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Abstract. The practical use of the latest methods for supervised 3D
shape co-segmentation is limited by the requirement of diverse training
data and a watertight mesh representation. Driven by practical consider-
ations, we assume only one reference shape to be available and the query
shape to be provided as a partially visible point cloud. We propose a
novel co-segmentation approach that constructs a part-based object rep-
resentation comprised of shape appearance models of individual parts
and isometric spatial relations between the parts. The partial query
shape is pre-segmented using planar cuts, and the segments accompa-
nied by the learned representation induce a compact Conditional Ran-
dom Field (CRF). CRF inference is performed efficiently by A∗-search
with global optimality guarantees. A comparative evaluation with two
baselines on partial views generated from the Labelled Princeton Seg-
mentation Benchmark and point clouds recorded with an RGB-D sensor
demonstrate superiority of the proposed approach both in accuracy and
efficiency.

1 Introduction

As humans, we generally feel comfortable interacting with objects of diverse
shapes that can belong to the same semantic category. Mugs, for example, take
a variety of shapes, though their functions of containing liquid and drinking are
not impeded. It takes us little effort to associate handles of different mugs despite
these shape variations. This ability allows us to seamlessly generalise our limited
experience to all other objects of similar type that we encounter later in life.

We define the object correspondence problem in terms of co-segmentation.
In contrast to a pointwise correspondence, co-segmentation seeks to establish a
semantic correspondence between object parts by modelling the object structure
based on part appearance and topological part relations. We understand parts
to fulfill a certain function within the working of the whole shape, such as legs
of a chair for stability, or a handle of a vase for grasping. We argue that this
formulation lends itself well for many practical applications where high shape
discrepancies between same-category objects and partial views make it difficult
to estimate a full deformation model.
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2 Related Work

3D shape co-segmentation is closely related to shape correspondence with some
of the classical approaches surveyed by van Kaick et al. [38].

The cornerstone of supervised co-segmentation methods [13,15] is the repre-
sentation of the object surface mesh with a Conditional Random Field (CRF),
inspired by similar models in computer vision [29,33]. The unary data terms in
the CRF model geometric similarity of individual faces in the mesh, whereas
the pairwise term is learned to differentiate between segment boundaries and
their interior. Van Kaick et al. [13] also added an “intra-edge” term to distin-
guish between different shape parts based on their geometric similarity. Good
performance of these methods hinges on the size and diversity of the training
data.

In an unsupervised setting, a coherent segmentation is sought over a group
of shapes simultaneously. The scores of normalised cuts guided agglomerative
clustering [8,20] and a tree structure was used [14] to exploit the hierarchy of
object structures. Like [14], Sidi et al. [34] computed diffusion maps, but applied
spectral clustering instead. Single features or a concatenation thereof were used
to establish correspondence between mesh faces [8,13,15], segments [34], super-
voxels [20] or corresponding indicator functions [11,23,40], while Hu et al. [9]
also clustered each feature independently in their own subspace and fused the
result. A rigid pre-alignment was crucial to establish the initial correspondence
in [8,14], whereas non-rigid variability of the reference model [1,25,44] or a tem-
plate structure of primitive shapes [16,42,45] drove the co-analysis itself, very
much by analogy with deformable models in images [37]. Huang et al. [10] for-
mulated the problem as a quadratic integer program that jointly optimises over
individual segmentation and its consistency with the other shapes in the group.
They and Hu et al. [9] applied relaxation techniques, but combinatorial opti-
misation [13,15], alternating schemes [20] and greedy strategies [16] were also
employed to efficiently solve the non-convex objective.

All discussed methods exhibit a number of practical limitations. Most no-
tably, it is the heavy reliance on holistic and contextual features which make
them suitable only for closed manifold models [11,13,15,31,32]. At the same
time, the potential of structural constraints remains largely untapped [16,21].
Also, unsupervised co-analysis is inherently unable to exploit the ground-truth
segmentation: The user might want to identify specific parts of a known model
on the novel shape. Kim et al. [16] and the semi-supervised approach of Wang
et al. [41] allow mechanisms for a progressive refinement of the segmentation,
albeit by means of manual intervention of the user.

Encouraged by the success of part-based models in the context of object
detection [2,7], as well as recent advances in classification [5,26,28] and shape
retrieval [22,24,35], we propose to revise the classical co-segmentation approach.
We learn a part-based representation from a single CAD model or a physical
object and expect the query shape to be provided only as a partial point cloud.
Our model is also flexible enough for encoding structural constraints between
parts in a natural manner. In this work, we demonstrate one such possibility.
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Fig. 1: Overview of our approach. A segmented mesh of the reference shape is
used for training. The query is a point cloud of a similar partially observed shape.

3 Method

In the real world, objects can be observed only partially from any given view
angle of the sensor. Therefore, we train a model of the given reference shape
using the feature vectors extracted from a set of single views (see Fig. 1). The
provided query shape is pre-segmented in an unsupervised fashion to obtain
part candidates. Note that the partitioning may oversegment object parts. Our
choice of the pre-segmentation algorithm is driven by the intention to avoid
fine over-segmentation while keeping track of potential model parts at the same
time. This makes it compatible with the learned model and allows structure
constraints to be incorporated at the level of shape parts as opposed to segment
boundaries. The co-segmentation problem ultimately reduces to an efficiently
solved inference in a moderately-sized Conditional Random Field.

3.1 Model

In the context of pointwise shape correspondence, Bronstein et al. [3] developed
a shape embedding framework based on the notions of intrinsic and extrinsic
similarity. While isometric deformations do not affect the intrinsic similarity, it
is prone to topology changes. By contrast, extrinsic similarity is topologically
stable, yet does not exhibit isometric invariance. We integrate these notions of
similarity in a part-based representation by minimising the discrepancy in the
part shape appearance and the inter-part isometric distortion.

We assume the reference S :=
⋃
i Si and the query T :=

⋃
i Ti shapes to be

collections of segments formed by points in the Euclidean space E3. We define a
label function ` : S → LS mapping shape segments Si to the label space LS ⊂ Z
and let `i denote the label of segment Si for short. The probability p(`i | Tj)
is related to appearance similarity of the segment Tj with the segments in S
labelled `i. Similarly, we model probability p(`i, `j | Ti, Tj) to measure the degree
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(a) (b)

Fig. 2: Our modification of the CPC segmentation: (a) Illustration of the prob-
lem; (b) Example segmentation without (left) and with (right) modification.

of isometric distortion between each pairwise assignment. Our objective can be
formulated as a maximum likelihood estimate of the form:

minimize
`

−
∑
i

extrinsic similarity︷ ︸︸ ︷
log p(`i | Ti) −

∑
i,j

intrinsic similarity︷ ︸︸ ︷
log p(`i, `j | Ti, Tj) . (1)

3.2 Segmentation

We base the construction of segment candidates on the recently introduced
Constrained Planar Cuts (CPC) method [30]. The algorithm finds planar cuts
through concave regions that define segment boundaries. In our preliminary ex-
periments, we found that multiple cuts in the regions with high concentration
of concave points frequently yield a number of small fragments which are subse-
quently merged with neighboring segments according to size. The suboptimality
of this approach is illustrated in Fig. 2a. Consider an imaginary object profile seg-

mented with cuts 1 and 2 into parts A, B and C such that |B| < |C| < |A|,
where |·| is a segment size measure (e.g. segment area). If segment B is small
enough to be merged, the CPC algorithm will assign it to segment A since

|A| > |C|. However, cut 1 exhibits a more pronounced concavity than cut 2
and, hence, merging B with C will be more visually cohesive.

To address this problem, we merge segments in the ascending order of con-
cavity scores computed as the fraction of concave points on the boundary. Recall
that for neighbouring supervoxels with centroids x1 and x2 and normals n1 and
n2 the connection is concave if n1·d−n2·d < 0, where d = (x1−x2)/‖x1−x2‖. A
comparative example in Fig. 2b demonstrates that an arbitrary order of merging
the shape fragments leads to the jagged segment boundaries on the wing and
tail of the airplane, whereas agglomeration of the fragments in the increasing
order of concavity results in a more natural segmentation. We quantitatively
summarise the effectiveness of our modification in comparison with the original
version in Table 1.
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3.3 Shape Appearance

We represent appearance of each object part using “shape words” derived from a
generative model of the underlying feature space spanned by the local shape de-
scriptors. In this work, we contrast the frequency-counting Bag-of-Words (BoW)
paradigm with the second-order statistics gathered by the Fisher vectors (FV) [12].

For each view v and shape part with label `, we extract a set of 3D point
clusters P`,v with uniformly sampled centres. From every set of point clusters
we draw an equal number of randomly sampled fixed-sized subsets P`,v,i ⊂ P`,v,
or feature packets for short. By construction, the feature packet does not rely on
complete visibility of the shape part present in the training data. Furthermore,
the effect of the disparity in the surface area of each shape part is mitigated,
since every feature packet comprises the same number of point clusters.

Let M`,v = {m`,v,t | m`,v,t ∈ RD,∀t = 1, ..., T} denote the set of T shape
feature vectors with label ` ∈ LS visible from view angle v ∈ V . We model the
union of the feature vectors over all labels and views

⋃
`∈LS ,v∈V M`,v by the

Gaussian mixture model (GMM):

p(m`,v,t) =

K∑
i=1

wiN (m`,v,t|µµµi, Σi), (2)

where N (m`,v,t|µµµi, Σi) is a multinomial normal distribution with mean µµµi and
diagonal covariance matrix Σi.

A BoW vector fBoW (p`,v) ∈ RK for each cluster in the feature packet ρ`,v,i ∈
P`,v,i can be constructed as:

f
(k)
BoW(ρ`,v,i) =

wk
|ρ`,v,i|

∑
t

N (m`,v,t|µµµk, Σk), (3)

where m`,v,t ∈ ρ`,v,i, |ρ`,v,i| is the number of low-level feature descriptors and

f
(k)
BoW(·) is the kth dimension of vector fBoW ∈ RK . We vectorise each feature

packet by taking the average over the BoW vectors of the clusters it contains.
To construct the Fisher vector, we compute the gradients Gµµµk

(ρ`,v,i) :=
∂ log p(ρ`,v,i|λ)

∂µµµk
and Gσσσk

(ρ`,v,i) :=
∂ log p(ρ`,v,i|λ)

∂σσσk
for every point cluster ρ`,v,i of the

feature packet P`,v,i extracted from a segment with label ` in view v:

Gµµµk
(ρ`,v,i) =

1

|ρ`,v,i|
√
ωk

|ρ`,v,i|∑
t=1

γ`,v,t(k)

(
m`,v,t −µµµk

σk

)
, (4)

Gσσσk
(ρ`,v,i) =

1

|ρ`,v,i|
√

2ωk

|ρ`,v,i|∑
t=1

γ`,v,t(k)

(
(m`,v,t −µµµk)2

σ2
k

− 1

)
, (5)

where vector division is element-wise, σi := diag(Σi) and

γ`,v,t(k) =
ωkuk(m`,v,t)∑K
j=1 ωjuj(m`,v,t)

, m`,v,t ∈ ρ`,v,i (6)
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Fig. 3: Comparison of spectral distances between two pairs of segments.
The distribution of the commute time distances between pairs of points on the
base and the handle (green) and on the handle and the neck (red) are shown.
Despite shape discrepancy, the histograms still capture the key features of the
shape topology: The base is “farther away” to the handle than the neck.

is the soft assignment of descriptor m`,v,t to the Gaussian centre k. The Fisher
vector is formed by concatenating the gradients (4) and (5) of each Gaussian
centre:

fFV(ρ`,v,i) = (GTµµµ1
(ρ`,v,i), ..., G

T
µµµK

(ρ`,v,i), G
T
σσσ1

(ρ`,v,i), ..., G
T
σσσK

(ρ`,v,i))
T . (7)

The inherent sparsity of 2KD-dimensional Fisher vectors is detrimental to their
discriminative properties when used in conjunction with the common L2-distance.
As a remedy, we apply the power normalisation that uniformly rescales the vector
by applying the following function element-wise [26]: f(z) = sign(z)|z|α.

The computed vectors fBoW (·) and fFV (·) along with the corresponding la-
bels of the shape parts they represent, form the training dataset of the shape
appearance model. We use the Support Vector Machine (SVM) with an RBF ker-
nel for BoW vectors and a linear SVM for Fisher vectors. The trained classifier
is used for label prediction of each segment on the query shape.

3.4 Isometric Spatial Relations

The distribution of spectral distances can be used as a measure of shape simi-
larity [4]. Moreover, we could also apply this principle to segment pairs of the
same shape, i.e we can extract the distances between a pair of point sets and
compare the distribution to that derived from another pair. To support our in-
tuition, an example with histograms of two partially visible vases is shown in
Fig. 3. In addition to providing insights into the shape topology, the histograms
also insinuate the normal distribution.

In order to account for distance variation in partial views and intrinsic shape
symmetries, we propose to learn a multinomial distribution of distances ex-
tracted from every pair of shape parts DS(`i, `j) := {dS(si, sj) | si ∈ Si, sj ∈
Sj}. Note, that by construction DS(`i, `j) = DS(`j , `i) and we allow i = j since
the distance distribution is also informative within a single segment.



Efficient Single-view 3D Co-segmentation 7

Denoting by `i∼i′ the assignment of label i′ to segment Ti of the query shape,
we compute the likelihood estimate of the data given a pairwise assignment as

p
(
DS(Ti, Tj) | `i∼i′ , `j∼j′

)
=
∑
n

∑
k

ωi
′j′

k N (µi
′j′

k , σi
′j′

k | dS(tin, tjn)). (8)

Assuming any given pairwise assignment to be equiprobable, its probability
estimate is computed using the Bayes rule:

p
(
`i∼i′ , `j∼j′ | DS(Ti, Tj)

)
=

p
(
DS(Ti, Tj) | `i∼i′ , `j∼j′

)∑
i′′,j′′ p

(
DS(Ti, Tj) | `i∼i′′ , `j∼j′′

) . (9)

To compute the distance DS(·, ·), we use the eigenfunctions of the Laplace-
Beltrami operator applied directly to the point cloud. We estimate it using the
Moving Least Squares (MLS) approximation [17] and define dS(x, y) as the com-
mute time distance [4], d2S(x, y) =

∑
i

1
λi

(φi(x) − φj(y))2, where λi and φi(·) is
the i-th eigenvalue and eigenfunction of the operator.

3.5 Inference

Our resulting model is a small to medium-sized CRF with fully connected label
nodes and the energy defined by (1). We extract the same number of feature
packets on the query shape

⋃
j Tj whose segments were generated in the pre-

segmentation step. The scores obtained from predictions of the individual feature
packets are averaged over complete segments and the result of the prediction of
the label assignment `i to the segment Tj is naturally interpreted as p(`i | Tj).
We let p(`i, `j | Ti, Tj) := p

(
`i∼i′ , `j∼j′ | DS(Ti, Tj)

)
define the distance measure

between the two segments. We also add “hard” constraints that penalise part
neighbourhoods not observed in the reference shape [13,15].

We observe that our compact model is not dissimilar to the one used by [2]
for object part detection. Their study revealed that for small graphs, A∗-based
inference often outperformed other algorithms, such as (Loopy) Belief Propa-
gation [43] and the Tree Reweighted Belief Propagation [39] not only in the
optimality but also in the runtime. This insight and the equivalence of our mod-
els supports our choice of the A?-search for the inference technique.

4 Evaluation

In two experiments, we evaluate our approach and compare its performance to
the baseline derived from the state-of-the-art [13] and [15]. In our implementation
of these methods, we only omitted volumetric and global feature descriptors
which do not scale to partial shapes, also corroborated by the failure of the
author’s original C++/Matlab implementation of [15]. In the first quantitative
experiment, we evaluated variants of our approach on the Labelled PSB dataset
[15]. In the second qualitative experiment, we used point cloud data of two
watering cans recorded with an RGB-D camera. This experiment demonstrates
the practical aspects and efficiency of our approach in real-world scenarios.
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Table 1: Average accuracy on the LPSB dataset, in percent.
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[13] 58.8 62.7 35.2 43.2 58.1 43.5 59.6 81.6 84.2 60.1 78.1 52.2 41.3 81.3 82.0 33.7 71.6 71.9 64.3 61.2

[15] 58.9 62.0 35.6 43.4 57.0 43.2 59.6 81.8 84.4 59.4 78.6 52.7 41.6 81.7 82.8 32.5 70.9 71.1 65.5 61.2

SHOT+BoW 66.2 59.2 42.2 52.1 57.4 43.8 60.6 90.0 72.1 51.1 75.4 53.4 35.8 82.4 76.5 70.5 88.9 64.5 70.6 63.8

FPFH+BoW 69.9 57.5 48.9 55.7 55.3 40.8 54.5 88.9 75.9 51.6 60.7 54.1 38.0 80.2 66.0 69.5 84.1 72.5 69.2 62.8

SHOT+BoW+ISO 65.6 57.0 39.9 50.5 52.0 43.6 56.7 87.6 71.7 48.1 75.5 46.8 34.2 84.4 75.0 57.3 87.5 69.4 65.3 61.5

SHOT+BoW+ISO∗ 63.9 58.8 41.2 52.1 53.4 44.0 57.4 89.6 73.2 48.3 74.0 49.7 37.0 84.3 76.8 70.5 86.5 68.1 69.4 63.0

FPFH+FV 77.7 64.0 54.9 52.2 58.5 44.6 60.2 88.7 78.4 54.9 74.1 56.0 43.7 84.1 69.6 71.9 85.4 76.4 70.3 66.6

FPFH+FV (CPC) 77.2 60.4 43.8 49.4 57.8 40.6 58.2 90.9 77.9 50.3 69.2 56.2 41.2 85.8 71.3 70.8 85.5 75.3 68.9 64.8

FPFH+FV (L2) 74.6 63.3 52.2 54.5 57.2 44.8 60.3 88.2 77.8 54.2 73.8 56.0 41.6 82.3 68.2 68.2 85.7 76.4 66.2 65.6

SHOT+FV 72.1 64.7 52.5 57.6 60.3 42.5 64.1 90.4 79.0 59.0 75.6 56.0 45.7 79.0 79.9 71.8 87.9 76.5 72.8 67.8

FPFH+FV+ISO 74.1 60.0 51.5 51.2 53.6 45.0 55.5 87.5 77.7 50.6 73.4 49.6 40.4 84.6 69.8 58.8 84.1 77.0 63.8 63.6

4.1 Quantitative Results

For each category in the Labelled PSB dataset [15], we generated a dataset of
valid random views. To retain object diversity, a random view was considered
valid if at least 20% of each shape part is visible. We created a uniform grid
of view points on a sphere enclosing the shape and proved each for the validity
criterion. In order to obtain distinctive shapes, we selected randomly only eight
viewpoints with the maximum spread. The dataset is publicly available1.

For every category, we ran “one-vs-all” co-segmentation scheme with every
compatible pair of shapes. The pair counts as compatible if the query doesn’t
contain labels not present on the reference shape. Hence, we performed co-
segmentation for at most 20 × 8 × 19 = 3040 object pairs in each category
(the runs against own partial views were excluded).

For benchmarking, we adopted the evaluation metrics proposed by [6], namely
the Hamming distance, Rand index2, the Global and Local Consistency Error
(GCE and LCE) and the accuracy. We compared a number of configurations of
our approach based on either Bag-of-Words (BoW) or Fisher vector (FV) rep-
resentations. Two shape descriptors were used for the underlying feature space:
FPFH [27] and SHOT [36]. To assess the influence of the binary term, we also
ran experiments with and without the isometric spatial relations abbreviated
ISO.

The accuracy results per category are summarised in Table 1. We observe
that our approach shows higher accuracy in 14 out of 19 categories and on av-
erage. However, our isometric context did not improve the results. In fact, the

1 http://www.ais.uni-bonn.de/data/alroma
2 Reported as one minus Rand index, by convention

http://www.ais.uni-bonn.de/data/alroma
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(a) Evaluation on the criteria [6].

van Kaick et al. FPFH+FV

Training 259.6 581.0

Learning CRF 506.5 -

Total 766.1 581.0

Pre-segmentation - 34.2

Inference 290.15 16.1

Total 290.15 50.3

(b) Average time per object pair, in seconds.

Fig. 4: Quantitative evaluation results.

accuracy is worse on average and per category, with the exception of Bust, Mech
and Teddy. We attribute this fact to a better pre-segmentation quality of these
shapes which did not lead to a significant distortion of the distribution of spec-
tral distances. In some categories, the hard constraints further exacerbated the
performance. Dropping them (configuration SHOT+BoW+ISO∗) particularly
improved the segmentation of Plier, where the failure to segment out the pivot,
previously led to a violation of the hard constraint “handles–nose”.

Another insight is the better accuracy obtained with SHOT descriptors wrt.
FPFH. However, the memory demands become impractical for commodity hard-
ware if Fisher vectors are used (∼10 times more than FPFH). The L2-normalisation
of Fisher vectors [26] did not improve the results (FPFH+FV (L2)) which is in
line with the expectation that the original motivation for using it does not ap-
ply (i.e. there is no background to neglect). Also, the original CPC algorithm
(FPFH+FV (CPC)) yielded a lower accuracy on average. This is expected since
our modification aimed only at refining segment boundaries.

Our method exhibits a sharp decrease of GCE and LCE as seen in Fig. 4a.
While the baselines tend to produce segmentations with many local inconsisten-
cies, our method assigns labels to a few large segments. The results in Fig. 4a
also agree with those in Table 1: The configuration based on the Fisher vectors
achieves best scores overall while the isometric context exacerbates the perfor-
mance.

4.2 Qualitative Results

In the second experiment, we evaluated our configuration FPFH+FV on real
data by comparing its efficiency and qualitative accuracy with the baseline [13].

We supplied both algorithms with a manually labelled reference shape ob-
tained from an RGB-D sensor. Since the baseline [13] only works with meshes,
we computed a fast triangulation [19] from a representative partial view cloud.
Our approach, by contrast, was able to learn the model from a small number of
labelled single-view point clouds extracted from a sequence of training frames.
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Frame 6 Frame 34 Frame 56 Frame 99

(a)

Frame 2 Frame 17 Frame 22 Frame 28

(b)

Fig. 5: Test sequences from an RGB-D sensor. Top row: van Kaick et al. [13];
Bottom row: Ours (FPFH+FV). (a) Same query shape as the reference; (b) A
novel query shape.

The first test sequence is a recording of the original model in a previously
unseen action. From a representative selection of frames in Fig. 5a, we conclude
that although our approach failed to detect the handle in Frame 99, it still per-
formed well in other frames. By comparison, the baseline method [13] identified
only patches of the handle throughout the sequence.

In a more challenging setup, both algorithms had to co-segment a novel
instance of a watering can. The baseline method misclassified a large fraction of
the container in the first two frames and confused the spout with the handle in
the last two (Fig. 5b). Our approach mixed up the parts in Frame 2 and detected
only part of the handle in Frame 22, but otherwise performed well.

Time benchmarking was conducted in the first part of the experiment using
a laptop with Intel Core i7 CPU and 8GB RAM. The code was parallelised for
face- and pointwise operations (e.g. normals and curvatures). The timing results
are summarised in Figure 4b. Despite the additional pre-segmentation step, our
co-segmentation was almost six times faster than the baseline implementation.

5 Conclusions

We presented a new approach to the co-segmentation problem that addresses
practical limitations of the existing state-of-the-art methods. Our algorithm is
readily applicable to point clouds captured from real sensors and does not re-
quire a complete object model both for the reference and the query shape. The
generality of our pipeline suggests a number of configurations and we have inves-
tigated only a subset of them. In future, we plan to experiment with other feature
encoding schemes, such as spatial sensitive Bag-of-Words [24] and improve the
contextual features using other approximations of diffusion distances [3,18] and
spatial relations.
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