
Real Time Head Pose Estimation with Random Regression Forests

Gabriele Fanelli1 Juergen Gall1 Luc Van Gool1,2

1BIWI, ETH Zurich 2ESAT-PSI / IBBT, KU Leuven

{fanelli,gall,vangool}@vision.ee.ethz.ch vangool@esat.kuleuven.be

Abstract

Fast and reliable algorithms for estimating the head pose

are essential for many applications and higher-level face

analysis tasks. We address the problem of head pose esti-

mation from depth data, which can be captured using the

ever more affordable 3D sensing technologies available to-

day. To achieve robustness, we formulate pose estimation

as a regression problem. While detecting specific face parts

like the nose is sensitive to occlusions, learning the regres-

sion on rather generic surface patches requires enormous

amount of training data in order to achieve accurate esti-

mates. We propose to use random regression forests for the

task at hand, given their capability to handle large training

datasets. Moreover, we synthesize a great amount of anno-

tated training data using a statistical model of the human

face. In our experiments, we show that our approach can

handle real data presenting large pose changes, partial oc-

clusions, and facial expressions, even though it is trained

only on synthetic neutral face data. We have thoroughly

evaluated our system on a publicly available database on

which we achieve state-of-the-art performance without hav-

ing to resort to the graphics card.

1. Introduction

Automatic and robust algorithms for head pose estima-

tion can be beneficial to many real life applications. Accu-

rately localizing the head and its orientation is either the ex-

plicit goal of systems like human-computer interfaces (e.g.,

reacting to the user’s head movements), or a necessary pre-

processing step for further analysis, such as identification

or facial expression recognition. Due to its relevance and to

the challenges posed by the problem, there has been consid-

erable effort in the computer vision community to develop

fast and reliable algorithms for head pose estimation.

Methods relying solely on standard 2D images face seri-

ous problems, notably illumination changes and textureless

face regions. Given the recent development and availabil-

ity of 3D sensing technologies, which are becoming ever

more affordable and reliable, the additional depth informa-

Figure 1. Real time head pose estimation example.

tion can finally allow us to overcome some of the prob-

lems inherent of methods based on 2D data. However, ex-

isting depth-based methods either need manual initializa-

tion, cannot handle large pose variations, or are not real-

time. An exception are approaches like the one presented

by [4], where the authors achieve real-time performance by

exploiting the massive parallel processing power of a GPU.

Their approach relies on a geometric descriptor which pro-

vides nose location hypotheses which are then compared

to a large number of renderings of a generic face template,

done in parallel on the GPU. The fast computation time

reported is only achievable provided that specific graphics

hardware is available.

GPUs, however, present a very high power consump-

tion which limits their use for certain kinds of application.

Hence, we propose an approach for 3D head pose estima-

tion which does not rely on specific graphics hardware and

which can be tuned to achieve the desired trade-off between

accuracy and computation cost, which is particularly useful

when resources are limited by the application. We formu-

late the problem as a regression, estimating the head pose

parameters directly from the depth data. The regression

is implemented within a random forest framework [2, 10],

learning a mapping from simple depth features to a prob-

abilistic estimation of real-valued parameters such as 3D

nose coordinates and head rotation angles. Since random

forests (as any regressor) need to be trained on labeled data

and the accuracy depends on the amount of training, data

617

acquisition is a key issue. We solve this problem by train-

ing only on synthetic data, generating an arbitrary num-

ber of training examples without the need of laborious and

error-prone annotations. Our system works in real-time on a

frame-by-frame basis, without any manual initialization or

expensive calculations. In our experiments, we show that it

works for unseen faces and can handle large pose changes,

variations such as facial hair, and partial occlusions, e.g.,

due to glasses, hands, or missing parts in the 3D reconstruc-

tion. Moreover, as it does not rely on specific features, e.g.,

for the nose tip detection, our method can be adapted to the

localization of other parts of the face. The performance of

the system is evaluated on a challenging publicly available

database and our results are comparable or superior to the

state-of-the-art.

2. Related Work

Head pose estimation is the goal of several works in

the literature [19]. Existing methods can conveniently be

divided depending on the type of data they rely on, i.e.,

2D images or depth data. Within the 2D image-based al-

gorithms, we can further distinguish between appearance-

based and feature-based methods. While the former look

at the entire face region in the image, the latter rely on the

localization of specific facial feature points.

A common appearance-based approach is to discretize

the head poses and learn a separate detector for each pose,

e.g., [13, 18]. Approaches like [1, 6] focus on the map-

ping from the high-dimensional space of facial images into

lower-dimensional, smooth manifolds; Osadchy et al. [21],

for example, use a convolutional network, detecting faces

and their orientation in real-time. Several works rely on

statistical models of the face shape and appearance, e.g.,

Active Appearance Models (AAMs) [8] and their exten-

sions [9, 23, 25], but their focus is usually on detection and

tracking of facial features.

Feature-based methods need either the same facial fea-

tures to be visible in all poses, e.g., [26, 29, 16], or use

pose-dependent features; for example, Yao and Cham [30]

select feature points manually and match them to a generic

wireframe model. The authors of [28] use a combination

of the face appearance and a set of specific feature points,

which bounds the range of recognizable poses to the ones

where both eyes are visible.

In general, methods relying solely on 2D images are

sensitive to illumination, lack of features, and partial oc-

clusions. Moreover, the annotation of head poses from

2D images is an error-prone task in itself. Fortunately,

recent 3D technologies have achieved high quality at af-

fordable costs, e.g., [27]. The additional depth informa-

tion can help in solving some of the limitations of image-

based methods, therefore several recent works use depth ei-

ther as primary cue [4, 15] or as an addition to standard 2D

images [5, 18, 24]. Seemann et al. [24] presented a neu-

ral network-based system fusing skin color histograms and

depth information. It runs at 10 fps but requires the face

to be first detected in frontal pose. The work of [5] uses a

linear deformable face model for real-time tracking of the

head pose and facial movements using depth and appear-

ance cues. Their system focuses on tracking facial features

and thus no evaluation is presented for its head pose track-

ing performance. The approach presented in [17] uses head

pose estimation only as a preprocessing step to face recog-

nition, and the reported errors are only calculated on faces

belonging to the same people. Breitenstein et al. [4] pro-

posed a real-time system which can handle large pose vari-

ations, partial occlusions (as long as the nose remains visi-

ble), and facial expressions from range images. The method

uses geometric features to generate nose candidates which

suggest many head position hypotheses. Thanks to the mas-

sive parallel computation power of the GPU, they can si-

multaneously compare all suggested poses to a generic face

template previously rendered in many different orientations

and finally choose the pose minimizing a predefined cost

function. Also the authors of [15] use range images and

rely on the localization of the nose; however, their reported

results are computed on a database generated by syntheti-

cally rotating frontal scans of several subjects.

Random forests [2] have become a popular method in

computer vision [11, 10, 20, 14, 12] given their capabil-

ity to handle large training datasets, high generalization

power, fast computation, and ease of implementation. Re-

cent works showed the power of random forests in mapping

image features to votes in a generalizedHough space [11] or

to real-valued functions [10, 12]. Recently, multiclass ran-

dom forests have been proposed in [12] for real-time head

pose recognition from 2D video data. To the best of our

knowledge, we present the first approach that uses random

regression forests for the task of head pose estimation from

range data.

3. Head Pose Estimation with Random Regres-

sion Forests

Our goal is to jointly estimate the 3D coordinates of the

nose tip and the angles of rotation of a range image of a

head, i.e., 2.5D data output of a range scanner like [27].

We use a random regression forest (Sec. 3.1), trained as ex-

plained in Sec. 3.2 on a large dataset of synthetically gen-

erated range images of faces (Sec. 3.4). The way the actual

regression is performed is explained in Sec. 3.3.

3.1. Random Regression Forests

Classification and regression trees [3] are powerful tools

capable of mapping complex input spaces into discrete or

respectively continuous output spaces. A tree achieves

618

highly non-linear mappings by splitting the original prob-

lem into smaller ones, solvable with simple predictors.

Each node in the tree consists of a test, whose result directs

a data sample towards the left or the right child. During

training, the tests are chosen in order to group the training

data in clusters where simple models achieve good predic-

tions. Such models are stored at the leaves, computed from

the annotated data which reached each leaf at train time.

Breiman [2] shows that, while standard decision trees

alone suffer from overfitting, a collection of randomly

trained trees has high generalization power. Random forests

are thus ensembles of trees trained by introducing random-

ness either in the set of examples provided to each tree, in

the set of tests available for optimization at each node, or in

both. Figure 2 shows a very simple example of the regres-

sion forest used in this work.

Figure 2. Example of regression forest. For each tree, the tests at

the non-leaf nodes direct an input sample towards a leaf, where

a real-valued, multivariate distribution of the output parameters is

stored. The forest combines the results of all leaves to produce a

probabilistic prediction in the real-valued output space.

3.2. Training

The learning is supervised, i.e., training data is anno-

tated with values in R
D, where D is the dimensionality of

the desired output. In our setup, training examples consist

of range images of faces annotated with 3D nose location

and head rotation angles. We limit ourselves to the problem

of estimating the head pose, thus assume that the head has

been already detected in the image. However, a random for-

est could be trained to jointly estimate the head position in

the range image together with the pose, as in [11, 20].

Each tree T in the forest T = {Tt} is constructed from

a set of patches
{

Pi =
(

If
i , θi

)}

randomly sampled from

the training examples. If
i are the extracted visual features

for a patch of fixed size; in the current setup, we use one to

four feature channels, namely depth values and, optionally,

the X , Y , and Z values of the geometric normals computed

over neighboring, non-border pixels. The real-valued vector

θi = {θx, θy, θz, θyaw, θpitch, θroll} contains the pose pa-

rameters associated to each patch. The components θx, θy ,

and θz represent an offset vector from the point in the range

scan falling on the center of the training patch to the nose

position in 3D, while θyaw, θpitch, and θroll are the head

rotation angles denoting the head orientation.

We build the trees following the random forest frame-

work [2]. At each non-leaf node, starting from the root,

a test is selected from a large, randomly generated set of

possible binary tests. The binary test at a non-leaf node is

defined as tf,F1,F2,τ (I):

|F1|
−1

∑

q∈F1

If (q) − |F2|
−1

∑

q∈F2

If (q) > τ, (1)

where If indicates the feature channel, F1 and F2 are two

rectangles within the patch boundaries, and τ is a threshold.

The test splits the training data into two sets: When a patch

satisfies the test it is passed to the right child, otherwise, the

patch is sent to the left child. We chose to take the differ-

ence between the average values of two rectangular areas

(as the authors of [10]) rather than single pixel differences

(as in [11]) in order to be less sensitive to noise. Figure 3

shows a patch (marked in red) and the two randomly gen-

erated regions F1 and F2 as part of a binary test; the arrow

indicates the 3D offset vector stretching from the patch cen-

ter (in red) to the annotated nose location (green).

Figure 3. Example of a training patch (larger, red rectangle) with

its associated offset vector (arrow) between the 3D point falling

at the patch’s center (red dot) and the ground truth location of the

nose (marked in green). The rectangles F1 and F2 represent a

possible choice for the regions over which to compute a binary

test.

During the construction of the tree, at each non-leaf

node, a pool of binary tests
{

tk
}

is generated with random

values for f , F1, F2, and τ . The set of patches arriving

at the node is evaluated by all binary tests in the pool and

the test maximizing a predefined measure is assigned to the

node. Following [10], we optimize the trees by maximizing

the information gain defined as the differential entropy of

the set of patches at the parent node P minus the weighted

619

sum of the differential entropies computed at the children

PL and PR:

IG = H(P) − (wLH(PL) + wRH(PR)), (2)

where Pi∈{L,R} is the set of patches reaching node i and
wi is the ratio between the number of patches in i and in its

parent node, i.e., wi = |Pi|
|P| .

We model the vectors θ at each node as realizations of a

random variable with a multivariate Gaussian distribution,

i.e., p(θ) = N (θ; θ,Σ). Therefore, Eq. (2) can be rewritten
as:

IG = log |Σ(P)| −
∑

i∈{L,R}

wi log |Σi(Pi)|. (3)

Maximizing Eq. (3) favors tests which minimize the deter-

minant of the covariance matrix Σ, thus decreasing the un-

certainty in the votes for the output parameters cast by each

patch cluster.

We assume the covariance matrix to be block-diagonal

Σ =

(

Σ
v 0

0 Σ
a

)

, i.e., we allow covariance only among

offset vectors (Σv) and among head rotation angles (Σa),

but not between them. Eq. (3) thus becomes:

IG = log (|Σv| + |Σa|) −
∑

i∈{L,R}

wi log (|Σv
i | + |Σa

i |).

(4)

A leaf l is created when the maximum depth is reached

or a minimum number of patches are left. Each leaf stores

the mean of all angles and offset vectors which reached it,

together with their covariance, i.e., a multivariate Gaussian

distribution.

3.3. Testing

Given a new, unseen range image of a head, patches (of

the same size as the ones used for training) are densely sam-

pled and passed through all trees in the forest. At each node

of a tree, the stored binary test evaluates a patch, sending

it either to the right or left child, all the way down un-

til a leaf. Arrived at a leaf l, a patch gives an estimate

for the pose parameters in terms of the stored distribution

p(θ|l) = N (θ; θ,Σ).
Because leaves with a high variance are not very infor-

mative and add mainly noise to the estimate, we discard

all Gaussians with a total variance greater than an empiric

threshold maxv . We also first locate the nose position to

remove outliers before estimating all other parameters. We

thus perform 10 mean-shift [7] iterations using a spherical

kernel and keep only the random variables whose means fall

within the mean-shift kernel. The kernel radius is defined as

a fraction of the size of the smallest sphere enclosing the av-

erage human face, which we consider to be the mean of the

Figure 4. Example test image: the green spheres are the ones se-

lected after the filtering of the outliers (blue spheres) by mean shift.

The large green cylinder stretches from the final estimate of the

nose center in the estimated face direction.

PCA model constructed from aligned range scans of many

different people [22]. The initialization for the mean-shift

step is the mean of all votes returned by the forest, which

we assume to be close to the true nose location, where most

of the votes usually cluster. In our experiments, removing

outliers has shown to be crucial in test images where the

head undergoes large rotations and/or is partially occluded

by glasses or facial hair. We finally sum all the remaining

random variables θ, producing a Gaussian whose mean is

the ultimate estimate of our output parameters and whose

covariance represents a measure of the estimate’s uncer-

tainty. An example test frame is shown in Fig. 4, where the

small blue spheres are all votes cast by the forest, and the

green, larger ones represent the votes selected after mean-

shift. The final estimate of the nose position and head di-

rection is represented by the green cylinder.

3.4. Training Data Generation

Random forests can be built from large training datasets

in reasonable time and are very powerful in learning the

most distinctive features for the problem at hand. We there-

fore generated a large database of 50K, 640x480 range im-

ages of faces by rendering a 3D morphable model [22] in

many randomly generated poses. The rotations span ±95 ◦

for yaw, ±50 ◦ for pitch, and ±20 ◦ for roll. Moreover, we

randomly translated the 3D model along the z axis within a

50 cm range. We further perturbed the first 30 PCA modes

of the shape model by ±2 of the standard deviation of each

mode, thus introducing random variations also in the iden-

tity of the faces. We stored the 3D coordinates of each vis-

ible point on the face surface for each pixel in each image,

together with the ground truth 3D coordinates of the nose

tip and the three rotation angles. Figure 5 shows a few of

the training faces, with the red bar pointing out from the

nose indicating the head direction.

620

Figure 5. Sample images from our synthetically generated train-

ing set. The heads show large 3D rotations and variations in the

distance from the camera and also in identity. The red cylinder

attached to the nose represents the ground truth orientation of the

face.

4. Experiments

In order to assess the performance of our algorithmon re-

alistic data, we used the ETH Face Pose Range Image Data

Set [4]. The database contains over 10K range images of

20 people (3 females, 6 subjects recorded twice, with and

without glasses) turning their head while captured at 28 fps

by the range scanner of [27]. The images have a resolution

of 640x480 pixels, and a face typically consists of around

150x200 pixels. The head pose range covers about ±90 ◦

yaw and ±45 ◦ pitch rotations. The provided ground truth

for each image consists of the 3D nose tip coordinates and

the coordinates of a vector pointing in the face direction.

Our system outputs real-valued estimates for the 3D nose

location and the three head rotation angles. However, the

above database does not contain roll rotations, which are

not encoded in the directional vector provided as ground

truth. Therefore, we evaluated our performance with regard

to orientation by computing the head direction vector from

the estimated yaw and pitch angles and report the angular

error with the vector provided as ground truth. For the nose

localization, the Euclidian distance is used as error measure.

Our method is controlled by a few parameters. In the

present setup, some parameters have been fixed intuitively,

like the size of the patches (120x80 pixels), the maximum

size of the sub-patches defining the areas F1 and F2 in the

tests (fixed to 40 pixels), and the number of mean-shift it-

erations used to remove outliers from the set of random

variables obtained from the regression forest, set to 10.

Additional parameters are the maximum accepted variance

maxv of the Gaussians output of the leaves and the ratio

defining the radius of the mean-shift spherical kernel. In

order to find the best combination of these last two param-

eters, we used a small part of the ETH database (1000 im-

ages) and ran a coarse grid search for the best average er-

rors. We picked the values maxv = 400 and ratio = 5 as

they showed the best compromise for the errors in both the

nose localization and angle estimation task. Additionally,

the number of trees to be used and a stride in the sampling

of the patches for testing can be adapted to find the desired

balance between accuracy and speed of the estimation pro-

cess. This is a very important feature of our system since

it allows to adapt the algorithm to the computational con-

straints imposed by the application.

In the following experiments, we always trained each

tree sampling 25 patches from each of 3000 synthetically

generated images, while the full ETH database was used

for testing.

The plots in Fig. 6(a,d) show the time in ms needed to

process one frame (once loaded into memory) using our

method, depending on the number of loaded trees and on

the stride. It is important to note that the current implemen-

tation is not optimized, and could greatly benefit from using

integral images, possibly reducing the computation time of

a factor of 2. Fig. 6(a) plots the average runtime (computed

over 500 frames) for a stride fixed to 20 as a function of

the number of trees, while in Fig. 6(d) 15 trees are loaded

and the stride parameter changes. The red circular markers

represent the performance of the system when all available

feature channels are employed (i.e., depth and geometric

normals), while the blue crosses refer to the setup where

only the depth channel is used. We used a computer with an

Intel Core i7 CPU @ 2.67GHz, without resorting to multi-

threading. It can be seen that, for a number of trees less or

equal to 15 and a stride greater or equal to 20, both curves

are well below 40ms, i.e., we achieve framerates above 25

frames per second. If not otherwise specified, the remaining

results and images have been produced using these values

for the number of trees and the stride.

The additional computations needed to extract the nor-

mals (a 4-neighborhood is used - all done on the CPU)

pay off in terms of estimation accuracy, as visualized in the

Figs. 6(b,c,e,f). The plot in Fig. 6(b) shows the percentage

of correctly estimated images as a function of the success

threshold set for the angular error, while in Fig. 6(e) the

thresholds are defined on the nose localization error. As can

be seen in all plots, using all the available feature channels

performs consistently better than taking only the depth in-

formation. More in detail, for a conservative threshold of

10 ◦ on the angular error, our method succeeded in 90.4%
of the cases, 95.4% for 15 ◦, and 95.9% for 20 ◦. With the

same thresholding and on the same dataset, [4] reports per-

centages of 80.8%, 97.8%, and 98.4%, i.e., we have im-

proved the accuracy of about 10% for the most conservative

threshold, which is also the most relevant one. The perfor-

mance for nose localization is shown in Fig. 6(e) where the

success rate for thresholds between 10 and 35mm is plotted,

e.g., setting a 20 mm threshold leads to 93.2% accuracy.

621

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Trees (stride 20)

R
u

n
ti

m
e

 (
m

s
)

depth + normals

depth only

(a)

10 12 14 16 18 20
70

75

80

85

90

95

100

Angle error (degrees) − 15 trees − stride 20

A
c
c
u

ra
c
y
 %

depth + normals

depth only

(b)

5 10 15 20 25
10

15

20

25

Trees (stride 20)

A
v

e
ra

g
e

 n
o

s
e

 e
rr

o
r

(m
m

)

(c)

10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Stride (15 trees)

R
u

n
ti

m
e

 (
m

s
)

depth + normals

depth only

(d)

10 15 20 25 30 35
40

50

60

70

80

90

100

Nose error (mm) − 15 trees − stride 20

A
c
c
u

ra
c
y
 %

depth + normals

depth only

(e)

10 15 20 25 30
10

15

20

25

Stride (15 trees)

A
v

e
ra

g
e

 n
o

s
e

 e
rr

o
r

(m
m

)

(f)

Figure 6. All plots are labeled in blue and crosses when only the depth channel is used by the system, and in red and circles when all four

channels are used (depth plus X,Y, and Z components of the normals). a) Regression time as a function of the number of trees in the forest

when the stride is fixed to 20 pixels, the reported values are averaged over 500 images. b) Accuracy of the system in terms of percentage

of correctly estimated poses as a function of the angle error threshold. c) Average nose error in mm, as a function of the number of trees

(with stride=20). d) Runtime of the system for a forest of 15 trees as a function of the stride parameter. e) Accuracy plotted against nose

error thresholds in mm. f) Nose localization error for a forest of 15 trees and varying stride. In the current, unoptimized settings, the

system achieves real-time performance for forests with≤ 15 trees and a stride≥ 20. The additional information coming from the normals

consistently boosts the performance.

Nose error Yaw error Pitch error Direction estimation accuracy

Our approach 13.4/21.1 mm 5.7/15.2 ◦ 5.1/4.9 ◦ 90.4%
Breitenstein et al. 9.0/14.0 mm 6.1/10.3 ◦ 4.2/3.9 ◦ 80.8%

Table 1. Comparison of our results with [4]. The first three columns show mean and standard deviation for the Euclidean error in the nose

tip localization task (mm) and for the yaw and pitch estimation (degrees). The values in the last column are the percentages of correctly

estimated images for a threshold on the angular error (to the ground truth provided with the ETH database) of 10 degrees.

In 6.5% of the range images in the ETH database, our

system did not return an estimate, i.e., no votes were left

under the mean-shift kernel; these images were discarded

before computing the following average errors. Figs. 6(c,f)

show the average error in the nose localization task, plot-

ted as a function of the number of trees when the stride is

fixed to 20 (6(c)) and as a function of the stride when 15

trees are used (6(f)). Again, using the normals in addition to

the depth channel (red curve) shows considerably superior

performance. The mean and standard deviation of the pose

estimation error are reported in Table 1 and compared to the

errors reported in [4]. However, the first three columns of

Table 1 are not directly comparable, because the errors re-

ported by [4] are computed only on estimates with a high

nose detection confidence (positive rate of 80% and a false

positive rate of 3%), but the percentage of retained images

is not provided. The last column of Table 1 is instead a fair

comparison of the two systems because both values were

computed on the full ETH database, showing the percent-

age of correctly classified images assuming a 10 ◦ threshold

on the angular error.

Fig. 7 shows the success rate when the angle error thresh-

old is set to 15 ◦, and the nose error to 20 mm. In this case,

we loaded 15 trees as before, but set the stride to 10. The

test dataset was divided based on the heads’ angles of rota-

tions for pitch and yaw, in areas of 15 ◦ × 15 ◦. Only areas

622

Figure 7. Normalized success rates of the estimation. The database

was discretized in 15
◦ × 15

◦ areas and the accuracy compute for

each range of angles separately. The color encodes the number of

images falling in each region, as explained by the bar on the side.

with more than 10 images were considered and are filled in

the image; the color-coding represents the amount of data

contained in the angle range of each area, as described by

the color bar on the right. It can be noted how the results are

close to 100% for the central region of the map, where most

of the images in the ETH database fall. The performance

usually decreases in the corner regions, where the rotations

are very large, and the number of images low. In general,

our results are comparable to a similar plot presented in [4].

Figure 8. Correctly estimated poses from the ETH database. Large

rotations, glasses, and facial hair do not pose major problems in

most of the cases. The green cylinder represents the estimated

head rotation, while the red ellipse is centered on the estimated 3D

nose position and scaled according to the covariance provided by

the forest (scaled by a factor of 10 to ease the visualization).

Fig. 8 shows some successfully processed frames from

the ETH database. The red ellipse represents the estimated

nose location and it is scaled according to the covariance

output of the regression forest. The green cylinder is cen-

tered on the nose tip and stretches along the estimated head

Figure 9. Example failure images from the ETH database. The

large ellipse denotes that the regression predicted a high variance

for the estimate of the nose location.

direction. Our system is robust to large rotations and partial

facial occlusions (note the girl at the bottom right, with most

of the face covered by hair, which is not reconstructed by

the scanner). Two example failures are rendered in Fig. 9.

We ran our real-time system on a Intel Core 2 Duo com-

puter @ 2GHz, equipped with 2GB of RAM, which was

simultaneously used to acquire the range data as explained

in [27]. Fig. 10 shows some example frames, with our

method successfully estimating the head pose even when

the nose is badly occluded and thus most of the other ap-

proaches based on 3D data would fail. Facial expressions

also do not seem to cause problems to the regression in most

of the cases, even though the synthetic training dataset con-

tains only neutral faces.

5. Conclusions

In this work, we have presented an approach for real-

time head pose estimation from depth data. In our exper-

iments, we have performed a thorough quantitative evalu-

ation on a publicly available database where our approach

achieves state-of-the-art performance. Because we do not

rely on specific hardware like a GPU, our approach is also

suitable for applications where hardware constraints limit

the computational resources. In particular, the introduction

of a stride for patch processing gives an easy-to-use parame-

ter to steer the trade-off between accuracy and computation

cost for an optimal setting. Furthermore, our approach is ro-

bust against severe occlusions, because we do not localize a

few, specific facial features but estimate the pose parameters

from all surface patches within a regression framework.

6. Acknowledgements

The authors acknowledge financial support from the

SNF project Vision-supported Speech-based Human Ma-

chine Interaction (200021-130224) and the EU project

RADHAR (FP7-ICT-248873). We also thank Thibaut

Weise for providing the 3D scanner and useful code.

623

Figure 10. Example frames from our real-time head pose estimation system, showing how the regression works even in the presence of

facial expressions and partial occlusions.

References

[1] V. N. Balasubramanian, J. Ye, and S. Panchanathan. Biased

manifold embedding: A framework for person-independent

head pose estimation. In CVPR, 2007.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classifi-

cation and Regression Trees. Wadsworth and Brooks, Mon-

terey, CA, 1984.

[4] M. D. Breitenstein, D. Kuettel, T. Weise, L. Van Gool, and

H. Pfister. Real-time face pose estimation from single range

images. In CVPR, 2008.

[5] Q. Cai, D. Gallup, C. Zhang, and Z. Zhang. 3d deformable

face tracking with a commodity depth camera. In ECCV,

2010.

[6] L. Chen, L. Zhang, Y. Hu, M. Li, and H. Zhang. Head pose

estimation using fisher manifold learning. In Workshop on

Analysis and Modeling of Faces and Gestures, 2003.

[7] Y. Cheng. Mean shift, mode seeking, and clustering. TPAMI,

17:790–799, 1995.

[8] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. TPAMI, 23:681–685, 2001.

[9] T. F. Cootes, G. V. Wheeler, K. N. Walker, and C. J. Tay-

lor. View-based active appearance models. Image and Vision

Computing, 20(9-10):657–664, 2002.

[10] A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu.

Regression forests for efficient anatomy detection and local-

ization in ct studies. InMedical Computer Vision Workshop,

2010.

[11] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempit-

sky. Hough forests for object detection, tracking, and action

recognition. TPAMI, 2011.

[12] C. Huang, X. Ding, and C. Fang. Head pose estimation based

on random forests for multiclass classification. In ICPR,

2010.

[13] M. Jones and P. Viola. Fast multi-view face detection. Tech-

nical Report TR2003-096, Mitsubishi Electric Research Lab-

oratories, 2003.

[14] V. Lepetit and P. Fua. Keypoint recognition using random-

ized trees. TPAMI, 28:1465–1479, 2006.

[15] S. Malassiotis and M. G. Strintzis. Robust real-time 3d

head pose estimation from range data. Pattern Recognition,

38:1153 – 1165, 2005.

[16] Y. Matsumoto and A. Zelinsky. An algorithm for real-time

stereo vision implementation of head pose and gaze direction

measurement. In Aut. Face and Gestures Rec., 2000.

[17] A. Mian, M. Bennamoun, and R. Owens. Automatic 3d face

detection, normalization and recognition. In 3DPVT, 2006.

[18] L.-P. Morency, P. Sundberg, and T. Darrell. Pose estimation

using 3d view-based eigenspaces. In Aut. Face and Gestures

Rec., 2003.

[19] E. Murphy-Chutorian and M. Trivedi. Head pose estimation

in computer vision: A survey. TPAMI, 31(4):607–626, 2009.

[20] R. Okada. Discriminative generalized hough transform for

object dectection. In ICCV, 2009.

[21] M. Osadchy, M. L. Miller, and Y. LeCun. Synergistic face

detection and pose estimation with energy-based models. In

NIPS, 2005.

[22] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vet-

ter. A 3d face model for pose and illumination invariant face

recognition. In Advanced Video and Signal based Surveil-

lance, 2009.

[23] K. Ramnath, S. Koterba, J. Xiao, C. Hu, I. Matthews,

S. Baker, J. Cohn, and T. Kanade. Multi-view aam fitting

and construction. IJCV, 76:183–204, 2008.

[24] E. Seemann, K. Nickel, and R. Stiefelhagen. Head pose es-

timation using stereo vision for human-robot interaction. In

Aut. Face and Gestures Rec., 2004.

[25] M. Storer, M. Urschler, and H. Bischof. 3d-mam: 3d mor-

phable appearance model for efficient fine head pose estima-

tion from still images. In Workshop on Subspace Methods,

2009.

[26] T. Vatahska, M. Bennewitz, and S. Behnke. Feature-based

head pose estimation from images. In Humanoids, 2007.

[27] T. Weise, B. Leibe, and L. Van Gool. Fast 3d scanning with

automatic motion compensation. In CVPR, 2007.

[28] J. Whitehill and J. R. Movellan. A discriminative approach

to frame-by-frame head pose tracking. In Aut. Face and Ges-

tures Rec., 2008.

[29] R. Yang and Z. Zhang. Model-based head pose tracking with

stereovision. Aut. Face and Gestures Rec., 2002.

[30] J. Yao and W. K. Cham. Efficient model-based linear head

motion recovery from movies. In CVPR, 2004.

624

