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ABSTRACT

In this work we address the challenging problem of 3D human pose estimation from single images.
Recent approaches learn deep neural networks to regress 3D pose directly from images. One major
challenge for such methods, however, is the collection of large amounts of training data. Particularly,
collecting a large number of unconstrained images that are annotated with accurate 3D poses is im-
practical. We therefore propose to use two independent training sources. The first source consists of
accurate 3D motion capture data, and the second source consists of unconstrained images with anno-
tated 2D poses. To incorporate both sources, we propose a dual-source approach that combines 2D
pose estimation with efficient 3D pose retrieval. To this end, we first convert the motion capture data
into a normalized 2D pose space, and separately learn a 2D pose estimation model from the image
data. During inference, we estimate the 2D pose and efficiently retrieve the nearest 3D poses. We
then jointly estimate a mapping from the 3D pose space to the image and reconstruct the 3D pose. We
provide a comprehensive evaluation of the proposed method and experimentally demonstrate the ef-
fectiveness of our approach, even when the skeleton structures of the two sources differ substantially.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

3D human pose estimation has a vast range of applications
such as virtual reality, human-computer interaction, activity
recognition, sports video analytics, and autonomous vehicles.
The problem has traditionally been tackled by utilizing multiple
images captured by synchronized cameras capturing the person
from multiple views (Belagiannis et al., 2014; Sigal et al., 2012;
Yao et al., 2012). In many scenarios, however, capturing multi-
ple views is infeasible which limits the applicability of such ap-
proaches. Since 3D human pose estimation from a single image
is very difficult due to missing depth information, depth cam-
eras have been utilized for human pose estimation (Baak et al.,
2011; Shotton et al., 2011; Grest et al., 2005). However, current
depth sensors are also limited to indoor environments and can-
not be used in unconstrained scenarios. Therefore, estimating
3D pose from single, in particular unconstrained, images is a
highly relevant task.
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One approach to address this problem is to follow a fully-
supervised learning paradigm, where a regression model (Bo
and Sminchisescu, 2010; Ionescu et al., 2014b; Kostrikov and
Gall, 2014; Ionescu et al., 2014a; Agarwal and Triggs, 2006;
Bo et al., 2008; Li and Chan, 2014; Tekin et al., 2015) or a
deep neural network (Li et al., 2015; Tekin et al., 2016, 2017;
Zhou et al., 2016a; Moreno-Noguer, 2017; Popa et al., 2017)
can be learned to directly regress the 3D pose from single im-
ages. This approach, however, requires a large amount of train-
ing data where each 2D image is annotated with a 3D pose.
In contrast to 2D pose estimation, manual annotation of such
training data is not possible due to ambiguous geometry and
body part occlusions. On the other hand, automatic acquisition
of accurate 3D pose for an image requires a very sophisticated
setup. The popular datasets like HumanEva (Sigal et al., 2010)
or Human3.6M (Ionescu et al., 2014b) use synchronized multi-
ple cameras with a commercial marker-based system to acquire
accurate 3D poses for images. This, however, requires a very
expensive hardware setup and also limits the applicability of
such systems primarily to indoor laboratory environments due
to the requirements of marker-based system like studio envi-
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ronment and attached markers. Some recent approaches such
as EgoCap (Rhodin et al., 2016) allows to capture 3D poses in
outdoor environments, but image data in such cases is restricted
only to ego-centric views of the person.

In this work, we propose a dual-source method that does not
require training data consisting of pairs of an image and a 3D
pose, but rather utilize 2D and 3D information from two in-
dependent training sources as illustrated in Fig. 1. The first
source is accurate 3D motion capture data containing a large
number of 3D poses, and is captured in a laboratory setup, e.g.,
as in the CMU motion capture dataset (CMU, 2014) or the Hu-
man3.6M dataset (Ionescu et al., 2014b). Whereas, the sec-
ond source consists of images with annotated 2D poses as they
are provided by 2D human pose datasets, e.g., MPII Human
Pose (Andriluka et al., 2014), Leeds Sports Pose (Johnson and
Everingham, 2010), and MSCOCO (Lin et al., 2014). Since
2D poses can be manually annotated for images, they do not
impose any restriction regarding the environment from where
the images are taken. In fact any image from the Internet can
be annotated and used. Since both sources are captured inde-
pendently, we do not know the 3D pose for any training image.
In order to bring the two sources together, we map the motion
capture data into a normalized 2D pose space to allow for an
efficient retrieval based on 2D body joints. Concurrently, we
learn a 2D pose estimation model from the 2D images based on
convolutional neural networks. During inference, we first es-
timate the 2D pose and retrieve the nearest 3D poses using an
effective approach that is robust to 2D pose estimation errors.
We then jointly estimate the projection from the 3D pose space
to the image and reconstruct the 3D pose.

A preliminary version of this work was presented in (Yasin
et al., 2016). In this work we leverage the recent progress in
2D pose estimation (Toshev and Szegedy, 2014; Iqbal et al.,
2017; Carreira et al., 2016; Pishchulin et al., 2016; Wei et al.,
2016; Hu and Ramanan, 2016; Insafutdinov et al., 2016; Newell
et al., 2016; Bulat and Tzimiropoulos, 2016; Gkioxari et al.,
2016; Rafi et al., 2016; Chu et al., 2017), and improve the per-
formance of (Yasin et al., 2016) by a large margin. We fur-
ther show that with the availability of better 2D pose estimates,
the approach (Yasin et al., 2016) can be largely simplified. We
extensively evaluate our approach on two popular datasets for
3D pose estimation namely Human3.6M (Ionescu et al., 2014b)
and HumanEva (Sigal et al., 2010). We provide an in-depth
analysis of the proposed approach. In particular, we analyze
the impact of different MoCap datasets, the impact of the simi-
larity of the training and test poses, the impact of the accuracy
of the used 2D pose estimator, and also the differences of the
skeleton structure between the two training sources. Finally, we
also provide qualitative results for images taken from the MPII
Human Pose dataset (Andriluka et al., 2014).

2. Related Work

Earlier approaches for 3D human pose estimation from sin-
gle images (Bo et al., 2008; Mori and Malik, 2006; Bo and
Sminchisescu, 2010; Agarwal and Triggs, 2004; Sminchisescu
et al., 2005; Agarwal and Triggs, 2006) utilize discriminative

methods to learn a mapping from hand-crafted local image fea-
tures (e.g., HOG, SIFT, etc.) to 3D human pose. Since local
features are sensitive to noise, Kostrikov and Gall (2014) pro-
posed an approach based on a 3D pictorial structure model that
combines generative and discriminative methods to obtain ro-
bustness to noise. For this, regression forests are trained to es-
timate the probabilities of 3D joint locations and the final 3D
pose is inferred by the pictorial structure model. Since infer-
ence is performed in 3D, the bounding volume of the 3D pose
space needs to be known and the inference requires a few min-
utes per frame. In addition to the local image features, the ap-
proach (Ionescu et al., 2014a) also utilizes body part segmenta-
tion with a second order hierarchical pooling process to obtain
robust image descriptors. Instead of computing low level image
features, the approach (Pons-Moll et al., 2014) uses boolean ge-
ometric relationships between body joints to encode body pose
appearance. These features are then used to retrieve semanti-
cally similar poses from a large corpus of 3D poses.

With the advances in deep learning, more recent approaches
learn end-to-end CNNs to regress the 3D joint locations directly
from the images (Li and Chan, 2014; Li et al., 2015; Tekin
et al., 2016; Rogez and Schmid, 2016; Chen et al., 2016; Zhou
et al., 2016a; Moreno-Noguer, 2017; Park et al., 2016; Tekin
et al., 2017; Lin et al., 2017; Sun et al., 2017; Pavlakos et al.,
2017). In this direction, the work (Li and Chan, 2014) is one
of the earliest methods that presents an end-to-end CNN archi-
tecture, where a multi-task loss is proposed to simultaneously
detect body parts in 2D images and regress their locations in
3D space. In (Li et al., 2015), a max-margin loss is incorpo-
rated with a CNN architecture to efficiently model joint depen-
dencies. Similarly, Zhou et al. (2016a) enforce kinematic con-
straints by introducing a differentiable kinematic function that
can be combined with a CNN. The approach (Tekin et al., 2016)
uses auto-encoders to incorporate dependencies between body
joints and combines them with a CNN architecture to regress
3D poses. Sun et al. (2017) propose a bone-based pose rep-
resentation and a compositional loss that encodes long range
dependencies between body parts and allows efficient 3D pose
regression. Approaches for data augmentation have also been
proposed in (Rogez and Schmid, 2016) and (Chen et al., 2016)
where synthetic training images are generated to enlarge the
training data. The approaches (Park et al., 2016; Tekin et al.,
2017; Popa et al., 2017) leverage the information about the lo-
cations of 2D body joints to aid 3D human pose estimation.
While Park et al. (2016) directly use the 2D joint coordinates
to regularize the training of a CNN, Tekin et al. (2017) and
Popa et al. (2017) use confidence scoremaps of 2D body joints
obtained using a CNN as additional features for 3D pose re-
gression. All these approaches demonstrate very good perfor-
mances for 3D pose estimation, but require a large amount of
training data containing pairs of images and ground-truth 3D
poses to train deep network architectures. This limits their ap-
plicability to the environments of the training data.

Estimating 3D human pose from a given 2D pose by exploit-
ing motion capture data has also been addressed in the literature
(Simo-Serra et al., 2012; Ramakrishna et al., 2012; Yasin et al.,
2013; Simo-Serra et al., 2013; Wang et al., 2014; Zhou et al.,
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Fig. 1: Overview. Our approach utilizes two training sources. The first source is a motion capture database that consists of only 3D poses. The
second source is an image database with manually annotated 2D poses. The 3D poses in the motion capture data are normalized and projected to
2D using several virtual cameras. This gives many pairs of 3D-2D poses where the 2D poses are used as features for 3D pose retrieval. The image
data is used to learn a 2D pose estimation model based on a CNN. Given a test image, the pose estimation model predicts the 2D pose which is
then used to retrieve nearest 3D poses from the normalized 3D pose space. The final 3D pose is then estimated by minimizing the projection error
under the constraint that the solution is close to the retrieved poses.

2015; Bogo et al., 2016; Sanzari et al., 2016; Chen and Ra-
manan, 2017; Lassner et al., 2017; Tome et al., 2017). While
early approaches (Ramakrishna et al., 2012; Simo-Serra et al.,
2012; Yasin et al., 2013) used manually annotated 2D joint loca-
tions, Simo-Serra et al. (2013) and Wang et al. (2014) proposed
one of the first approaches that estimate the 3D pose from es-
timated 2D poses. With the progress in 2D pose estimation
methods (Toshev and Szegedy, 2014; Pishchulin et al., 2016;
Carreira et al., 2016; Iqbal et al., 2017; Wei et al., 2016; Hu
and Ramanan, 2016; Insafutdinov et al., 2016; Newell et al.,
2016; Bulat and Tzimiropoulos, 2016; Gkioxari et al., 2016;
Rafi et al., 2016; Chu et al., 2017), the number of approaches
in this category also rose (Zhou et al., 2015; Bogo et al., 2016;
Chen and Ramanan, 2017; Lassner et al., 2017; Tome et al.,
2017). All these approaches have the benefit that they do not re-
quire training data containing images with annotated 3D poses,
but rather only utilize pose data to build their models.

In (Yasin et al., 2013), ground-truth 2D pose is used in the
first frame and tracked in a video. A nearest neighbor search is
then performed to obtain the nearest 3D poses. The approach
(Ramakrishna et al., 2012) constructs a sparse representation of
3D body pose using a MoCap dataset and fits it to manually
annotated 2D joint positions. While Wang et al. (2014) extend
the approach to handle estimated poses from an off-the-shelf
2D pose estimator (Yang and Ramanan, 2011), Du et al. (2016)
extend it to leverage temporal information in video data. The
approaches (Simo-Serra et al., 2012, 2013) use the information
about the 2D body joints to constrain the search space of 3D
poses. In (Simo-Serra et al., 2012) an evolutionary algorithm is
proposed to sample poses from the pose space that correspond
to the estimated 2D joint positions. This set is then exhaus-
tively evaluated according to some anthropometric constraints.
The approach is extended in (Simo-Serra et al., 2013) such that
the 2D pose estimation and 3D pose estimation are iterated. In
contrast to (Ramakrishna et al., 2012; Wang et al., 2014; Simo-
Serra et al., 2012), the approach (Simo-Serra et al., 2013) deals
with 2D pose estimation errors.

An expectation maximization algorithm is presented
in (Zhou et al., 2015) to estimate 3D poses from monocu-
lar videos. Additional smoothness constraints are used to ex-
ploit the temporal information in videos. In addition to the
3D pose, Bogo et al. (2016) also estimate the 3D shape of the
person. The approach exploits a high-quality 3D human body
model and fits it to estimated 2D joints using an energy mini-
mization objective. The approach is improved further in (Lass-
ner et al., 2017) by introducing an extra fitting objective and
generating additional training data. In (Chen and Ramanan,
2017) a non-parametric nearest neighbor model is used to re-
trieve 3D exemplars that minimize the reprojection error from
the estimated 2D joint locations. Tome et al. (2017) propose a
probabilistic 3D pose model and combine it with a multi-staged
CNN, where the CNN incorporates evidences from the 2D body
part locations and projected 3D poses to sequentially improve
2D joint predictions which in turn also results in better 3D pose
estimates. Other approaches also learn deep neural networks to
directly regress 3D pose from 2D joint information (Moreno-
Noguer, 2017; Martinez et al., 2017). Martinez et al. (2017)
propose a deep neural network with residual connections to di-
rectly regress 3D pose from 2D pose as input. Moreno-Noguer
(2017), on the other hand, proposes to first encode 3D pose
using an Euclidean distance matrix formulation that implicitly
incorporates body joint relations and allows to regress 3D poses
in form of a distance matrix.

Action specific priors learned from motion capture data have
also been proposed for 3D pose tracking (Urtasun et al., 2006;
Andriluka et al., 2010). These approaches, however, are more
constrained by assuming that the type of motion is known in
advance and therefore cannot deal with a large and diverse pose
dataset.

3. Overview

In this work, we propose an approach to estimate the 3D pose
from an RGB image. Since annotating 2D images with accu-
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rate 3D pose data is infeasible and obtaining 3D body pose data
in unconstrained scenarios using sophisticated MoCap systems
is impractical, our approach does not require that the training
data consists of images annotated with 3D pose. In contrast, we
use two independent sources of training data. The first source
contains only 3D poses captured by a motion capture system.
Such data is publicly available in large numbers and can also be
captured in controlled indoor environments. The second source
contains unconstrained images with annotated 2D poses, which
are also abundantly available (Andriluka et al., 2014; Lin et al.,
2014) and can be easily annotated by humans. Apart from the
requirement that the MoCap data contains poses that are related
to the activities we are interested in, we do not assume any cor-
respondence between the two sources. We therefore preprocess
both sources separately as shown in Fig. 1. From the image
data, we learn a CNN based 2D pose estimation model to pre-
dict 2D poses from images. This will be described in Section 4.
The MoCap data is processed to efficiently retrieve 3D poses
that could correspond to a 2D pose. This part is discussed in
Section 5.1. We then estimate the 3D pose by minimizing the
projection error under the constraint that the solution is close
to the retrieved poses (Section 5.2). The source code of the
approach is publicly available.1

4. 2D Pose Estimation

In this work, we use the convolutional pose machines (CPM)
(Wei et al., 2016) for 2D pose estimation, but other CNN archi-
tectures, e.g. stacked hourglass (Newell et al., 2016) or multi-
context attention models (Chu et al., 2017), could be used as
well. Given an image I, we define the 2D pose of the person as
x = {x j} j∈J , where x j ∈ R2 denotes the 2D pixel coordinate of
body joint j, andJ is the set of all body joints. CPM consists of
a multi-staged CNN architecture, where each stage t ∈ {1 . . . T }
produces a set of confidence scoremaps st = {s

j
t } j∈J , where

s j
t ∈ Rw×h is the confidence score map of body joint j at stage

t, and w and h are the width and the height of the image, re-
spectively. Each stage of the network sequentially refines the
2D pose estimates by utilizing the output of the preceding stage
and also the features extracted from the raw input image. The
final 2D pose x is obtained as

x = arg max
x′={x′j} j∈J

∑
j∈J

s j
T (x′j). (1)

.
In our experiments we will show that training the network on

publicly available dataset for 2D pose estimation in-the-wild,
such as the MPII Human Pose dataset (Andriluka et al., 2014),
is sufficient to obtain competitive results with our proposed
method.

5. 3D Pose Estimation

While the 2D pose estimation model is trained using the im-
ages annotated with 2D poses as shown in Fig. 1, we now ex-

1http://pages.iai.uni-bonn.de/iqbal_umar/ds3dpose/

plain a method that utilizes the 3D poses from the second source
to estimate the 3D pose from an image. Since both sources do
not have any correspondence, we first have to establish corre-
spondences between the 2D and 3D poses. For this, an esti-
mated 2D pose is used as a query for 3D pose retrieval (Section
5.1). The retrieved 3D poses, however, contain many incorrect
poses due to 2D-3D ambiguities, differences of the skeletons
between the two training sources, and errors in the estimated
2D pose. It is therefore required to fit the 3D poses to the 2D
observations. This is discussed in Section 5.2.

5.1. 3D Pose Retrieval
In order to efficiently retrieve 3D poses for a 2D pose query,

we first preprocess the MoCap data by discarding the body lo-
cation and orientation for each pose. This is achieved by apply-
ing the inverse transformation of the rigid transformation of the
root joint, which is provided by the MoCap dataset, to all joints.
After the transformation, the root joint is located at the origin of
the coordinate system and the orientation of the pose is aligned
with the x-axis. We denote the normalized 3D pose space with
Ψ, where X ∈ Ψ denotes a normalized 3D pose. Similar to
(Yasin et al., 2013), we project the normalized 3D poses X ∈ Ψ
to 2D using 120 virtual camera views with orthographic projec-
tion. We use elevation angles ranging between 0 and 60 degree
and azimuth angles spanning 360 degrees, both sampled uni-
formly with a step size of 15 degrees. The projected 2D poses
are further normalized by scaling such that the y-coordinates of
the joints are within the range of [−1, 1]. The normalized 2D
space does not depend on a specific coordinate system or a cam-
era model and is denoted as ψ. This step is illustrated in Fig. 1.
During inference, given a 2D pose estimated by the approach
explained in Section 4, we first normalize it according to ψ,
i.e., we translate and scale the pose such that the y-coordinates
of the joints are within the range of [−1, 1]. The normalized
2D pose is then used to retrieve 3D poses. We use the aver-
age Euclidean distance between the joint positions to measure
the distance between two normalized 2D poses. Finally, we use
a kd-tree (Krüger et al., 2010) to efficiently retrieve K-nearest
neighbors in ψ where the retrieved normalized 3D poses are the
corresponding poses in Ψ.

5.2. 3D Pose Estimation
In order to obtain the 3D pose X, we have to estimate the

unknown projection M from the normalized pose space Ψ to
the image. To this end, we minimize the energy

E(X,M) = Ep(X,M) + αEr(X) (2)

over X andM. The parameter α defines the weighting between
the two terms Ep and Er.

The first term Ep(X,M) measures the projection error of the
3D pose X and the projectionM:

Ep(X,M) =

∑
j∈J

‖M
(
X j

)
− x j‖

2


1
2

, (3)

where X j is the 3D joint position of the unknown 3D pose and
x j is the joint position of the predicted 2D pose.

http://pages.iai.uni-bonn.de/iqbal_umar/ds3dpose/
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The second term ensures that the pose X is close to the re-
trieved 3D poses Xk:

Er(X) =
∑

k

∑
j∈J

‖Xk
j − X j‖

2


1
2

. (4)

The energy function (2) differs from the function that was
proposed in (Yasin et al., 2016) in several ways. The energy
function used in (Yasin et al., 2016) contains an additional
term that enforces anthropometric constraints, it weights the
retrieved 3D poses, and optimizes the energy in addition over
five different joint sets. While these extensions improve the 3D
pose estimation in case of noisy 2D pose estimates obtained by
a pictorial structure model, we found that these extensions have
a negligible impact on the accuracy if the 2D pose estimates are
more accurate due to the used CNN for 2D pose estimation.

Minimizing the energy E(X,M) (2) over the continuous pa-
rametersM and X would be expensive. We therefore propose
an approximate solution where we first estimate the projection
M only. For the projection, we consider that the intrinsic pa-
rameters are provided and only estimate the global translation
and orientation. The projection M̂ is estimated by minimizing

M̂ = arg min
M

 K∑
k=1

Ep(Xk,M)

 (5)

using non-linear gradient optimization with trust-region-
reflective algorithm. We initialize the camera translation by
[0, 0,−H f /h], where H is the mean height of the retrieved near-
est neighbours and h corresponds to the height of the estimated
2D pose. In our experiments, we will also evaluate the case
when the camera orientation and translation are also known. In
this case, the projectionM reduces to a rigid transformation of
the 3D poses X from the normalized pose spaceΨ to the camera
coordinate system.

Given the estimated projection M̂, we minimize

X̂ = arg min
X

{
E(X, M̂)

}
(6)

to obtain the 3D pose X.
The dimensionality of X can be reduced by applying PCA to

the retrieved 3D poses Xk. Reducing the dimensions of X helps
to decrease the optimization time without loss in accuracy, as
we will show in the experiments.

6. Experiments

We evaluate the proposed approach on two publicly avail-
able datasets, namely Human3.6M (Ionescu et al., 2014b) and
HumanEva-I (Sigal et al., 2010). Both datasets provide accu-
rate 3D poses for each image and camera parameters. For all
cases, 2D pose estimation is performed by convolutional pose
machines (Wei et al., 2016) trained on the MPII Human Pose
dataset (Andriluka et al., 2014) without any fine-tuning, unless
it is stated otherwise.

6.1. Evaluation on Human3.6M Dataset
For evaluation on the Human3.6M dataset, a number of pro-

tocols have been proposed in the literature. The protocol orig-
inally proposed for the Human3.6M dataset (Ionescu et al.,
2014b), which we denote by Protocol-III, uses the annotated
bounding boxes and the training data only from the action
class of the test data. This simplifies the task due to the small
pose variations for a single action class and the known person
bounding box. Other protocols have been therefore proposed
in (Kostrikov and Gall, 2014) and (Bogo et al., 2016). In order
to compare with other existing approaches, we report results for
all three protocols (Kostrikov and Gall, 2014; Bogo et al., 2016)
and (Ionescu et al., 2014b).

6.1.1. Human3.6M Protocol-I
Protocol-I, which was proposed by (Kostrikov and Gall,

2014), is the most unconstrained protocol. It does not make
any assumption about the location and activity labels during
testing, and the training data comprises all action classes. The
training set consists of six subjects (S1, S5, S6, S7, S8 and
S9), whereas the testing is performed on every 64th frame taken
from the sequences of S11. For evaluation, we use the 3D pose
error as defined in (Simo-Serra et al., 2012). The error mea-
sures the accuracy of the relative pose up to a rigid transfor-
mation. To this end, the estimated skeleton is aligned to the
ground-truth skeleton by a rigid transformation and the average
3D Euclidean joint error is measured after alignment. The body
skeleton consists of 14 body joints namely head, neck, ankles,
knees, hips, wrists, elbows, and shoulders. In order to com-
ply with the protocol, we do not use any ground truth bounding
boxes, but estimate them using an off-the-shelf person detec-
tor (Ren et al., 2015). The detected bounding boxes are used by
the convolutional pose machines for 2D pose estimation. We
consider two sources for the motion capture data, namely the
Human3.6M and the CMU motion capture dataset.

We first evaluate the impact of the parameters of our
approach and the impact of different MoCap datasets. We then
compare our approach with the state-of-the-art and evaluate the
impact of the 2D pose estimation accuracy.

Nearest Neighbors. The impact of the number of nearest
neighbors K used during 3D pose reconstruction is evaluated
in Fig. 2. Increasing the number of nearest neighbors improves
3D pose estimation. This, however, also increases the recon-
struction time. In the rest of this paper, we use a default value
of K = 256 that provides a good trade-off between accuracy
and run-time. The reconstruction of the 3D pose with K = 256
for a single image takes roughly 0.6 seconds2. We can see
that using the CMU MoCap dataset results in a higher error
as compared to the Human3.6M dataset. We will evaluate the
impact of different MoCap datasets in more details later in this
section.

PCA. PCA can be used to reduce the dimension of X. While
in (Yasin et al., 2016) a fixed number of principal components

2Measured on a 3.4GHz Intel processor using only one core.
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Fig. 2: Impact of the number of nearest neighbors K.
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Fig. 3: Impact of PCA. The number of principle components are se-
lected based on the minimum number of components that explain a
given percentage of variation. The x-axis corresponds to the threshold
for the cumulative amount of variation.

is used, we use a more adaptive approach and set the number
of principal components based on the captured variance. The
number of principal components therefore varies for each im-
age. The impact of the threshold on the minimum amount of
variation can be seen in Fig. 3. If the threshold is within a rea-
sonable range, i.e. between 0.8 and 1, the accuracy is barely
reduced while the runtime decreases significantly compared to
1, i.e. without PCA. In this work, we use the minimum number
of principle components that explain at least 80% of the vari-
ance of the retrieved 3D poses Xk.

Energy Terms. The impact of the weight α in (2) is reported
in Fig. 4. If α = 0, the term Er is ignored and the error is very
high. This is expected since Er constrains the possible solution
while Ep ensures that the estimated 3D pose projects onto the
estimated 2D pose. In our experiments, we use α = 1.

Impact of MoCap dataset size. We evaluate the impact of the
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Fig. 4: Impact of α.

size of the MoCap dataset in Fig. 5. In order to sub-sample
the dataset, which consists of 469K 3D poses, we use a greedy
approach that starts with an empty set and gradually adds a
new pose if the distance to any previously selected pose is
larger or equal to a threshold. Otherwise, the pose is discarded.
Depending on the threshold (320mm, 160mm, 80mm, 40mm,
20mm), the dataset is reduced to 11K, 48K, 111K, 208K, and
329K poses, respectively. Using the entire 469K 3D poses of
the Human3.6M training set as motion capture data results in a
3D pose error of 68.8mm. Reducing the size of the MoCap data
to 329K reduces the error to 66.85mm. The reduction of the
error is expected since the sub-sampling removes duplicates
and very similar poses that do not provide any additional
information when they are retrieved. However, decreasing
the size of the MoCap dataset even further degenerates the
performance. In the rest of our experiments, we use the
MoCap dataset from Human3.6M with 329K 3D poses, where
a threshold of 20mm is used to remove similar poses. While
the runtime of the approach is linear with respect to the number
of nearest neighbors (K) as it can be observed in Fig. 2, the
sub-sampling of the MoCap dataset has a minimal impact on
the runtime since the computational complexity of 3D pose
retrieval is logarithmic with respect to the dataset size and the
dataset size does not affect the energy function (2), in contrast
to K.

CMU Motion Capture Dataset. Our approach does not re-
quire images that are annotated by 3D poses but uses MoCap
data as a second training source. We therefore also evaluate the
proposed method using the CMU MoCap dataset (CMU, 2014)
to construct the 3D pose space. We downsample the CMU
dataset from 120Hz to 30Hz and use only one third of the 3D
poses, resulting in 360K poses. We remove similar poses using
the same threshold (20mm) as used for Human3.6M, which re-
sults in a final MoCap dataset with 303K 3D poses. Fig. 6 com-
pares the pose estimation accuracy using both datasets, while
the results for each activity can be seen in Tab. 1. As expected
the error is higher due to the differences of the datasets.

To analyze the impact of the MoCap data in more detail, we
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MoCap data Direction Discuss Eating Greeting Phoning Posing Purchases Sit SitDown

Human3.6M 59.5 52.4 75.5 67.0 58.8 64.9 58.2 68.4 89.7
Human3.6M \ Activity 61.2 52.3 92.6 70.2 61.1 66.5 59.3 85.6 122.2
Human3.6M ∈ Activity 68.8 57.6 70.8 73.7 62.9 66.7 63.4 73.4 99.4
Human3.6M + GT 3D Poses 52.9 45.7 59.9 60.1 50.4 54.1 51.6 56.3 71.7
CMU 73.3 64.7 95.9 80.2 85.7 81.8 77.1 110.5 138.8

MoCap data Smoking Photo Waiting Walk WalkDog WalkTogether Mean Median

Human3.6M 73.0 88.5 67.7 52.1 73.0 54.1 66.9 61.5
Human3.6M \ Activity 74.8 92.6 72.4 64.5 74.6 69.0 74.5 67.3
Human3.6M ∈ Activity 74.8 89.5 77.4 49.3 70.8 55.9 70.4 65.3
Human3.6M + GT 3D Poses 64.2 69.2 60.4 47.8 60.6 44.9 56.7 51.3
CMU 100.9 95.3 90.6 82.9 87.6 91.3 91.0 83.3

Table 1: Impact of the MoCap dataset. While for Human3.6M \ Activity we removed all poses from the dataset that correspond to the activity
of the test sequence, Human3.6M ∈ Activity only contains the poses of the activity of the test sequence. For Human3.6M + GT 3D Poses, we
include the ground-truth 3D poses of the test sequences to the MoCap dataset.
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Fig. 5: Impact of the size of the MoCap dataset.

have evaluated the pose error for various modifications of the
MoCap data in Tab. 1. First, we remove all poses of an activ-
ity from the MoCap data and evaluate the 3D pose error for the
test images corresponding to the removed activity. The error
increases since the dataset does not contain poses related to the
removed activity anymore. While the error still stays compara-
ble for many activities, e.g. Direction, Discussion, etc., a sig-
nificant increase in error can be seen for activities that do not
share similar poses with other activities, e.g. SitDown. How-
ever, even if all poses related to the activity of the test images
are removed, the results are still good and better compared to
the CMU dataset. This indicates that the error increase for
the CMU dataset cannot only be explained by the difference
of poses, but also other factors like different motion capture se-
tups seem to influence the result. We will investigate the impact
of the difference of the skeleton structure between two datasets
in Section 6.2.

We also evaluate the case when the MoCap dataset contains
only the poses of a specific activity. This also results in
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Fig. 6: Comparison of 3D pose error using different MoCap datasets.
The plot shows the percentage of estimated 3D poses with an error
below a specific threshold.

an increased mean pose estimation error and shows that
having a diverse MoCap dataset is helpful to obtain good
performance. Finally, we also report the error when the 3D
poses of the test sequences are added to the MoCap dataset.
In this case, the mean error is reduced from 66.9mm to 56.7mm.

Comparison with State-of-the-art. Tab. 2 compares the
performance of the proposed method with the state-of-the-art
approaches (Kostrikov and Gall, 2014; Yasin et al., 2016;
Rogez and Schmid, 2016; Chen and Ramanan, 2017; Moreno-
Noguer, 2017; Tome et al., 2017; Zhou et al., 2017; Sun et al.,
2017) using both MoCap datasets. The proposed approach
reduces the 3D pose error reported in (Yasin et al., 2016) from
108.3mm to 66.9mm when using the Human3.6M MoCap
dataset. A similar decrease in error can also be seen for the
CMU dataset (124.8mm vs. 91.0mm). The main improvement
compared to (Yasin et al., 2016) stems from the better 2D pose
estimation model. Our approach also outperforms the recent
methods (Chen and Ramanan, 2017; Moreno-Noguer, 2017;
Tome et al., 2017). While Moreno-Noguer (2017) utilizes 3D
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Method Direction Discuss Eating Greeting Phoning Posing Purchases Sit Sit
Down

Kostrikov and Gall (2014) - - - - - - - - -
Yasin et al. (2016) 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8
Rogez and Schmid (2016) - - - - - - - - -
Chen and Ramanan (2017) 71.6 66.6 74.7 79.1 70.1 67.6 89.3 90.7 195.6
Moreno-Noguer (2017) 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5
Tome et al. (2017) - - - - - - - - -
Zhou et al. (2017) 47.9 48.8 52.7 55.0 56.8 49.0 45.5 60.8 81.1
Sun et al. (2017)* 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3
Ours 59.5 52.4 75.5 67.0 58.8 64.9 58.2 68.4 89.7

(MoCap from CMU dataset)

Yasin et al. (2016) 102.8 80.4 133.8 120.5 120.7 98.9 117.3 150.0 182.6
Ours 73.3 64.7 95.9 80.2 85.7 81.8 77.1 110.5 138.8

Method Smoking Photo Waiting Walk WalkDog WalkTogehter Mean Median

Kostrikov and Gall (2014) - - - - - - 115.7 -
Yasin et al. (2016) 108.2 142.5 86.9 92.1 165.7 102.0 108.3 -
Rogez and Schmid (2016) - - - - - - 88.1 -
Chen and Ramanan (2017) 83.5 93.3 71.2 55.7 85.9 62.5 82.7 69.1
Moreno-Noguer (2017) 75.8 92.6 69.6 71.5 78.0 73.2 74.0 -
Tome et al. (2017) - - - - - - 70.7 -
Zhou et al. (2017) 53.7 65.5 51.6 50.4 54.8 55.9 55.3 -
Sun et al. (2017)* 51.0 53.0 44.0 38.3 48.0 44.8 48.3 -
Ours 73.0 88.5 67.7 52.1 73.0 54.1 66.9 61.5

(MoCap from CMU dataset)

Yasin et al. (2016) 135.6 140.1 104.7 111.3 167.0 116.8 124.8 -
Ours 100.9 95.3 90.6 82.9 87.6 91.3 91.0 83.3

Table 2: Comparison with the state-of-the-art on the Human3.6M dataset using Protocol-I. *additional ground-truth information is used.
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poses from Human3.6M as training data, Tome et al. (2017)
use the 2D pose data from Human3.6M to learn a multistage
deep CNN architecture for 2D pose estimation. We on the
other hand do not use any 2D or 3D pose information for
training and only utilize a pre-trained model trained on the
MPII Human Pose Dataset (Andriluka et al., 2014) for 2D pose
estimation. We also compare our performance with the most
recent approaches (Zhou et al., 2017; Sun et al., 2017). These
approaches perform better than our method. However, they
use pairs of images and 3D poses to learn deep CNN models
while our approach does not require 3D pose annotations for
images. Moreover, in contrast to our method, none of the
aforementioned approaches have shown that they can han-
dle MoCap data that is from a different source than the test data.

Impact of 2D Pose. We also investigate the impact of the ac-
curacy of the estimated 2D poses. If we initialize the approach
with the 2D ground-truth poses, the 3D pose error is signif-
icantly reduced as shown in Tab. 3. This indicates that the
3D pose error can be further reduced by improving the used
2D pose estimation method. We also report the 3D pose er-
ror when both 3D and 2D ground-truth poses are available. In
this case the error reduces even further which shows the poten-
tial of further improvements for the proposed method. We also
compare our approach to (Yasin et al., 2016) and (Chen and Ra-
manan, 2017), which also report the accuracy for ground-truth
2D poses.

6.1.2. Human3.6M Protocol-II
The second protocol, Protocol-II, has been proposed in

(Bogo et al., 2016). The dataset is split using five subjects
(S1, S5, S6, S7, S8) for training and two subjects (S9 and
S11) for testing. We follow (Lassner et al., 2017) and perform
testing on every 5th frame of the sequences from the frontal
camera (cam-3) and trial-1 of each activity. The evaluation
is performed in the same way as in Protocol-I with a body
skeleton consisting of 14 joints. In contrast to Protocol-I,
the ground-truth bounding boxes are, however, used during
testing. Tab. 4 reports the comparison of the proposed method
with the state-of-the-art approaches (Akhter and Black, 2015;
Ramakrishna et al., 2012; Zhou et al., 2015; Bogo et al., 2016;
Lassner et al., 2017; Tome et al., 2017; Moreno-Noguer, 2017;
Martinez et al., 2017; Pavlakos et al., 2017; Tekin et al., 2017).
While our approach achieves comparable results to (Akhter
and Black, 2015; Ramakrishna et al., 2012; Zhou et al., 2015;
Bogo et al., 2016; Lassner et al., 2017; Tome et al., 2017;
Moreno-Noguer, 2017), more recent approaches (Martinez
et al., 2017; Pavlakos et al., 2017; Tekin et al., 2017) perform
better. The approaches (Pavlakos et al., 2017; Tekin et al.,
2017), however, use pairs of images and 3D poses as training
data, and the approach (Martinez et al., 2017) uses more
recent improvements in the deep neural network architectures
with exhaustive parameter selection to directly regress 3D
pose from 2D joint information. Whereas, our approach
does not require dataset specific training and therefore requires
less supervision and can generalize better to different scenarios.

6.1.3. Human3.6M Protocol-III
The third protocol, Protocol-III, is the most commonly used

protocol for Human3.6M. Similar to Protocol-II, the dataset is
split by using subjects S1, S5, S6, S7 and S8 for training and
subjects S9 and S11 for testing. The sequences are downsam-
pled from the original frame-rate of 50fps to 10fps, and testing
is performed on the sequences from all cameras and trials. The
evaluation is performed without a rigid transformation, but both
the ground-truth and estimated 3D poses are centered with re-
spect to the root joint. We therefore have to use the provided
camera parameters such that the estimated 3D pose is in the
coordinate system of the camera. The training and testing is
often performed on the same activity. However, some recent
approaches also report results by training only once for all ac-
tivities. In this work, we report results under both settings. In
this protocol, a body skeleton with 17 joints is used and the
ground-truth bounding boxes are used during testing. Note that
even though the 3D poses contain 17 joints, we still use the 2D
poses with 14 joints for nearest neighbor retrieval and only use
the corresponding joints for optimizing objective (2). Tab. 5
provides a detailed comparison of the proposed approach with
the state-of-the-art methods.

Finally, we present some qualitative results in Fig. 7. As it
can be seen, our approach shows very good performance even
for highly articulated poses and under severe occlusions.

6.2. Evaluation on HumanEva-I Dataset
We follow the same protocol as described in (Simo-Serra

et al., 2013; Kostrikov and Gall, 2014) and use the provided
training data to train our approach while using the validation
data as test set. As in (Simo-Serra et al., 2013; Kostrikov and
Gall, 2014), we report our results on every 5th frame of the se-
quences walking (A1) and jogging (A2) for all three subjects
(S1, S2, S3) and camera C1. The 3D pose error is computed as
in Protocol-I for the Human3.6M dataset.

We perform experiments with the 3D pose data from the
HumanEva and CMU MoCap datasets. For HumanEva, we
use the entire 49K 3D poses of the training data as MoCap
dataset. Since the joint positions of the skeleton used for Hu-
manEva differs from the joint annotations that are provided by
the MPII Human Pose dataset, we fine-tune the 2D pose esti-
mation model on the HumanEva dataset using the provided 2D
pose data. For fine-tuning, we run 500 iterations with a learning
rate of 0.00008.

We also have to adapt the skeleton structure of the CMU
dataset to the skeleton structure of the HumanEva dataset. As
in (Yasin et al., 2016), we re-target the 3D poses in the CMU
dataset to the skeleton of the HumaEva dataset using linear re-
gression. For this, we first scale normalize the 3D poses in both
datasets such that the height of each pose is equal to 1000mm.
For each pose in the CMU dataset, we then search the nearest
neighbor in the HumanEva dataset. For computing the distance
between poses, we only use the joints that are common in both
datasets. The pairs of poses that have a distance greater than
5mm are discarded and the remaining pairs are used to learn a
linear mapping between the skeletons of the two datasets.

We analyze the impact of the difference between the skele-
tons of both datasets in Tab. 6. Using HumanEva as MoCap
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Fig. 7: Some qualitative results from the Human3.6M (Ionescu et al., 2014b) dataset.
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Method Direction Discuss Eat Greet Phone Pose Purchase Sit SitDown

Ours 59.5 52.4 75.5 67.0 58.8 64.9 58.2 68.4 89.7
Ours + GT 2D 51.9 45.3 62.4 55.7 49.2 56.0 46.4 56.3 76.6
Ours + GT 2D + GT 3D 40.9 35.3 41.6 44.3 36.6 43.7 38.0 40.3 53.4
Yasin et al. (2016) + GT 2D 60.0 54.7 71.6 67.5 63.8 61.9 55.7 73.9 110.8
Chen and Ramanan (2017) + GT 2D 53.3 46.8 58.6 61.2 56.0 58.1 48.9 55.6 73.4

(MoCap from CMU dataset)

Ours + GT 2D 67.8 58.7 90.3 72.1 78.2 75.7 71.9 103.2 132.8

Method Smoke Photo Wait Walk WalkDog WalkTogether Mean Median

Ours 73.0 88.5 67.7 52.1 73.0 54.1 66.9 61.5
Ours + GT 2D 58.8 79.1 58.9 35.6 63.4 46.3 56.1 51.9
Ours + GT 2D + GT 3D 44.2 56.6 45.9 26.9 45.8 31.4 41.6 39.1
Yasin et al. (2016) + GT 2D 78.9 96.9 67.9 47.5 89.3 53.4 70.5 -
Chen and Ramanan (2017) + GT 2D 60.3 76.1 62.2 35.8 61.9 51.1 57.5 51.9

(MoCap from CMU dataset)

Ours + GT 2D 91.3 91.6 84.7 70.9 81.2 76.7 83.7 75.6

Table 3: Impact of the 2D pose estimation accuracy. GT 2D denotes that the ground-truth 2D pose is used. GT 3D denotes that the 3D poses of
the test images are added to the MoCap dataset as in Tab. 1.

dataset results in a 3D pose error of 31.5mm, whereas us-
ing CMU as MoCap dataset increases the error significantly
to 80.0mm. Re-targeting the skeletons of the CMU dataset to
the skeleton of HumanEva reduces the error from 80.0mm to
50.5mm, and re-targeting the skeleton of HumanEva to CMU
increases the error from 31.5mm to 58.4mm. This shows that
the difference of the skeleton structure between the two sources
can have a major impact on the evaluation. This is, however, not
an issue for an application where the MoCap dataset defines the
skeleton structure.

We also compare our approach with the state-of-the-art ap-
proaches (Kostrikov and Gall, 2014; Wang et al., 2014; Radwan
et al., 2013; Simo-Serra et al., 2013, 2012; Bo and Sminchis-
escu, 2010; Yasin et al., 2016; Popa et al., 2017; Martinez et al.,
2017; Pavlakos et al., 2017; Moreno-Noguer, 2017) in Tab. 7.
Our method is competitive to all methods except of the very re-
cent approaches (Moreno-Noguer, 2017; Martinez et al., 2017;
Pavlakos et al., 2017) that use more supervision or more re-
cent CNN architectures. In particular, the ability to use MoCap
data from a different source than the test data has so far not ad-
dressed by other works. This experimental protocol, however,
is essential to assess the generalization capabilities of different
methods.

Finally, we present qualitative results for a few realistic im-
ages taken from the MPII Human Pose dataset (Andriluka et al.,
2014) in Fig. 8. The results show that the proposed approach
generalizes very well to complex unconstrained images.

7. Conclusion

In this work, we have proposed a novel dual-source method
for 3D human pose estimation from monocular images. The
first source is a MoCap dataset with 3D poses and the other

source are images with annotated 2D poses. Due to the sepa-
ration of the two sources, our approach needs less supervision
compared to approaches that are trained from images annotated
with 3D poses, which is difficult to acquire under real con-
ditions. The proposed approach therefore presents an impor-
tant step towards accurate 3D pose estimation in unconstrained
images. Compared to the preliminary work, the proposed ap-
proach does not require to train dataset specific models and can
generalize across different scenarios. This is achieved by uti-
lizing the strengths of recent 2D pose estimation methods and
combining them with an efficient and robust method for 3D
pose retrieval. We have performed a thorough experimental
evaluation and demonstrated that our approach achieves com-
petitive results in comparison to the state-of-the-art, even when
the training data are from very different sources.
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Directions Discussion Eating Greeting Phoning Photo Posing Purchases Sit

Ionescu et al. (2014b) 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3 151.6
Li and Chan (2014) - 136.9 96.9 124.7 - 168.7 - - -
Tekin et al. (2015) 102.4 158.5 88.0 126.8 118.4 185.0 114.7 107.6 136.2
Tekin et al. (2016) - 129.1 91.4 121.7 - 162.2 - - -
Du et al. (2016) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5
Chen and Ramanan (2017) 89.9 97.6 90.0 107.9 107.3 139.2 93.6 136.1 133.1
Zhou et al. (2016b) 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5
Zhou et al. (2016a) 91.8 102.4 97.0 98.8 113.4 125.2 90.0 93.9 132.2
Sanzari et al. (2016) 48.8 56.3 96.0 84.8 96.5 105.6 66.3 107.4 116.9
Tome et al. (2017) 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8 110.2
Rogez et al. (2017) 76.2 80.2 75.8 83.3 92.2 105.7 79.0 71.7 105.9
Moreno-Noguer (2017) 67.5 79.0 76.5 83.1 97.4 100.4 74.6 72.0 102.4
Mehta et al. (2017) 62.6 78.1 63.4 72.5 88.3 93.8 63.1 74.8 106.6
Zhou et al. (2017) 68.7 74.8 67.8 76.4 76.3 98.4 84.0 70.2 88.0
Mehta et al. (2016) 59.7 69.5 60.9 68.7 76.6 85.7 58.9 78.7 90.9
Lin et al. (2017) 58.0 68.2 63.3 65.8 75.3 93.1 61.2 65.7 98.7
Pavlakos et al. (2017) 67.4 72.0 66.7 69.1 72 77.0 65.0 68.3 83.66
Tekin et al. (2017) 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1
Martinez et al. (2017) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0
Sun et al. (2017)* 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7
Ours 90.9 98.4 98.2 118.3 118.0 130.5 95.9 112.1 146.1

(MoCap from CMU dataset)

Ours 139.4 148.0 148.3 165.2 161.7 170.1 138.6 168.2 168.5

SitDown Smoking Waiting WalkDog Walk WalkTogether Mean Median

Ionescu et al. (2014b) 243.0 162.1 170.7 177.1 96.6 127.9 162.1 -
Li and Chan (2014) - - - 132.2 70.0 - - -
Tekin et al. (2015) 205.7 118.2 146.7 128.1 65.9 77.2 125.3 -
Tekin et al. (2016) - - - 130.5 65.8 - - -
Du et al. (2016) 226.9 120.0 117.7 137.4 99.3 106.5 126.5 -
Chen and Ramanan (2017) 240.1 106.7 106.2 114.1 87.0 90.6 114.2 93.1
Zhou et al. (2016b) 199.2 107.4 118.1 114.2 79.4 97.7 113.0 -
Zhou et al. (2016a) 159.0 106.9 94.4 126.1 79.0 99.0 107.3 -
Sanzari et al. (2016) 129.6 97.8 65.9 130.5 92.6 102.2 93.2 -
Tome et al. (2017) 173.9 85.0 85.8 86.3 71.4 73.1 88.4 -
Rogez et al. (2017) 127.1 88.0 83.7 86.6 64.9 84.0 87.7 -
Moreno-Noguer (2017) 116.7 87.7 94.6 82.7 75.2 74.9 85.6 -
Mehta et al. (2017) 138.7 78.8 73.9 82.0 55.8 59.6 80.5 -
Zhou et al. (2017) 113.8 78.0 90.1 75.1 62.6 73.6 79.9 -
Mehta et al. (2016) 125.2 71.2 68.9 82.6 54.0 60.0 74.1 -
Lin et al. (2017) 127.7 70.4 68.2 72.9 50.6 57.7 73.1 -
Pavlakos et al. (2017) 96.5 71.7 65.8 74.9 59.1 63.2 71.9 -
Tekin et al. (2017) 107.3 69.3 70.3 74.3‘ 51.8 63.2 69.7 -
Martinez et al. (2017) 94.6 62.3 59.1 65.1 49.5 52.4 62.9 -
Sun et al. (2017)* 86.7 61.5 53.4 61.6 47.1 53.4 59.1 -
Ours 150.1 112.4 113.5 109.2 89.1 88.4 111.8 95.3

(MoCap from CMU dataset)

Ours 186.7 154.8 154.4 163.7 140.9 160.3 157.3 141.7

Table 5: Comparison with the state-of-the-art on the Human3.6M dataset using Protocol-III. *additional ground-truth information is used.



15

MoCap Data Walking (A1, C1) Jogging (A2, C1) AverageS1 S2 S3 S1 S2 S3

HumanEva 27.4 28.6 32.5 39.9 29.4 31.4 31.5
CMU 68.4 81.6 88.3 70.1 81.6 89.9 80.0
CMU→ HumanEva 39.5 47.3 61.4 53.5 48.3 53.1 50.5
HumanEva→ CMU 45.1 54.9 59.1 58.6 63.1 69.7 58.4

Table 6: Impact of different skeleton structures. The symbol → indi-
cates retargeting of the skeleton structure of one dataset to the skeleton
of another dataset.
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