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Abstract

Fast and reliable algorithms for estimating the head pose
are essential for many applications and higher-level face
analysis tasks. We address the problem of head pose esti-
mation from depth data, which can be captured using the
ever more affordable 3D sensing technologies available to-
day. To achieve robustness, we formulate pose estimation
as a regression problem. While detecting speci c face parts
like the nose is sensitive to occlusions, learning the gre :
sion on rather generic surface patches requires enormous Figure 1. Real time head pose estimation example.
amount of training data in order to achieve accurate esti-
mates. We propose to use random regression forests for the

task at hand, given their capability to handle large traigin tion can nally allow us to overcome some of the prob-

datasets. Moreover, we synthesize a great amount of anNO. 1.5 inherent of methods based on 2D data. However, ex-
tated training data using a statistical model of the human

face. In our experiments, we show that our approach can

isting depth-based methods either need manual initializa-
handl Id ol h ol tion, cannot handle large pose variations, or are not real-
andle real data presenting large pose changes, partial - e - an exception are approaches like the one presented

clusions, and fa_cial expressions, even though it is trained by [4], where the authors achieve real-time performance by
only on synthetic neutral face data. We have thoroughly o, o iting the massive parallel processing power of a GPU.

evgluated our system on a publicly available dqtabase ON Their approach relies on a geometric descriptor which pro-
which we achieve state-of-the-art performance without hav

. _ vides nose location hypotheses which are then compared
ing to resort to the graphics card.

to a large number of renderings of a generic face template,

done in parallel on the GPU. The fast computation time

1. Introduction reported ig onIy_achievabIe provided that speci ¢ graphics
hardware is available.

Automatic and robust algorithms for head pose estima- GPUs, however, present a very high power consump-
tion can be bene cial to many real life applications. Accu- tion which limits their use for certain kinds of application
rately localizing the head and its orientation is eitherake Hence, we propose an approach for 3D head pose estima-
plicit goal of systems like human-computer interfaces( tion which does not rely on speci c graphics hardware and
reacting to the user's head movements), or a necessary prewhich can be tuned to achieve the desired trade-off between
processing step for further analysis, such as identi gatio accuracy and computation cost, which is particularly usefu
or facial expression recognition. Due to its relevance andt when resources are limited by the application. We formu-
the challenges posed by the problem, there has been considate the problem as a regression, estimating the head pose
erable effort in the computer vision community to develop parameters directly from the depth data. The regression
fast and reliable algorithms for head pose estimation. is implemented within a random forest framework [2, 10],

Methods relying solely on standard 2D images face seri- learning a mapping from simple depth features to a prob-
ous problems, notably illumination changes and textuseles abilistic estimation of real-valued parameters such as 3D
face regions. Given the recent development and availabil-nose coordinates and head rotation angles. Since random
ity of 3D sensing technologies, which are becoming ever forests (as any regressor) need to be trained on labeled data
more affordable and reliable, the additional depth informa and the accuracy depends on the amount of training, data
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acquisition is a key issue. We solve this problem by train- images [5, 18, 24]. Seemarmat al. [24] presented a neu-

ing only on synthetic data, generating an arbitrary num- ral network-based system fusing skin color histograms and
ber of training examples without the need of laborious and depth information. It runs at 10 fps but requires the face
error-prone annotations. Our system works in real-time on ato be rst detected in frontal pose. The work of [5] uses a
frame-by-frame basis, without any manual initializatian o linear deformable face model for real-time tracking of the
expensive calculations. In our experiments, we show that ithead pose and facial movements using depth and appear-
works for unseen faces and can handle large pose changesnce cues. Their system focuses on tracking facial features

variations such as facial hair, and partial occlusiang,, and thus no evaluation is presented for its head pose track-
due to glasses, hands, or missing parts in the 3D reconstrucing performance. The approach presented in [17] uses head
tion. Moreover, as it does not rely on speci c features, pose estimation only as a preprocessing step to face recog-

for the nose tip detection, our method can be adapted to thenition, and the reported errors are only calculated on faces
localization of other parts of the face. The performance of belonging to the same people. Breitensteiral. [4] pro-

the system is evaluated on a challenging publicly available posed a real-time system which can handle large pose vari-
database and our results are comparable or superior to thations, partial occlusions (as long as the nose remains visi

state-of-the-art. ble), and facial expressions from range images. The method
uses geometric features to generate nose candidates which
2. Related Work suggest many head position hypotheses. Thanks to the mas-

sive parallel computation power of the GPU, they can si-
) . ) multaneously compare all suggested poses to a generic face
the literature [19]. Existing methods can conveniently be template previously rendered in many different orientzgio

givk_jed depem;ing r?g the typ(;_of gatg th.ey relybba,,d | and nally choose the pose minimizing a prede ned cost
D images or depth data. Within the 2D image-based al- tion ~ Also the authors of [15] use range images and

gorithms, we can further distinguish between appearance-rely on the localization of the nose; however, their repibrte

based a”?' feature-bgseq methods. While the former IOOl?esults; are computed on a database generated by syntheti-
at the entire face region in the image, the latter rely on the cally rotating frontal scans of several subjects

localization of speci c facial feature points. :
. . . Random forests [2] have become a popular method in
A common appearance-based approach is to discretize - . . :
computer vision [11, 10, 20, 14, 12] given their capabil-
the head poses and learn a separate detector for each pose, L . I
) Ity to handle large training datasets, high generalization
e.g, [13, 18]. Approaches like [1, 6] focus on the map- : : .
: . ; . - - power, fast computation, and ease of implementation. Re-
ping from the high-dimensional space of facial images into . .
) : : i cent works showed the power of random forests in mapping
lower-dimensional, smooth manifolds; Osadatyal. [21], . . .
. . image features to votes in a generalized Hough space [11] or
for example, use a convolutional network, detecting faces . ;
T o X to real-valued functions [10, 12]. Recently, multiclass-ra
and their orientation in real-time. Several works rely on . )
L dom forests have been proposed in [12] for real-time head
statistical models of the face shape and appearange,

Acive Appearance odels (VAYS) 3 and e sxien [75% SS090lh 1o 20 e st o e bet o ur
sions [9, 23, 25], but their focus is usually on detection and ge, b bp

. ; regression forests for the task of head pose estimation from
tracking of facial features.

Feature-based methods need either the same facial fear_ange data.

tures to be visible in all pose®.g, [26, 29, 16], or use . . .

pose-dependent features; for example, Yao and Cham [30}3 He_ad Pose Estimation with Random Regres-
select feature points manually and match them to a generic ~ Sion Forests

wireframe model. The authors of [28] use a combination
of the face appearance and a set of speci ¢ feature points,
which bounds the range of recognizable poses to the one
where both eyes are visible.

In general, methods relying solely on 2D images are
sensitive to illumination, lack of features, and partiat oc
clusions. Moreover, the annotation of head poses from
2D images is an error-prone task in itself. Fortunately,
recent 3D technologies have achieved high quality at af-
fordable costse.g, [27]. The additional depth informa-
tion can help in solving some of the limitations of image- Classi cation and regression trees [3] are powerful tools
based methods, therefore several recent works use depth ecapable of mapping complex input spaces into discrete or
ther as primary cue [4, 15] or as an addition to standard 2Drespectively continuous output spaces. A tree achieves

Head pose estimation is the goal of several works in

Our goal is to jointly estimate the 3D coordinates of the
nose tip and the angles of rotation of a range image of a
%ead,i.e., 2.5D data output of a range scanner like [27].
We use a random regression forest (Sec. 3.1), trained as ex-
plained in Sec. 3.2 on a large dataset of synthetically gen-
erated range images of faces (Sec. 3.4). The way the actual
regression is performed is explained in Sec. 3.3.

3.1. Random Regression Forests
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highly non-linear mappings by splitting the original prob- over neighboring, non-border pixels. The real-valuedaect
lem into smaller ones, solvable with simple predictors. ; =f y; y; 2, yaw; pitch ; ron g CONtains the pose pa-
Each node in the tree consists of a test, whose result directsameters associated to each patch. The compongnts,
a data sample towards the left or the right child. During and , represent an offset vector from the point in the range
training, the tests are chosen in order to group the trainingscan falling on the center of the training patch to the nose
data in clusters where simple models achieve good predic-position in 3D, while yaw, pitch , and o are the head
tions. Such models are stored at the leaves, computed fromiotation angles denoting the head orientation.
the annotated data which reached each leaf at train time. We build the trees following the random forest frame-
Breiman [2] shows that, while standard decision trees work [2]. At each non-leaf node, starting from the root,
alone suffer from over tting, a collection of randomly a test is selected from a large, randomly generated set of
trained trees has high generalization power. Random forest possible binary tests. The binary test at a non-leaf node is
are thus ensembles of trees trained by introducing random-de ned astt.r ,.F,. (I):
ness either in the set of examples provided to each tree, in X X
the set of tests available for optimization at each nodej or i jFij * 1" (q) j Foj * 1" (q) > ; (1)
both. Figure 2 shows a very simple example of the regres- 42F1 q2F,
sion forest used in this work.
wherel f indicates the feature chann&}, andF, are two
rectangles within the patch boundaries, arigl a threshold.
The test splits the training data into two sets: When a patch
satis es the test it is passed to the right child, otherwiise,

q 'd > =S q patch is sent to the left child. We chose to take the differ-
ence between the average values of two rectangular areas
V4 \\ . / \\ (as the authors of [10]) rather than single pixel difference
] ® ( (as in [11]) in order to be less sensitive to noise. Figure 3
/ N\ /N \ /N shows a patch (marked in red) and the two randomly gen-

L (/ d erated region§, andF, as part of a binary test; the arrow

/
\ /\ \ era :
U r raw i ﬁ indicates the 3D offset vector stretching from the patch cen
& ter (in red) to the annotated nose location (green).

Figure 2. Example of regression forest. For each tree, gt &
the non-leaf nodes direct an input sample towards a leafrevhe
a real-valued, multivariate distribution of the outputgraeters is
stored. The forest combines the results of all leaves toym®a
probabilistic prediction in the real-valued output space.

Patch

£l FoL ]

3.2. Training

The _Iearnlng 'S_ sgperVIsed,e.z tralnln_g dat"?‘ IS a_lnno- Figure 3. Example of a training patch (larger, red rectangi¢h
tated with values irR™, whereD is the dimensionality of  ji5"associated offset vector (arrow) between the 3D poiihéa
the desired output. In our setup, training examples consistat the patch's center (red dot) and the ground truth locasfdhe
of range images of faces annotated with 3D nose locationnose (marked in green). The rectangles F1 and F2 represent a
and head rotation angles. We limit ourselves to the problempossible choice for the regions over which to compute a inar
of estimating the head pose, thus assume that the head hédsst.
been already detected in the image. However, a random for-
est could be trained to jointly estimate the head position in . .
the range image together with the pose, as in [11, 20]. During the construction of the tree, at each non-leaf

Each treeT i the forestT =, fT;g is constructed from node, a pool of binary tests¥ is generated with random
f 0 values forf , F1, F2, and . The set of patches arriving
a set of patchesP; = |

i ;i fandomly sampled from at the node is evaluated by all binary tests in the pool and
the training examplesLif are the extracted visual features the test maximizing a prede ned measure is assigned to the
for a patch of xed size; in the current setup, we use one to node. Following [10], we optimize the trees by maximizing
four feature channels, namely depth values and, optignally the information gain de ned as the differential entropy of
theX, Y, andZ values of the geometric normals computed the set of patches at the parent né&deninus the weighted
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sum of the differential entropies computed at the children

P andPg: ; /ﬁ’ i
IG=HP) (WH(PL)+wrH(PRr)); (2 :

whereP;y | 4 IS the set of patches reaching nddand
w; is the ratio between the number of patchesamd in its
parent nodei,e., w; = 'jF;—}’.

We model the vectors at each node as realizations of a
random variable with a multivariate Gaussian distribution
i.e,p( )= N( ; ; ). Therefore, Eq. (2) can be rewritten
as:

Figure 4. Example test image: the green spheres are the enes s
lected after the Itering of the outliers (blue spheres) bgan shift.
The large green cylinder stretches from the nal estimat¢hef

X
IG =logj (P)i wilogj i(P)i: () nose center in the estimated face direction.

i2f LR g

Maximizing Eq. (3) favors tests which minimize the deter-
minant of the covariance matrix, thus decreasing the un-
certainty in the votes for the output parameters cast by eac
patch cluster.

We assume the covariance matrix to be block-diagona

CA model constructed from aligned range scans of many
different people [22]. The initialization for the mean4{hi
;Step is the mean of all votes returned by the forest, which

v . _ we assume to be close to the true nose location, where most
0 a ,li.e, we allow covariance only among of the votes usually cluster. In our experiments, removing
offset vectors ( ') and among head rotation angles®), outliers has shown to be c_rumal in test_ images where the
but not between them. Eq. (3) thus becomes: head undergoes I_arge _rotatlons and/or is partially oc_clgde
X by glasses or facial hair. We nally sum all the remaining
IG =log(j “j+] %) wilog( Yji+] &): random vanablgs, producing a Gaussian whose mean is
i2f LR g the ultimate estimate of our output parameters and whose
4 covariance represents a measure of the estimate's uncer-

A leaf| is created when the maximum depth is reached tainty. An example test frame is shown in Fig. 4, where the
or a minimum number of patches are left. Each leaf storesSmall blue spheres are all votes cast by the forest, and the
the mean of all angles and offset vectors which reached it, 9"€€n, larger ones represent the votes selected after mean-

together with their covariancee., a multivariate Gaussian ~ Shift. The nal estimate of the nose position and head di-
distribution. rection is represented by the green cylinder.

3.3. Testing . .
3.4. Training Data Generation
Given a new, unseen range image of a head, patches (of

the same size as the ones used for training) are densely sam- Random forests can be built from large training datasets
pled and passed through all trees in the forest. At each noden reasonable time and are very powerful in learning the
of a tree, the stored binary test evaluates a patch, sendingnost distinctive features for the problem at hand. We there-
it either to the right or left child, all the way down un- fore generated a large database of 50K, 640x480 range im-
til a leaf. Arrived at a leafl, a patch gives an estimate ages of faces by rendering a 3D morphable model [22] in
for the pose parameters in terms of the stored distributionmany randomly generated poses. The rotations s
p( j)=N(; ;). foryaw, 50 for pitch, and 20 for roll. Moreover, we
Because leaves with a high variance are not very infor- randomly translated the 3D model along the z axis within a
mative and add mainly noise to the estimate, we discard50 cm range. We further perturbed the rst 30 PCA modes
all Gaussians with a total variance greater than an empiricof the shape model by 2 of the standard deviation of each
thresholdmax,. We also rst locate the nose position to mode, thus introducing random variations also in the iden-
remove outliers before estimating all other parameters. Wetity of the faces. We stored the 3D coordinates of each vis-
thus perform 10 mean-shift [7] iterations using a spherical ible point on the face surface for each pixel in each image,
kernel and keep only the random variables whose means faltogether with the ground truth 3D coordinates of the nose
within the mean-shift kernel. The kernel radius is de ned as tip and the three rotation angles. Figure 5 shows a few of
a fraction of the size of the smallest sphere enclosing the av the training faces, with the red bar pointing out from the
erage human face, which we consider to be the mean of thenose indicating the head direction.
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rors. We picked the valuemax, = 400 andratio =5 as
they showed the best compromise for the errors in both the
nose localization and angle estimation task. Additionally
the number of trees to be used and a stride in the sampling
of the patches for testing can be adapted to nd the desired
balance between accuracy and speed of the estimation pro-
cess. This is a very important feature of our system since
it allows to adapt the algorithm to the computational con-
straints imposed by the application.

In the following experiments, we always trained each
tree sampling 25 patches from each of 3000 synthetically
generated images, while the full ETH database was used

Figure 5. Sample images from our synthetically generataid-tr

ing set. The heads show large 3D rotations and variationkein t for testing.

distance from the camera and also in identity. The red cglind The plots in Fig. ¢a,d) show the time in ms needed to
attached to the nose represents the ground truth orientatithe process one frame (once loaded into memory) using our
face. method, depending on the number of loaded trees and on

the stride. It is important to note that the current implemen
tation is not optimized, and could greatly bene t from using
integral images, possibly reducing the computation time of
a factor of 2. Fig. @) plots the average runtime (computed

In order to assess the performance of our algorithm on re-over 500 frames) for a stride xed to 20 as a function of
alistic data, we used the ETH Face Pose Range Image Dat¢he number of trees, while in Fig(®) 15 trees are loaded
Set [4]. The database contains over 10K range images ofand the stride parameter changes. The red circular markers
20 people (3 females, 6 subjects recorded twice, with andrepresent the performance of the system when all available
without glasses) turning their head while captured at 28 fpsfeature channels are employedde( depth and geometric
by the range scanner of [27]. The images have a resolutionnormals), while the blue crosses refer to the setup where
of 640x480 pixels, and a face typically consists of around only the depth channel is used. We used a computer with an
150x200 pixels. The head pose range covers ab@a Intel Core i7 CPU @ 2.67GHz, without resorting to multi-
yaw and 45 pitch rotations. The provided ground truth threading. It can be seen that, for a number of trees less or
for each image consists of the 3D nose tip coordinates andequal to 15 and a stride greater or equal to 20, both curves
the coordinates of a vector pointing in the face direction.  are well below 40msi.e., we achieve framerates above 25

Our system outputs real-valued estimates for the 3D noseffames per second. If not otherwise speci ed, the remaining
location and the three head rotation angles. However, theresults and images have been produced using these values
above database does not contain roll rotations, which arefor the number of trees and the stride.
not encoded in the directional vector provided as ground The additional computations needed to extract the nor-
truth. Therefore, we evaluated our performance with regardmals (a 4-neighborhood is used - all done on the CPU)
to orientation by computing the head direction vector from pay off in terms of estimation accuracy, as visualized in the
the estimated yaw and pitch angles and report the angularFigs. b,c,e,f) The plot in Fig. §b) shows the percentage
error with the vector provided as ground truth. For the nose of correctly estimated images as a function of the success
localization, the Euclidian distance is used as error measu threshold set for the angular error, while in Figepthe

Our method is controlled by a few parameters. In the thresholds are de ned on the nose localization error. As can
present setup, some parameters have been xed intuitively,be seen in all plots, using all the available feature channel
like the size of the patches (120x80 pixels), the maximum performs consistently better than taking only the depth in-
size of the sub-patches de ning the aréasandF; in the formation. More in detail, for a conservative threshold of
tests ( xed to 40 pixels), and the number of mean-shift it- 10 on the angular error, our method succeede€l(d%
erations used to remove outliers from the set of randomof the cases95:4% for 15 , and95:9% for 20 . With the
variables obtained from the regression forest, set to 10.same thresholding and on the same dataset, [4] reports per-
Additional parameters are the maximum accepted variancecentages oB0:8%, 97:8%, and98:4%, i.e., we have im-
max, of the Gaussians output of the leaves and the ratio proved the accuracy of abol®%for the most conservative
de ning the radius of the mean-shift spherical kernel. In threshold, which is also the most relevant one. The perfor-
order to nd the best combination of these last two param- mance for nose localization is shown in Figepwhere the
eters, we used a small part of the ETH database (1000 imsuccess rate for thresholds between 10 and 35 mm is plotted,
ages) and ran a coarse grid search for the best average ee.g, setting a 20 mm threshold leads3&2% accuracy.

4. Experiments
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Figure 6. All plots are labeled in blue and crosses when dméydiepth channel is used by the system, and in red and cirbles all four
channels are used (depth plus X,Y, and Z components of tmeais). a) Regression time as a function of the number of trette forest
when the stride is xed to 20 pixels, the reported values amaged over 500 images. b) Accuracy of the system in terrpsm@entage
of correctly estimated poses as a function of the angle énreshold. c) Average nose error in mm, as a function of thmbar of trees
(with stride=20). d) Runtime of the system for a forest of f&es as a function of the stride parameter. e) Accuracygal@gainst nose
error thresholds in mm. f) Nose localization error for a &ref 15 trees and varying stride. In the current, unoptichigettings, the
system achieves real-time performance for forests witth trees and a stride 20. The additional information coming from the normals
consistently boosts the performance.

Nose error | Yaw error | Pitch error| Direction estimation accuracy
Our approach 134=21:1mm | 5:7=152 5:1=4:9 90:4%
Breitenstein et al| 9:0=140mm | 6:1=10:3 4:2=3:9 80:8%

Table 1. Comparison of our results with [4]. The rst thredurons show mean and standard deviation for the Euclidean ierthe nose
tip localization task (mm) and for the yaw and pitch estimatidegrees). The values in the last column are the pereentfgorrectly
estimated images for a threshold on the angular error (tgriiend truth provided with the ETH database) of 10 degrees.

In 6:5% of the range images in the ETH database, our ported by [4] are computed only on estimates with a high
system did not return an estimaieg., no votes were left  nose detection con dence (positive rate8ff%and a false
under the mean-shift kernel; these images were discardegositive rate 0f3%), but the percentage of retained images
before computing the following average errors. Figs,® is not provided. The last column of Table 1 is instead a fair
show the average error in the nose localization task, plot-comparison of the two systems because both values were
ted as a function of the number of trees when the stride iscomputed on the full ETH database, showing the percent-
xed to 20 (6(c)) and as a function of the stride when 15 age of correctly classi ed images assumingix threshold
trees are used (§). Again, using the normals in additionto  on the angular error.
the depth channel (red curve) shows considerably superior
performance. The mean and standard deviation of the pose . 19 7 Shows the success rate when the angle error thresh-

estimation error are reported in Table 1 and compared to theOld is set tolS , and the nose error @0 mm. In. this case,

errors reported in [4]. However, the rst three columns of we loaded 15 tree_s _as before, but set the Stf'de to 10. The
Table 1 are not directly comparable, because the errors relest dataset was divided based on the heads’ angles of rota-
tions for pitch and yaw, in areas @5 15 . Only areas
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Figure 7. Normalized success rates of the estimation. Ttaddae for the estimate of the nose location.
was discretized ii5 15 areas and the accuracy compute for
each range of angles separately. The color encodes the nafbe

images falling in each region, as explained by the bar onitie s o ) ) )
direction. Our system is robust to large rotations and glarti

facial occlusions (note the girl at the bottom right, withsho
. . _ _ of the face covered by hair, which is not reconstructed by

with more than 10 images were considered and are lled in the scanner). Two example failures are rendered in Fig. 9.
the image; the color-coding represents the amount of data  \we ran our real-time system on a Intel Core 2 Duo com-
contained in the angle range of each area, as described b}ﬂuter @ 2GHz, equipped with 2GB of RAM, which was
the color bar on the right. It can_be noted how the results arésimultaneously used to acquire the range data as explained
close tol100%for the central region of the map, where most [27]. Fig. 10 shows some example frames, with our
of the images in the ETH database fall. The performancemethod successfully estimating the head pose even when
usually decreases in the corner regions, where the rofation ihe nose is badly occluded and thus most of the other ap-
are very large, and the number of images low. In general, 5r5aches based on 3D data would fail. Facial expressions
our results are comparable to a similar plot presented in [4] 3150 do not seem to cause problems to the regression in most

of the cases, even though the synthetic training dataset con

, p ' \ tains only neutral faces.
£ ,?.‘\ o
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- 5. Conclusions
3
v

In this work, we have presented an approach for real-
vy time head pose estimation from depth data. In our exper-
oy iments, we have performed a thorough quantitative evalu-

' s " ation on a publicly available database where our approach
2N (’"‘ ‘;' b 7 achieves state-of-the-art performance. Because we do not
W/ 5,40 , ‘ rely on speci c hardware like a GPU, our approach is also

J (qu > .\ suitable for applications where hardware constraintstlimi

X7 ol the computational resources. In particular, the introiduact
of a stride for patch processing gives an easy-to-use parame
ter to steer the trade-off between accuracy and computation
rotations, glasses, and facial hair do not pose major pnublie EOSt fora_n optimal setting. _Furthermore, ourapproachis_ro
most of the cases. The green cylinder represents the estimat ust agamst Seyere occlusions, b_ecause we do not localize a
head rotation, while the red ellipse is centered on the estic3D (€W, SPeci c facial features but estimate the pose pararaete
nose position and scaled according to the covariance pedwbigt from all surface patches within a regression framework.
the forest (scaled by a factor of 10 to ease the visualization

74
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S

Figure 8. Correctly estimated poses from the ETH databaesgel

6. Acknowledgements

Fig. 8 shows some successfully processed frames from The authors acknowledge nancial support from the
the ETH database. The red ellipse represents the estimate8NF project Vision-supported Speech-based Human Ma-
nose location and it is scaled according to the covariancechine Interaction (200021-130224) and the EU project
output of the regression forest. The green cylinder is cen-RADHAR (FP7-ICT-248873). We also thank Thibaut
tered on the nose tip and stretches along the estimated head/eise for providing the 3D scanner and useful code.

623



Figure 10. Example frames from our real-time head pose atitim system, showing how the regression works even in tegepice of
facial expressions and partial occlusions.
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