the-art [1]. We run the approach of [30] on both,
Breakfast and 50Salads, and compare their results to our
model. To provide a fair comparison, our model is trained
in a way that the input sequences always end one second
before the next action segment starts. The results are shown
in Table 6. Our approach outperforms the system of [30]
by a large margin. Note that for both datasets, predicting an
action label only based on a single frame is particularly hard
and the framewise action classifier achieves less than 10%
accuracy. In contrast to [30], our approaches make use of
temporal context of the previously observed video content,
which is crucial for reliable predictions.

Table 6. Comparison with [30]: Accuracy of predicting future ac-
tions one second before they start is reported.

Breakfast 50Salads
Vondrick et al. [30] 8.1 6.2
RNN model 30.1 30.1
CNN model 27 29.8

5. Conclusion

We have introduced two efficient methods to predict fu-
ture actions in videos, which is a task that has not been ad-
dressed before. While most existing prediction approaches
focus on early anticipation of an already ongoing action or
predict at most one action in the future, our methods are the
first to predict video content of up to several minutes length.
Proposing two models to address the task, an RNN and a
CNN, we obtain accurate predictions that scale well along
different datasets and videos with varying lengths, varying
quality of observed data, and huge variations in the possible
future actions.
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