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Abstract. While annotating objects in images is already time-consuming,
annotating finer details like object parts or affordances of objects is even
more tedious. Given the fact that large datasets with object annota-
tions already exist, we address the question whether we can leverage
such information to train a convolutional neural network for segmenting
affordances or object parts from very few examples with finer annota-
tions. To achieve this, we use a semantic alignment network to transfer
the annotations from the small set of annotated examples to a large set
of images with only coarse annotations at object level. We then train a
convolutional neural network weakly supervised on the small annotated
training set and the additional images with transferred labels. We eval-
uate our approach on the IIT-AFF and Pascal Parts dataset where our
approach outperforms other weakly supervised approaches.

1 Introduction

In order to use an object, an autonomous system has to precisely localize the
parts of the object which are responsible for a certain type of interaction be-
tween this object and another object or the actor and the object. In comparison
to object parts, affordances, which can be considered as functional attributes
of objects, are more abstract since they generalize across object classes. Object
parts from different object categories can share the same affordance class, if they
share some similarity with respect to geometrical, categorical and physical prop-
erties, which in turn determines their functionality and usability. An example
would be the shaft of a hammer and that of a tennis racket which would be both
summarized under the class ‘graspable’.

Recently several approaches have been proposed that use CNNs for detecting
or segmenting affordances in images [18, 25, 34, 36, 26, 19]. However, the cost of
data annotation constitutes a bottleneck for semantic segmentation in general
and that of functional object parts in particular. While generating pixel-wise
annotations of objects is already very time-consuming compared to bounding-
box annotations, annotating even finer details like parts or affordances at large
quantities as it is required for CNNs becomes infeasible.

In this work we show how to extend a tiny training set containing images
with affordance annotations to make the training of a semantic segmentation
CNN feasible. We assume that for the training set, we have only a handful of
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images per object category (6 images per tool class in our experiments). For
each image, the bounding box of the object and the the bounding boxes for all
affordances of the object parts are given. Since training a CNN on such a small
training set will be prone to overfitting, we make use of additional data where
objects are already annotated by bounding boxes, but annotations of affordances
or object parts are missing. We term the additional dataset as unlabeled since
the images are not labeled in terms of affordances. Such data is already available,
for instance, in form of object detection datasets.

In order to train the CNN on both datasets, i.e., the small dataset with
affordance annotations and the large dataset with only object annotations, we
transfer the affordance annotations from the small dataset to the unlabeled im-
ages of the large dataset. For the label transfer, we use a semantic alignment
network, which is trained without supervision, to find for each unlabeled image
the most similar labeled image. Despite of having only bounding box annota-
tions of affordances, we then train a CNN for pixel-wise affordance segmentation
weakly supervised on both datasets. We evaluate our approach on the IIT-AFF
dataset [26] and the Pascal Parts dataset [6] where our approach outperforms
other segmentation approaches that are also trained weakly supervised.

2 Related Work

Most related to our work are approaches for weakly supervised semantic seg-
mentation and approaches for affordance detection or segmentation.

The task of weakly supervised semantic segmentation is to learn pixel-wise
classification from a more coarse level of supervision. The different approaches
vary in the type of supervision cues: [29, 30, 32] use image level labels as super-
vision to train semantic segmentation models while casting weakly supervised
learning as a constrained optimization or a multiple instance learning problem,
respectively. [20, 2] leverage user annotated scribbles and individual key points
to provide either sparse object labels or object location priors. [28, 12] apply ex-
pectation maximization for weakly supervised training. While both approaches
use image level labels, [28, 13, 7] additionally use annotated object bounding
boxes while [12, 27] uses saliency masks for supervision. Another paradigm, called
simple-to-complex [41, 38], consists of first training a model using simple im-
ages, i.e., images containing a single object category followed by the training
on complex images, i.e., images with multiple objects. [41] combine an object
proposal generator [1] with a proposal selection module thereby linking seman-
tic segmentation and object localization. [16] improves the training procedure
by using multiple loss functions. [3] combines saliency and attention maps to
approximate the ground truth annotation. Some approaches explore the concept
of region based mining, i.e., an initial localization seed is expanded to the size
of objects [14, 40]. While these works address object segmentation, a few works
focus on weakly supervised semantic part detection [17] or segmentation [23].

Various image domains have been explored for affordance detection or seg-
mentation. The context of affordances also strongly differs depending on the
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task such as understanding human body parts [21], classifying environment af-
fordances [34, 31], or detecting affordances of real world objects that robots in-
teract with [24]. [37] use predefined primary tools to infer object functionalities
from 3D point clouds. [39] detect grasp affordances by combining the global
object poses with its local appearance. [15] detect object affordances by observ-
ing object-action interactions performed by humans. Recently there have been
several works that rely on deep convolutional neural networks for affordance de-
tection [18, 25, 34, 36, 26, 19]. [11] propose a region alignment layer to align the
input image space with the feature map space. [8] detect multiple affordance
classes in the object, instead of binary classes as in [11].

3 Label Transfer for Affordance Segmentation

Fig. 1. In order to train a network to segment affordances from a very small set of
examples, we transfer labels to unlabeled images. The training data consists of a set of
objects where affordances are annotated by bounding boxes (right). This training set is
very small and comprises only a few examples per object category. We then collect more
examples of objects from an object detection dataset, i.e., the bounding box and the
name of the object are given but not the affordances (left). To transfer the annotation
labels of the training set to the new images, we use a semantic alignment network to
find for each new image the most similar image in the training set. The bounding box
annotations of the affordances are then transferred to the matched images and a CNN
is then trained on all images. Best viewed in color.

Since annotating affordances or parts of objects is time-consuming, our goal
is to train a convolutional network that segments affordances in images on a very
small set of annotated images and additional unlabeled images. An overview of
the approach is given in Fig. 1.



4 J.Sawatzky, M.Garbade and J.Gall

Our training set consists of a few example images for each object category
where the affordances are annotated by bounding boxes. Since large datasets for
object detection exist, we make use of them to extend the training set. These
datasets, however, do not provide any annotations of affordances or parts but
only bounding boxes for the objects. We therefore transfer the affordance labels
from our training set to the objects from an object detection dataset. To this
end, we first use a semantic alignment network to retrieve for each unlabeled
image the most similar annotated training image to transfer the annotations
(Section 3.1). We then train a fully convolutional network on the original training
set and the extended set with transferred labels and use this model for inference
(Section 3.2).

3.1 Semantic Alignment Network for Similarity Estimation

For similarity matching between annotated example objects and unannotated
query objects, we use the semantic alignment network proposed in [33]. It takes
two images Is and It and predicts an affine transformation Taff and a thin plate
spline transformation Ttps whose concatenation semanticly aligns Is to It. The
transformations are subsequently predicted by two networks only differing in the
final layer.

First the feature maps of both images fsij: and f tkl:, where i and j are the
spatial coordinates in the source image Is and k and l are the spatial coordinates
in the target image It, are extracted in two Siamese branches. Then, a 4D-tensor
S of space match scores is obtained via

sijkl =
〈fsij:, f tkl:〉√∑
a,b〈fsab:, f tkl:〉2

. (1)

Next, the parameters G of the geometrical transformation TG are calculated
from the space match score tensor S. This yields then the 4D inlier mask tensor
M :

mijkl =

{
1 if d(TG(i, j), (k, l)) < τ

0 otherwise.
(2)

where d is the Euclidean distance. For τ , we use the same value as in [33].
Combining M and S provides the soft inlier count, a measure for the quality of
the alignment:

c =
∑
i,j,k,l

sijklmijkl. (3)

Intuitively, the feature vectors of pixels in the target and the warped image
should be similar if the points are spatially close (mijkl = 1). Therefore, −c
serves as a training loss.

We use the pre-trained model [33], which has been first trained on synthetic
data obtained from the Pascal dataset [9] and then finetuned with image pairs
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from the PF-PASCAL dataset [10]. Since the loss does not require human su-
pervision and the network does not explicitly take any note of the object class,
the model generalizes to unseen object classes. We therefore can use the model
trained on Pascal classes on the IIT-AFF dataset.

The approach, however, fails for large transformations. Already 2D rotations
by more than 30 degrees lead to poor semantic alignments. We therefore augment
each of the annotated examples by rotating it by 90, 180 and 270 degrees and
flipping it. To find the best match in our annotated training set {Ii}i∈{1,...n}for
a query image J , we compute (3) for J and each image Ii, which contains the
same object class as J . The best match for J is then given by the image Ik with
the highest soft inlier count c.

Fig. 2 shows some examples for the top 3 matches.

Fig. 2. Some query tools (left column) and the top 3 matching example tools with
decreasing proximity from left to right. Except for the second match for the knife,
the matching procedure retrieves tools seen from a similar viewpoint and having same
orientation. Best viewed in color.

In order to transfer the affordance labels from Ik to J , the estimated warp-
ing transformation could be used. However, our experiments reveal that the
estimated transformations are not accurate enough for transferring the labels.
Instead, we scale Ik to match the size of J and copy the annotations from Ik to
J .
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3.2 Semantic Segmentation

In our experiments, we will investigate two supervision levels and two transfer
strategies. In the first supervision setting, the affordances of example tools are
pixel-wise annotated. In the second setting, the affordances of example tools are
annotated by bounding boxes. In the latter case, we obtain a rough pixel-wise
annotation by setting all pixel labels inside an annotated bounding box to its
affordance class. If a pixel is located inside multiple affordance bounding boxes,
it receives the affordance label of the smallest bounding box. We refer to these
supervision levels by bbox and pixelwise. The copy strategy simple resizes and
copies the labels of the example tool onto the query tool. The warp strategy
warps the label of the example tool using the transformation predicted by the
alignment network. For both transfer strategies, all pixels located outside the
object bounding boxes are set to background and all pixel labels inside the ob-
ject bounding boxes which were not assigned to an affordance class are ignored
and thus do not contribute to the loss when training the semantic segmentation
network. We combine the notations of supervision level and transfer strategy, for
example bbox-copy means bbox supervision level and copy transfer method. Fig. 3
illustrates our supervision levels and transfer strategies. The proposed method
assumes bbox for supervision and uses copy for label transfer. For semantic seg-
mentation, we use the deeplab VGG architecture [4], which is a fully convolu-
tional network providing as output a feature map f with width and height equal
to the input image and each channel corresponding to an affordance or back-
ground. We obtain the affordance probability by taking the pixelwise softmax
of f . During training, the loss for a particular pixel is computed individually. If
the ground truth label is an affordance or background it equals the cross entropy
between the ground truth label and the prediction, otherwise it is 0. The overall
loss is the sum of the pixel-wise losses. During inference, we use the conditional
random field layer of deeplab on top of the final feature map.

Fig. 3. Illustration of our supervision levels and transfer strategies. From left to right:
Query tool, matched example tool, aligned example tool, bbox-copy labels, pixelwise-
copy labels, bbox-warp labels, pixelwise-warp labels. Best viewed in color.
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4 Experiments

Fig. 4. Qualitative results on bounding boxes: RGB input (first column), DCSP [3]
results (second column), our results (third column), ground truth (last column). In
contrast to DCSP, our method correctly associates the affordances with the respective
object parts. Best viewed in color.

We conduct our experiments on the IIT-AFF dataset introduced by [26]. It
consists of images showing 10 classes of tools in context. There are 6184 images
in the trainval set and 2651 images in the test set. The images were collected in
a robotics lab or come from the Imagenet dataset [35]. Each tool is annotated
with a bounding box. Additionally, each tool class has a predefined set of possible
affordances. Tool parts serving an affordance are pixel-wise annotated with it.
The tool classes with their affordances are: bowl (wrap, contain), tv (display),
pan (contain, grasp), hammer (grasp, pound), knife (cut, grasp), cup (contain,
wrap), drill (grasp, engine), racket (grasp, hit), spatula (support, grasp) and
bottle (grasp, contain).

Unless stated otherwise, in all our experiments our unlabeled set comprises
the images from the IIT trainval set with 6 example tools per tool class randomly
drawn from them to constitute the training set. We use the semantic alignment
model trained on PF-PASCAL [10] by [33]. For training and inference with
deeplab [4], we use the same setup as in the original paper in the fully supervised
setup on Pascal.

4.1 Comparison to State of the Art

To our knowledge there is no work on weakly supervised semantic segmentation
which uses the same amount of supervision: A vast object dataset annotated
on bounding box level but unlabeled in terms of object part affordances and a
tiny dataset with bounding boxes provided for affordances. DCSP [3], which is
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Fig. 5. Qualitative results on IIT-AFF [26]: RGB input (left), our results (middle),
ground truth (right). Best viewed in color.
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the current state of the art method for weakly supervised image segmentation
on Pascal VOC 2012, uses a list of present classes in an image for supervision.
We therefore train DCSP on the bounding boxes of tools from the unlabeled
set as well as on the annotated bounding boxes of affordances from the training
set. On the unlabeled set, the affordances are inferred from the tool class and
used as image labels for supervision. We keep the original training parameters of
DCSP, but reduce the learning rate by a factor of 3 since it improved the results
of DCSP.

For comparison, we evaluate both methods not on the entire images, but
only within the annotated bounding boxes surrounding the objects, since we are
interested in how well both methods segment the affordances within a bounding
box. The results are reported in Table 1: DCSP achieves a mean IoU of 29.7%
while our approach yields 46.1%, thus outperforming DCSP by more then 16%.
To analyze if the difficulty for DCSP stems from the localization of affordances
on the tool or from the pixel-wise segmentation of the tool itself, we performed an
additional experiment. Instead of training DCSP for segmenting affordances, we
trained DCSP for segmenting objects. For object segmentation, DCSP performs
very well and achieves 53.4% mean IoU for the object categories. Therefore
localizing the affordance on the tool constitutes the main challenge. This is also
evident from the qualitative comparison shown in Fig. 4. Qualitative results for
complete images are shown in Fig. 5.

Table 1. Comparison to DCSP [3], a method showing state of the art results on Pascal
VOC 2012. We report IoU on the IIT-AFF dataset [26]. For a fair comparison, we train
and evaluate DCSP on bounding box crops of tools and the affordance segments of
example tools and evaluate ours on the bounding box crops only.

method contain cut display engine grasp hit pound support wrap grasp mean

DCSP [3] 0.340 0.179 0.602 0.214 0.259 0.548 0.242 0.085 0.205 0.297

proposed 0.616 0.209 0.811 0.364 0.328 0.633 0.345 0.335 0.510 0.461

4.2 Number of Examples

Our proposed evaluation setup uses 6 random examples per tool class, but we
also investigated the performance with an even smaller amount of examples,
namely 1, 2 and 3 examples per tool class, and report the results in Table 2.
Unlike in the previous section, we evaluate on complete test images, but still
achieve a mean IoU of 41.9%. When using only one example tool per tool class,
the performance drops to 35.4%.

4.3 Impact of Additional Training Data

To see if additional training data and transferring the labels from the exam-
ples to the additional training data is required at all, we trained our semantic
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Table 2. Evaluation of our method on the IIT-AFF dataset [26] for different number
of example tools per tool class. We evaluate on full images and report IoU.

# examples contain cut display engine grasp hit pound support wrap-gr. mean

1 0.480 0.152 0.760 0.305 0.293 0.575 0.101 0.134 0.387 0.354

2 0.518 0.191 0.744 0.336 0.267 0.590 0.248 0.096 0.426 0.380

3 0.522 0.182 0.716 0.331 0.269 0.645 0.245 0.136 0.417 0.385

6 (default) 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419

segmentation network only on the images containing at least one of the 60 ex-
ample tools. Pixels located inside the affordance bounding box of the example
tools were set to this affordance class, pixels belonging to any tool bounding
box which does not belong to an example tool were ignored during training,
and the rest was set to background. Since the number of training images is tiny
in this setting, we reduced the number of iterations from 6000 to 300 and the
step length during training accordingly to avoid overfitting. As can be seen in
Table 3, the performance drops to 27.3% and for the affordances cut, pound,
support to almost 0. Our approach is especially beneficial for challenging small
affordances.

Table 3. Comparison of training on the example images only vs. our approach, which
uses additional training data by label transfer. We evaluate on full images from the
IIT-AFF dataset [26] and report IoU.

method contain cut display engine grasp hit pound support wrap-gr. mean

ex. tools only 0.563 0.000 0.501 0.206 0.226 0.553 0.005 0.016 0.388 0.273

proposed 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419

4.4 Warping vs No Warping

While we simply resize and copy the affordance localization cues from the most
similar example tool to the tool of interest, one could also warp the localization
cues of the example tool onto the target tool using the transformation provided
by the semantic alignment network. On the one hand, this approach has the
advantage of potentially better aligning the shape of the tools and therefore
better aligning the functional parts. On the other hand, the warping might be
reasonable for only some parts of the object but fail for other, in particular small
parts. Therefore, the benefit of using the warping transformation or not depends
on the affordance classes. The results reported in Table 4 show that warping
improves the accuracy for the classes display, engine, and hit, but it decreases
the accuracy for the other affordance classes. In average, using the estimated
warping transformation for label transfer reduces the accuracy from 41.9% to
39.1%.
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Table 4. Comparison of warping the affordance labels from the example tool vs copying
them. We evaluate on full images from the IIT-AFF dataset [26] and report IoU.

method contain cut display engine grasp hit pound support wrap-gr. mean

bbox-warped 0.550 0.156 0.730 0.313 0.278 0.640 0.188 0.218 0.443 0.391

proposed 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419

4.5 Bounding Box vs. Pixel-wise Annotation

Obtaining affordance region bounding boxes for example tools is far cheaper
than annotating the functional regions pixel-wise. To investigate the potential
gain from a pixel-wise annotation, we conducted two ablation experiments. In
the first, we transfer the pixel-wise affordance annotations from example tools
to unlabeled tools without using the estimated warping transformation and in
the second we use the estimated warping transformation for label transfer. We
report the results in Table 5: Providing pixel-wise affordance annotations for ex-
ample tools increases the accuracy with and without warping. In case of warping
the accuracy increases from 39.1% to 40.1% and without warping the accuracy
increases from 41.9% to 44.8%.

Table 5. Comparison of using accurate pixel-wise affordance annotations of the ex-
ample tools vs. bounding boxes around affordances. We report the results with and
without using the estimated warping transformation for label transfer. We evaluate on
full images from the IIT-AFF dataset [26] and report IoU.

method contain cut display engine grasp hit pound support wrap-gr. mean

pxlwise copy 0.601 0.245 0.745 0.368 0.388 0.589 0.260 0.333 0.502 0.448

pxlwise warp 0.592 0.190 0.748 0.363 0.354 0.616 0.0 0.278 0.466 0.401

proposed 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419

4.6 ResNet Features vs. Alignment

To investigate the benefit of the unsupervisedly trained semantic alignment net-
work, we train a semantic segmentation model using an approach identical to
the proposed method except for the matching criterion between query tools and
example tools. Since the alignment network was trained on Pascal VOC2012,
we take the Pascal VOC2012 semantic segmentation Resnet-101 model from [5],
and generate the features of the res5c layer for each query tool and each example
tool. Note that we use the same CNN backbone as for the semantic alignment
network and require the same amount of cross dataset generalisation. After that,
we retrieve for each query tool the example tool with the most similar feature
map and transfer the labels. Specifically, the cosine distance serves as a measure
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for the similarity of the vectorized feature maps of two images v, w:

d = 1− 〈v, w〉
‖v‖‖w‖

(4)

As can be seen from Table 6, the ResNet-101 features perform slightly worse
than the weak alignment network.

Table 6. Comparison of two matching strategies between query tools and example
tools: The proposed strategy uses the loss of a semantic alignment network trained in
an unsupervised manner, the ablation uses the features of ResNet-101 pretrained on
Pascal VOC2012. We evaluate on full images from the IIT-AFF dataset [26] and report
IoU.

contain cut display engine grasp hit pound support wrap grasp mean

features 0.573 0.206 0.705 0.348 0.287 0.608 0.262 0.322 0.423 0.415

proposed 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419

4.7 Oracle Experiment: Ground Truth Bounding Box for Each
Affordance of Each Query Tool

In this ablation experiment we investigate what is achievable if the bounding
boxes around affordances are not only given for the example tools but also for
all query tools. All pixels inside an affordance bounding box are set to this
affordance. In case of a pixel belonging to multiple affordance bounding box, it
is assigned to the affordance with the smallest bounding box. All other pixels are
set to background. After that, the semantic segmentation network is trained and
used for inference as in our proposed method. We report the results in Table 7.
This additional supervision improves the results to 52.6%, however, at the cost
of additional annotations of query tools, while our method does not require any
additional annotation once object bounding boxes are given. For example, it
could be applied to the affordances of objects in the COCO dataset [22]. Even if
the bounding boxes are not given for a custom data set, they can be generated
using a weakly supervised object detection system, e.g. [42].

Table 7. Results if ground truth bounding boxes would be given for each affordance of
each query tool vs. our method. We evaluate on full images from the IIT-AFF dataset
[26] and report IoU.

contain cut display engine grasp hit pound support wrap grasp mean

gt-bbox 0.686 0.217 0.747 0.521 0.389 0.722 0.382 0.466 0.606 0.526

proposed 0.564 0.180 0.723 0.329 0.288 0.596 0.295 0.323 0.469 0.419
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4.8 Evaluation on the Pascal Parts dataset

We finally evaluate our approach on the Pascal Parts dataset [6]. It contains
images from the Pascal VOC dataset, which belong to the categories bird, cat,
cow, dog, horse, person, and sheep. For each category, 4 to 5 semantic body parts
are annotated. The task of part segmentation differs from affordance segmenta-
tion since different object classes do not share the same part category, e.g., leg
of horse and leg of sheep are considered as two different part classes in Pascal
Parts. This is in contrast to affordances, which are shared among different tool
classes. Since our method can be applied to both tasks, we also evaluate our
approach on this dataset by randomly sampling 6 example objects per object
class. Our approach outperforms the current state of the art by +3.5% as can
be seen in Table 8.

Table 8. Evaluation on the Pascal Parts [6]. Our method outperforms state of the art
methods for weakly supervised semantic parts segmentation. As on IIT-AFF dataset
[26], we use 6 example objects per object class.

method Bird Cat Cow Dog Horse Person Sheep mean

[17] 0.099 0.135 0.115 0.141 0.067 0.106 0.105 0.110

[23] 0.111 0.113 0.124 0.142 0.075 0.128 0.106 0.114

proposed 0.148 0.174 0.115 0.180 0.120 0.108 0.201 0.149

5 Conclusion

In this work, we have shown that a CNN, which is weakly supervised trained for
affordance or object part segmentation, can be trained from very few annotated
examples. This has been achieved by exploiting a semantic alignment network
to transfer annotations from a small set of annotated examples to images that
are only annotated by the object class. In our experiments, we have shown that
our approach achieves state of the art accuracy on the IIT-AFF dataset [26] and
the Pascal Parts dataset [6].
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