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Appendix

This document provides supplementary material as
mentioned in the main paper.

A. Implementation Details

Modified 3DResNet-18 The architecture of our mod-
ified 3DResNet-18 is shown in Table A.1. In case of
3DResNet-18+ATFR, we place SGS after the ResBlock
2.

stage layer output size
raw - 32 × 244 × 224
conv1 5 × 7 × 7, 8, stride 1, 2, 2 32 × 112 × 112
pool1 1× 3× 3, max, stride 1, 2, 2 32× 56× 56

res2

 3× 1× 1, 8
1× 3× 3, 8
1× 1× 1, 32

× 2 32× 56× 56

res3

 1× 1× 1, 64

1× 3× 3, 64

1× 1× 1, 256

× 2 32× 28× 28

res4

1× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512

× 2 32× 14× 14

res5

 3× 1× 1, 256

1× 3× 3, 256

1× 1× 1, 1024

× 2 32× 7× 7

global average pool, fc 1× 1× 1

Table A.1: Modified 3DResNet-18

?Mohsen Fayyaz and Emad Bahrami equally contributed to
this work. Emad Bahrami contributed to this project while he
was a visiting researcher at the Computer Vision Group of the
University of Bonn.

Model Train Inference (fps)
X3D-S 131h 2834
X3D-S+ATFR 121h 4295

Table A.2: Runtime on Kinetics-400.

SlowFast-8x8-R50+ATFR Following [9] for training
on the Something-Something-V2 dataset, the input tem-
poral length to the SlowFast-8x8-R50+ATFR is set to
64. Due to the intensive size of the temporal domain,
we limit the the temporal domain size of the SGS for
each path-way. For the fast path-way we set the tem-
poral domain size to 8. In other words, SGS is applied
over temporal blocks with temporal length of 8 and
temporal stride of 8. For the slow path-way we set the
temporal domain size to 2. Since we drop zero bins in
SGS, this may cause size mismatch for fusion in lateral
connections. We therefore zero pad the smaller size
tensors to the bigger ones.

B. Runtime

To evaluate the runtime, we use X3D-S as the base
model and report the runtimes for training and infer-
ence. As shown in Table A.2, SGS reduces the training
time on Kinetics by 10h. The ATFR equipped model
processes almost 51% more frames per second (fps) dur-
ing inference. Our approach also requires less memory
and we can use a larger batch size (BS), namely 256
instead of 208. This shows that the proposed approach
substantially reduces GFLOPs, training and inference
time, and memory usage.

C. Different number of bins

The number of the sampling bins B controls the
maximum number of possible output feature maps of
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B 4 8 16 32
top1 61.4 64.7 64.7 69.6
top5 86.3 85.8 86.2 88.8

GFLOPs 3.5 4.2 5.5 14.0

Table A.3: Ablations on the effect of changing the
numbers of bins B for 3DResNet-18+ATFR on Mini-
Kinetics. The model is trained and validated for differ-
ent number of bins. We show top-1 and top-5 classifica-
tion accuracy (%).

B 4 8 16 32
top1 51.1 61.4 64.4 69.6
top5 75.1 83.5 85.5 88.8

GFLOPs 3.5 5.0 8.0 14.0

Table A.4: Ablations on the effect of changing the
numbers of bins B only during inference for 3DResNet-
18+ATFR on Mini-Kinetics. The model is trained with
32 bins, but inference is performed with a different
number of bins. We show top-1 and top-5 classification
accuracy (%).

the SGS module. By setting B = T , the SGS module
can keep all feature maps in case it is needed. To
study the effect of changing B, we have evaluated the
model performance by changing B during training and
inference. The base model is the 3DResNet-18 (Fig. A.1)
trained on Mini-Kinetics. As it can be seen in Table
A.3, reducing B decreases the accuracy, but also the
GFLOPS. This is expected since SGS is forced to discard
information for each video if B < T even if there is no
redundancy among the feature maps.

As a second experiment, we change the number of
bins only for inference while we train the model with
B = 32. This setting is interesting since it shows how
flexible the approach is and if GFLOPS can be reduced
at inference time without the need to retrain the model.
The results are shown in Table A.4. If we compare the
results with Table A.3, we observe that the accuracy for
training with B = 32 and testing with B = 16 is only
slightly lower than training and testing with B = 16.
This shows that the GFLOPS can be reduced on the fly
if it is required. However, if the difference between the
number of bins during training and during inference is
getting larger, the accuracy drops.

D. Cartesian/Spherical Coordinates

As mentioned in in Sec. 5.2.1, we use the magnitude
of the embedding vectors as the similarity measurement
to create the similarity bins. Instead of magnitudes, we
can use other measures. While the results are reported

in Table 1 of the paper, we describe how the approach
works with spherical coordinates.

To use the spherical coordinates of the vectors for
creating the similarity bins, we use multi-dimensional
bins and sampling kernels. In an L dimensional spheri-
cal coordinate system, we can use different subsets of
coordinates for ∆k

t with varying number of elements
K to create similarity bins, e.g ., K = L when using
all of the coordinates, K = L− 1 when using angular
coordinates, or K = 1 when using the radial coordinate
only. Therefore, similar to Eq. (2) and (3) of the paper,
we can estimate βk

b for every ∆k.
By using a sampling kernel Ψ(∆k

t , β
k
b ) as in Eq. (4)

of the paper but for each k, a differentiable multi-
dimensional sampling operation can be defined by

Ob =

T∑
t=1

It
K∏

k=1

Ψ(∆k
t , β

k
b ). (1)

E. Similarity Guided Sampling Visualiza-
tion

The SGS layer aggregates similar input temporal
feature maps into the same output feature map. To
better understand such aggregation operation, we have
visualized the input and output feature maps of the
SGS layer in Figure A.1. We have used a 3DResNet-
50+ATFR trained on the Mini-Kinetics dataset. The
sampling kernel used in this experiment is the linear
kernel and the number of bins is set to 32. As it can be
seen in Figure A.1, the input temporal feature maps are
aggregated to 4 output feature maps. The aggregated
feature maps contain both the spatial and temporal
information. In this example, the 4th channel of the
aggregated feature maps capture some motion flow that
can be seen in the visualization.

F. UCF101 and HMDB51 Results

UCF-101 [6] contains 13K videos with 101 action
classes. It is split into 3 splits with around 9.5K videos
in each. For this dataset, we report the average accuracy
over three splits.

HMDB-51 [5] has about 7000 videos with 51 action
classes. It contains 3 splits for training and validation.
Similar to UCF-101, we report the average accuracy
over three splits. Table A.5 shows the results on UCF-
101 and HMDB51. The GFLOPs of our 3DResNet-
R50+ATFR on UCF-101 and HMDB-51 are 22.2 and
23.1, respectively. As it can be seen, 3DResNet+ATFR
gets comparable results compared to other 3D CNNs
while having less GFLOPs as discussed in the paper.
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Figure A.1: Visualization of the feature maps of 3DResNet-50+ATFR with linear kernel. In the first row, 8 frames
out of 32 input frames are shown. The corresponding temporal feature maps of ResBlock 2 are depicted in the
second row. The third row shows the aggregated feature maps after the SGS. Note that we only show the first 4
channels of the feature maps for better visualization.
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model backbone UCF101 HMDB51
C3D [7] RenNet18 89.8 62.1
RGB-I3D [1] Inception V1 95.6 74.8
R(2+1)D [8] ResNet50 96.8 74.5
DynamoNet [4] ResNet101 96.6 74.9
HATNet [3] ResNet50 97.8 76.5
3DResNet+ATFR ResNet50 97.9 76.7

Table A.5: Comparison with other methods on UCF101
and HMDB51.

Model top1 GFLOPs
X3D-S 77.9 1.9
X3D-S+ATFR 78.0 1.1
X3D-S+Temporal Attention 78.3 1.9

Table A.6: Comparison with attention modules. The
models are trained and tested on the Mini-Kinetics
dataset.

G. Comparison to Attention/Gating
Mechanisms

To better analyze the effect of our similarity guided
sampling mechanism, we add attention modules to
the base model and compare the final accuracy and
GFLOPs to the base model and the ATFR model. To
this end, we use a temporal attention mechanism fol-
lowing [2]. Similar to our SGS module, we add this
attention module on top of the ResBlock2. As it can be
seen in Table A.6, the model equipped with the atten-
tion module achieves similar accuracy while requiring
higher GFLOPs compared to the model equipped with
SGS. The reason for such a great difference in GFLOPs
is that attention modules perform a weighting of the
features, while our approach clusters and reduces fea-
tures. If all features are the same, the attention module
should weight them equally while our approach reduces
them to one feature.
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