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Abstract—Real-time semantic segmentation of LiDAR data is
crucial for autonomously driving vehicles and robots, which are
usually equipped with an embedded platform and have limited
computational resources. Approaches that operate directly on the
point cloud use complex spatial aggregation operations, which are
very expensive and difficult to deploy on embedded platforms. As
an alternative, projection-based methods are more efficient and
can run on embedded hardware. However, current projection-
based methods either have a low accuracy or require millions
of parameters. In this paper, we therefore propose a projection-
based method, called Multi-scale Interaction Network (MINet),
which is very efficient and accurate. The network uses multiple
paths with different scales and balances the computational re-
sources between the scales. Additional dense interactions between
the scales avoid redundant computations and make the network
highly efficient. The proposed network outperforms point-based,
image-based, and projection-based methods in terms of accuracy,
number of parameters, and runtime. Moreover, the network
processes more than 24 scans, captured by a high-resolution
LiDAR sensor with 64 beams, per second on an embedded
platform, which is higher than the framerate of the sensor. The
network is therefore suitable for robotics applications.

I. INTRODUCTION

Environment perception and understanding are key to re-
alize self-driving vehicles and robots. For the full-view per-
ception of the environment, autonomously driving vehicles
are usually equipped with multi-sensor systems, among which
light detection and ranging (LiDAR) sensors play a key role
due to their precise distance measurements. The large point
clouds that are generated by the LiDAR sensors, however, need
to be interpreted in order to understand the environment.

Although convolution neural networks (CNNs) perform well
for semantic image segmentation [1], [2], [3], [4], they cannot
be applied directly to 3D point clouds. This is because standard
convolutions require a regular grid structure, whereas a raw
point cloud is an unordered structure. To address this problem,
some methods [5], [6], [7] directly process point clouds using
some spatial aggregation operations like grouping and gather-
ing. Although these methods work well in indoor scenarios, it
is difficult to apply them to large outdoor scenarios since the
computational cost of the aggregation operation increases with
the number of points. Another issue is that these methods are
inefficient on embedded platforms since they use operations
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that cannot be efficiently mapped on embedded hardware like
Jetson AGX using TensorRT. However, runtime efficiency is
of vital importance for real-world applications, especially for
autonomously driving vehicles and robots.

Wu et al. [8], [9] thus proposed to represent point clouds
produced by a LiDAR sensor as an ordered projection map,
such that CNNs can then be applied. However, projected
LiDAR data and RGB images are different modalities and
applying directly 2D image-based methods does not yield a
high segmentation accuracy. For this reason, some specific
CNNs have been designed for LiDAR-based depth images,
named as projection-based methods. Recent projection-based
methods like [10], however, are very large with more than 50M
parameters, making them not suitable for embedded platforms.

In this work, we therefore propose a lightweight projection-
based model for semantic segmentation of LiDAR data that
runs in real-time on an embedded platform. To this end, we
revisit common multi-scale approaches like U-Net [11] that
have one path for each scale, i.e., each scale is processed
independently and then fused at the end of the network.
These networks, however, use the same operations for each
path, which makes them either too expensive for embedded
platforms or the accuracy is very low depending how complex
the used operations are. In order to achieve a good balance
between effectiveness and efficiency, we therefore adapt the
computational operations for each path. While the top path
extracts low-level clues, which can be easily detected with
shallow layers operating on high-resolution feature maps, the
bottom path extracts high-level semantic information, which
requires more complex operations but on low-resolution fea-
ture maps. In order to avoid redundant computations across
the paths, we furthermore propose a dense top-to-bottom
interaction strategy where feature maps from a path are passed
to all lower paths. We term the network, which is shown in
Fig. 1, Multi-scale Interaction Network (MINet).

In addition, we show that the accuracy can be increased if
additional supervision is added. While this is consistent with
[2], [12], [13], [14], we demonstrate that it is important to use
the right type of supervision for the right part of the network.
In fact, we use semantic supervision only for the two top
paths but not for the bottom path and edge supervision for
the fusion of the multiple paths. The latter is important to
obtain accurate segment boundaries after upsampling the paths
with lower resolution. Finally, we process the multi-modal data
consisting of 3D coordinates, remission, and depth information
first independently and then fuse them in the feature space.
This is in contrast to previous works for LiDAR data that
just concatenate the modalities and therefore ignore that the
characteristics of each modality are different.

In summary, our contributions include:
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Fig. 1. Illustration of the MINet architecture with three paths in the Multi-scale Interaction Module. The numbers 2 and 4 for interpolation (U) and average
pooling (D) indicate the upsampling and downsampling factor. The dashed arrows indicate the supervision type. The detailed description of the architecture
is given in Tab. I where the different blocks are illustrated in Fig. 2 and the Up Fusion Module is illustrated in Fig. 3.

� We propose a multi-scale approach where the computa-
tional operations are balanced across the different scales
and a top-to-bottom interaction strategy avoids redundant
computations.

� We exploit different types of additional supervision to
improve the accuracy without increasing the inference
time.

� Different from previous methods, we process each modal-
ity independently and fuse them in the feature space,
which improves the overall segmentation performance.

� By incorporating the above design decisions, we propose
a lightweight projection-based model for semantic seg-
mentation of LiDAR data that runs in real-time on an
embedded platform.

The experimental results demonstrate that our method reduces
the number of parameters by about 98% and is about 4� faster
than the state-of-the-art projection-based method [10], while
achieving a higher accuracy. We also evaluate our model on
an embedded platform and demonstrate that our method can
be deployed for autonomous driving.

II. RELATED WORK

A. Point-based Semantic Segmentation

Although CNNs [1], [2], [3], [4] are successful for 2D
image-based semantic segmentation, they cannot handle un-
structured data like point clouds. To address this problem,
tangent convolutions [15] project local points to a tangent
plane and vanilla convolutions are then applied to it. Point-
Net [5] is the �rst method that directly processes the point
cloud. It applies a convolution operation for each point and
uses a permutation invariant operation to aggregate informa-
tion. However, PointNet does not take local information into
consideration, which is realized by PointNet++ [6]. SPGraph
[16] tackles semantic segmentation of large-scale point clouds
by de�ning a super point graph (SPG). Because point-based

methods are inef�cient for large point clouds, RandLA [17]
addresses this problem by adopting random sampling and
designing a better grouping strategy to maintain a better perfor-
mance. P2Net [18] applies point-based methods on projected
LiDAR data. However, these methods are too expensive for
many applications, especially for embedded platforms.

B. Projection-based Semantic Segmentation

Projection-based segmentation methods project LiDAR
point clouds onto 2D multi-modal images and use 2D CNNs
for semantic segmentation. SqueezeSeg [8] and Squeeze-
SegV2 [9] use a lightweight network called SqueezeNet [19]
for semantic segmentation and a CRF for post-processing.
Based on SqueezeSeg, RangeNet++ [10] adopts Darknet [20]
and replaces the CRF with ak-NN for post-processing. It has
also been successfully used to improve LiDAR-based odom-
etry [21] and loop closure detection [22]. Current projection-
based methods, however, do not achieve the same segmenta-
tion accuracy as point-based methods and the best performing
approaches use very large networks. In this paper, we propose
a novel lightweight model that can run in real-time on an em-
bedded platform while achieving state-of-the-art performance.

III. M ULTI -SCALE INTERACTION NETWORK

The proposed Multi-scale Interaction Network (MINet) op-
erates on projection maps generated from LiDAR point clouds.
To associate a LiDAR pointa = ( x; y; z) to a pixel (u; v) in
the projection map of size(h; w), we compute yaw (1) and
pitch (2) and map it to pixel coordinates by translation and
scaling [10]:

u =
1
2

[1 � arctan2(y; x)� � 1]w; (1)

v = [1 � (arcsin(zd� 1) + oup )o� 1]h: (2)
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TABLE I
INSTANTIATION OF THE PROPOSEDMIN ET.

Module Operation k c s t Output size

MFM

Conv2d 3 4 1 5 64� 2048
MobileBlock 3 20 1 1 64� 2048
MobileBlock 3 24 2 1 32� 512
MobileBlock 3 24 1 1 32� 512
MobileBlock 5 40 2 1 16� 256
MobileBlock 5 40 1 1 16� 256
MobileBlock 5 40 1 1 16� 256
MobileBlock 3 80 1 1 16� 256
MobileBlock 3 80 1 1 16� 256
MobileBlock 3 80 1 1 16� 256
MobileBlock 3 80 1 1 16� 256

Conv2d 1 32 0 1 16� 256

MIM

MobileBlock 3 64 1 1 16� 256
MobileBlock 3 128 1 1 16� 256
MobileBlock 3 128 1 1 16� 256
MobileBlock 3 32 1 1 8� 128
MobileBlock 3 64 1 1 8� 128
MobileBlock 3 64 1 1 8� 128
MobileBlock 3 128 1 1 8� 128
MobileBlock 3 128 1 1 8� 128
BasicBlock 3 64 1 1 4� 64
BasicBlock 3 128 1 1 4� 64
BasicBlock 3 128 1 1 4� 64

UFM
Conv2d 3 32 1 1 16� 512
Conv2d 3 32 1 1 64� 2048
Conv2d 1 32 1 1 64� 2048

* Each module contains several components: Conv2d, MobileBlock, and
BasicBlock. Conv2d denotes a convolutional layer followed by one batch
normalization layer and ReLU activation. MobileBlock and BasicBlock
are illustrated in Fig. 2. Each operation has a kernel sizek, strides, and
c output channels, repeatedt times. The three sections of MIM denote
the three paths.

The vertical �eld-of-view of the LiDAR sensor iso =
oup + odown , whereoup and odown represent the above and
below horizon of the �eld-of-view, respectively.d = jjajj
denotes the depth of a point. After this transformation, we
obtain a projection map of size(h; w; 5) where the 5 channels
correspond to the coordinates(x; y; z), the depth, and the
remission of the corresponding 3D point. The remission value
indicates the proportion of the light that is diffusely re�ected.
It provides therefore information of the surface, which is
helpful for distinguishing different classes. While depth can
be computed from the coordinates, the network operations do
not compute the depth explicitly. Adding depth in addition
to the coordinates thus improves the accuracy as we show in
our experiments. Each channel is normalized by the mean and
standard deviation computed over the training and validation
set.

The architecture of MINet is shown in Fig. 1. The pro-
jection map is �rst processed by the Mini Fusion Module
(MFM) (Sec. III-A) to fuse the multi-modal information in the
feature space. In the Multi-scale Interaction Module (MIM)
(Sec. III-B), the data is processed at three different scales
where the resolution is reduced by factor two for each path.
As it is shown in Tab. I, the computation differs for each path
where we use two basic components, namely MobileBlock and
BasicBlock. The MobileBlock [23], [24] utilizes depthwise
convolutions and has thus fewer parameters, but its learning
capacity is also limited. The BasicBlock [25] is stronger,
but also more expensive. MobileBlock and BasicBlock are
shown in Fig. 2. We therefore balance the computational
resources across the three paths as it is shown in Tab. I. While

Fig. 2. Illustration of the MobileBlock (top) and the BasicBlock (bottom).
DWConv means depth-wise convolution.

we use the expensive BasicBlock for the bottom path with
lowest resolution, we decrease the computational cost as the
resolution increases using �ve MobileBlocks for the middle
path and three for the top path. The connections from each
path to lower paths avoid redundant computations at lower
paths and make the network more ef�cient. Finally, the 2D
predictions for the original resolution are produced by the Up
Fusion Module (UFM) (Sec. III-C), which are then mapped
back to the 3D space. In the remainder of this section, we
describe each module of MINet.

A. Mini Fusion Module (MFM)

Different from an RGB image, the projection map con-
tains channels of different modalities. Previous projection-
based segmentation methods [8], [9], [10] treat such different
modalities equally, but we show that processing each channel
independently using MFM is more ef�cient. Speci�cally, each
channel of the multi-modal image is mapped to an independent
feature space using �ve convolution blocks, including normal-
ization and activation. This corresponds to the �rst row of
Tab. I. This step can be considered as a feature calibration step
for each modality before fusing them. It needs to be noted that
we also treat thex, y, andz coordinates separately. After the
�rst �ve convolutional layers, these features are concatenated
and fed into several MobileBlocks for fusing them. Since a
small resolution leads to less computation, the information of
the feature maps are gradually aggregated by average pooling.

B. Multi-scale Interaction Module (MIM)

After the fusion module, the data is processed by three
paths where each path corresponds to a different scale as
shown in Fig. 1. From top to bottom, the resolution of the
feature maps is decreased by factor two using average pooling
and the receptive �eld is accordingly increased. For the top
path, we use the highest resolution. Since processing high
resolution feature maps is very expensive, we use only three
MobileBlocks as shown in Tab. I. The bottom path, which has
the largest receptive �eld and lowest resolution, can offer more
abstract semantic clues if we use more expensive operations.
Hence, it uses three BasicBlocks. The middle path is a com-
promise between the top and bottom path and consists of �ve



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

Fig. 3. Illustration of the Up Fusion Module (UFM).

TABLE II
IMPACT OF THE THREE MODULES.

No. MFM Interaction UFM mIoU
1 X X 50.9
2 X X 50.7
3 X X 50.6
4 X X X 51.8
5 w/o depth X X 49.6

MobileBlocks. In our experiments, we show that increasing
the computational operations as the resolution decreases leads
to a higher ef�ciency compared to using the same blocks for
all paths. While the number of parameters doubles compared
to the proposed architecture if we use the BasicBlocks for all
paths, the accuracy drops if only MobileBlocks are used.

A second important design choice is to allow interactions
among the paths. Since the computational complexity of the
paths increases for lower paths, we use a dense top-to-bottom
fusion design for ef�cient multi-scale feature interaction. Espe-
cially, feature maps of the �rst and second path will be resized
by average pooling and passed to all lower paths. To avoid a
mismatch of the number of channels, the number of channels
is increased gradually for each path and kept the same at each
interaction position. Hence, no other operations are used to
adjust the number of channels as shown in Tab. I. Due to the
interaction, the lower paths bene�t from the features computed
from higher paths. The lower paths can therefore focus on
information that has not been extracted by higher paths due
to limited computational resources.

C. Up Fusion Module (UFM)

To obtain the semantic labels of each pixel in the projection
map, UFM shown in Fig. 3 combines the features from
different scales and upsamples them to the input resolution.
In addition, features after the �rst MobileBlock of the Mini
Fusion Module are used to recover detailed spatial information
as shown in Fig. 1. The lower part of Fig. 3 shows the
feature maps of the three different paths that are �rst resized
to the same size, concatenated together, and fused by a 1� 1
convolution. The fused feature maps are then upsampled to
the original resolution and processed by a convolution block
including a 3� 3 convolution, batch normalization, and ReLU
activation. The upper part shows the feature maps from the
Mini Fusion Module that have already the original resolution.
They are processed by a MobileBlock and a convolution

TABLE III
IMPACT OF ADDITIONAL SUPERVISION.

No. MIM UFM mIoUTop Middle Bottom
1 S S E 51.8
2 S E 50.3
3 S E 50.2
4 S S 50.5
5 E 49.0
6 48.4
7 S S S E 50.9
8 S S S 50.8
9 S S E(FL) 49.4

* “S” denotes semantic supervision. “E” denotes edge supervision.
“(FL)” indicates that the focal loss is used for edge supervision.

TABLE IV
IMPACT OF � IN (7).

� 0 0.01 0.1 1.0
mIoU 49.0 49.3 51.8 51.4

block. Finally, the processed features from both modules are
added together. Although the spatial information of the original
feature maps already helps to sharpen segment boundaries,
which can be fuzzy due to the upsampling, adding additional
supervision for the segment boundaries emphasizes this effect
as we will explain in the next section.

D. Booster Training Strategy

Adding supervision to intermediate parts of a network [26]
has been shown to be useful for network optimization [2], [12],
[13], [14]. In this work, we also use intermediate supervision,
however, we propose two different types of supervision. Sim-
ilar to balancing the computational resources across scales, it
is very important to use the right supervision for the right part
of the network.

We use the standard weighted cross-entropy loss as semantic
supervision

L s = �
1

jI j

X

i 2 I

NX

n =1

wn pn
i log(p̂n

i ); (3)

whereN is the number of classes,jI j is the total number of
image pixels,pn

i is the ground-truth semantic label for pixel
i and classn (pn

i 2 f 0; 1g), and p̂n
i is the predicted class

probability. The weightwn for classn is inversely proportional
to its occurrence frequency as in [10].

Besides at the end of the network, we use the weighted
cross-entropy lossL s for the top and middle path as indicated
by the dashed arrows in Fig. 1. As we will show in the experi-
ments, this intermediate supervision improves the training and
boosts the accuracy. Adding this semantic supervision to the
bottom path, however, does not help since the resolution of the
lower path is too low and downsampling of the ground-truth
introduces too many artifacts.

As discussed in Sec. III-C, obtaining accurate segment
boundaries after upsampling is an issue. Inspired by [27],
[28], we extract the semantic boundaries from the ground-
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