AVID: Adversarial Visual Irregularity Detection

Mohammad Sabokrou'*, Masoud Pourreza®*, Mohsen Fayyaz®*, Rahim
Entezari*, Mahmood Fathy', Jiirgen Gall?, Ehsan Adeli®

Tnstitute for Research in Fundamental Sciences (IPM) 2?AI & ML Center of Part
3University of Bonn ?Complexity Science Hub, Vienna °Stanford University

Abstract. Real-time detection of irregularities in visual data is very
invaluable and useful in many prospective applications including surveil-
lance, patient monitoring systems, etc. With the surge of deep learning
methods in the recent years, researchers have tried a wide spectrum of
methods for different applications. However, for the case of irregularity or
anomaly detection in videos, training an end-to-end model is still an open
challenge, since often irregularity is not well-defined and there are not
enough irregular samples to use during training. In this paper, inspired
by the success of generative adversarial networks (GANs) for training
deep models in unsupervised or self-supervised settings, we propose an
end-to-end deep network for detection and fine localization of irregu-
larities in videos (and images). Our proposed architecture is composed
of two networks, which are trained in competing with each other while
collaborating to find the irregularity. One network works as a pixel-level
irregularity Znpainter, and the other works as a patch-level Detector.
After an adversarial self-supervised training, in which Z tries to fool D
into accepting its inpainted output as regular (normal), the two networks
collaborate to detect and fine-segment the irregularity in any given testing
video. Our results on three different datasets show that our method can
outperform the state-of-the-art and fine-segment the irregularity. *

1 Introduction
In the recent years, intelligent surveillance cameras are very much exploited for

different applications related to the safety and protection of environments. These
cameras are located in sensitive locations to encounter dangerous, forbidden or
strange events. Every moment vast amounts of videos are captured by these
cameras, almost all of which comprise normal every-day events, and only a tiny
portion might be irregular events or behaviors. Accurate and fast detection of
such irregular events is very critical in designing a reliable intelligent surveillance
system. Almost in all applications, there is no clear definition of what the
irregularity can be. The only known piece is whatever that deviates from the
normal every-day activities and events in the area should be considered as
irregularity [1]. This is a subjective definition that can include a wide-range of
diverse events as irregularity and hence makes it hard for automated systems to
decide if an event in the scene is really an irregularity. Therefore, systems are
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Fig. 1: The two networks Z and D are trained jointly in an adversarial manner. 7
is an encoder-decoder convolutional network, which is trained to inpaint its input,
X, i.e., remove the irregularity. Therefore, | X — Z(X)| indicates the pixel-level
segmentation of the irregularity, from Z’s point-of-view. Whereas, D is a fully
convolutional network (FCN), which identifies if different regions of its input
are normal or irregular (patch-level). The intersection of the pixels denoted as
irregularity in both Z and D are labeled as the fine-segmentation of irregularity.

generally trained to learn the regularity, and rigorously tag everything else as
irregularity [2].

Several different methods are used in the literature for learning the normal
concept in visual scenes. Low-level visual features such as histogram of oriented
gradients (HOG) [3] and histogram of optical flow (HOF) [4, 5] were the first fea-
ture subsets explored for representing regular scenes in videos. Besides, trajectory
features [6] are also used for representing and modeling the videos, although they
are not robust against problems like occlusion [3, 7]. Both low-level and trajectory
features achieved good results while imposing a relatively high complexity to the
system. Recently, with the surge of deep learning methods, several methods are
proposed for detecting and localizing irregular events in videos [5, 7-10].

Although these deep learning-based methods effectively advanced the field,
they fell short of learning end-to-end models for both detecting the irregularities
and localizing them in spatio-temporal sequences, due to several challenges: (1)
In applications like irregularity detection, there are little or no training data
from the positive class (i.e., irregularity), due to the nature of the application.
Hence, training supervised models, such as convolutional neural networks (CNNs),
is nearly impossible. Therefore, researchers (e.g., in [10]) have usually utilized
pre-trained networks to extract features from the scenes, and the decision is
surrendered to another module. (2) To train end-to-end models for this task,
just recently [11—-14] used generative adversarial networks (GANs) and adopted
unsupervised methods for learning the positive class (i.e., irregular events). In
these methods, two networks (i.e., generator and discriminator) are trained. The
generator generates data to compensate for the scarcity of the positive class,
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while the discriminator learns to make the final decision making on whether its
input is a normal scene or irregularity. Although they are trained with a very high
computational load, the trained generator (or discriminator) is discarded at the
testing time. Besides, most of these previous methods are patch-based approaches,
and hence are often very slow. Note that these end-to-end models can only classify
the scenes and do not precisely localize the irregularities. (3) Accurate pixel-level
spatio-temporal localization of irregularities is still an ongoing challenge [9].

In addition to the above issues, as a general and ongoing challenging issue in
video irregularity detection, detecting and localizing the irregularity in a pixel-
level setting leads to models with many true positives while usually suffering from
many false positive errors. On the contrary, some other methods operate on large
patches (e.g., [3]) and overcome the problem of high false positive error, with
the price of sacrificing the detection rate. This motivated us to design a method
that takes advantage from both pixel-level and patch-level settings, and come up
with a model with high true positive rate while not sacrificing the detection rate.
We do this by proposing an architecture, composed of two networks that are
trained in an adversarial manner, the first of which is a pixel-level model and is
trained to Znpaint its input by removing the irregularity it detects. The second
network is a patch-level detector that Detects irregularities in a patch level. The
final irregularity detection and fine-segmentation is, then, defined as a simple
intersection of the results from these two networks, having the benefits of both
while discarding the pixels that result in high false positive errors (see Fig. 1).

According to the discussions above, in this paper, we propose an end-to-end
method for joint detection and localization of irregularities in the videos, denoted
as AVID (Adversarial Visual Irregularity Detection). We use an adversarial
training scheme, similar to those used in generative adversarial networks (GANS)
[15]. But in contrast to previous GAN-based models (e.g., [L1, 13, 14, 16]), we
show how the two networks (Z and D) can help each other to conduct the ultimate
task of visual irregularity detection and localization. The two networks can be
efficiently learned against each other, where Z tries to inpaint the image such that
D does not detect the whole generated image as irregularity. By regulating each
other, these two networks are trained in a self-supervised manner [12, 17, 18].
Although, Z and D compete with each other during training, they are trained to
detect the video irregularity from different aspects. Hence, during testing, these
two networks collaborate in detection and fine-segmentation of the irregularity.

In summary, the main contributions of this paper are three-fold: (1) We
propose an end-to-end deep network for detection and localization of irregularities
in visual data. To the best of our knowledge, this is the first work that operates
on a video frame as a whole in an end-to-end manner (not on a patch level). (2)
Our method can accurately localize the fine segments of the video that contain
the irregularity. (3) Our proposed adversarial training of the two networks (one
pixel-level and one patch-level) alleviates the high false positive rates of pixel-level
methods while not suffering from high detection error rate of patch-level models.
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2 Related Works

Detection of visual irregularities is closely related to different methods in the
literature (including one-class classifiers, anomaly detection, outlier detection or
removal methods). These approaches search for an irregularity, which is hardly and
scarcely seen in the data. Traditional methods often learn a model for the normal
class, and reject everything else (i.e., identify as irregularity). Learning under a
constraint (such as sparsity and compressed sensing) or statistical modeling are
two common methods for modeling the normal class. For the case of visual data,
feature representation (from videos and images) is an important part. Low-level
features (such as HOG and HOF) and high-level ones (e.g., trajectory) are widely
used in the literature. In the recent years, similar to other computer vision
tasks, deeply learned features are vastly utilized for irregularity detection. In this
section, a brief review of the state-of-the-art methods for irregularity detection
and related fields is provided.

Video Representation for Irregularity Detection. As one of the earliest
representations for irregularity detection, trajectory were used [6, 19], such that
an event not following a learned normal trajectory pattern is considered as
anomaly. Optical-flows [1, 20-22], social forces (SF) [23], gradient features [3, 24],
mixture of dynamic textures [2], and mixture of probabilistic PCAs (MPPCA)
[25] are types of low-level motion representations used to model regular concepts.
Deep learned features, using auto-encoders |26, 27], pre-trained networks [9], or
PCAnet [28, 29] have recently shown great success for anomaly detection.
Constrained reconstruction as supervision. Representation learning for
the normal (i.e., regular) class under a constraint has shown effective to detect
irregular events in visual data. If the new testing data does not conform to
the constraint, it can potentially be considered as an irregularity. Learning
to reconstruct normal concepts with sparse representation (e.g., in [30]) and
minimum effort (e.g., in [1]) are widely exploited for this task. Boiman and
Irani [1] consider an event as irregular if its reconstruction using the previous
observations is nearly impossible. In [31], a scene parsing approach is proposed
by Antic et al. in which all object hypotheses for the foreground of a frame are
explained by normal training. Those hypotheses that cannot be explained by
normal training are considered as anomaly. In [7, 12, 30] the normal class is learned
through a model by reconstructing samples with minimum reconstruction errors.
A high reconstruction error for a testing sample means this sample is irregular.
Also, [7, 30] introduced a self-representation technique for video anomaly and
outlier detection through a sparse representation, as a measure for separating
inlier and outlier samples.

Deep Adversarial Learning. Recently, GANs [15] are widely being used for
generating data to learn specific models. They are extended for prediction tasks,
in which there are not enough data present for training (e.g., in [11, 13, 14]).
GANSs are based on a game between two different networks, one generator (G)
and one discriminator (D). G aims to generate sensible data, while D tries to
discriminate real data from the fake data generated by G. A closely related type
of GANSs to our work is the conditional GANs [32]. In conditional GANs, G takes
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an image X as the input and generates a new image X', whereas, D tries to

distinguish X from X’. Isola et al. [33] proposed an ‘Image-to-image translation’
framework based on conditional GANs, where both G and D are conditioned
on the real data. Using a U-Net encoder-decoder [34] as the generator and a

patch-based discriminator, they transformed images with respect to different
representations. In another work, [16] proposed to learn the generator as the
reconstructor for normal events, and tag chunks of the input frame as anomaly if
they cannot be properly reconstructed. In our work, Z learns to inpaint its input
and make it free from irregularity in pixel-level, and D regulates it by checking if
its output is irregular or not. This self-supervised learning scheme leads to two
networks that improve the detection and fine-segmentation performance for any
given testing image. Liu et al. [35] proposed to learn an encoder-decoder GAN to
generate the future video frame using optical-flow features, used for irregularity
detection, i.e., if the prediction is far from the real future frame, it is counted as
irregularity. Similar to all other works, the work in [35] ignores the discriminator
in the testing phase. Also they suffer from high false positive rates.

3 AVID: Adversarial Visual Irregularity Detection

The proposed method for irregularity detection and localization is composed of
two main components: Z and D. T learns to remove the pixel-wise irregularity
from its input frame (i.e., Znpaint the video), while D predicts the likelihood
of different regions of the video (patches) being an irregularity. These networks
are learned in an adversarial and self-supervised way in an end-to-end setting. In
the following, we outline the details of each network. An overall sketch of the
proposed method is illustrated in Fig. 1. In summary, Z learns to Znpaint its
input X to fool D that the inpainted version does not have any irregularities.
For 7 to learn to reconstruct skewed images, 7 is exposed to noisy versions of
the videos in the data set and therefore it implicitly learns not only to remove
the irregularity but also to remove the noise in the data. Besides, D knows the
distribution of original data Py, as it has access to the data set containing all
normal videos (or with a tiny portion of irregularities present in the data). Having
access to Py, D simply rejects poorly inpainted or reconstructed data. These two
networks self-supervise each other and are trained through this bilateral game.
This structure is inspired by GAN models, although our model does not generate
from scratch and only enhances its input tailored for detection of irregularities.

After the adversarial training, Z will be an expert to inpaint its input (and
make it devoid of noise), which successfully fools D. Module Z is a pixel-level
irregularity detector and D a patch-level one, hence, | X — Z(X)| N D(X) can
define the fine-segmentation and the precise location of the irregularity in any
input testing video frame X. Note that each of the two networks Z and D can be
exploited for detecting and localizing the irregularity, but by aggregating them,
we show a great improvement in the results. Detailed descriptions of each module
along with the training and testing procedures are explained in the following.
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Fig. 2: Structure of D, a FCN that scores video regions on how likely they are
irregularities. All layers are convolutional layers and are described in this form
((C1,C), K, s), with C; and Cy as the number of channels of the input and
output, K as the size of the applied kernel, and s as the stride for convoluted.
Underneath each layer, the size of the feature maps are provided. Matrix O,
output of D, defines regularity likelihood for each region.

3.1 Z: Inpainting Network

In some recent previous works [5, 7, 12], it is stated that when an auto-encoder
is trained only on the inlier or normal class, the auto-encoder will be unable to
reconstruct outlier or anomaly samples. Since parameters of auto-encoder are
optimized to reconstruct samples from the normal (regular) class, as a side-effect,
the reconstruction error of outliers (irregularities in our case) will be high. Also, in
[12] in an unsupervised GAN-style training, a patch-based CNN is proposed that
decimates outliers while enhancing the inlier samples. This makes the separation
between the inliers and outliers much easier. In this paper, we use a similar
idea, but in contrast: (1) Z (analogous to the generator in GANS) is not directly
used as an irregularity detector; (2) Instead of decimating outliers (irregularities
in our case), our network inpaints its input by removing the irregularity from
it. Implicitly, Z operates similar to a de-noising network, which replaces the
irregularity in the video with a dominant concept (e.g., dominant textures).

Architecturally, Z is an encoder-decoder convolutional network (implemented
identical to U-Net [34]), which is trained only with data from the normal (regular)
class. It learns to map any given input to the normal concept. Usually, irregularity
occurs in some video frames, and Z acts by reconstructing those deteriorated
parts of the videos.

3.2 D: Detection Network

Fully convolutional neural networks (FCNs) can effectively represent video frames
and patches, and are previously used for different applications, such as semantic
segmentation [36, 37]. In a recent work, [10] used a FCN for irregularity detection
in videos, in which the authors used a pre-trained FCN just for describing the
video patches. Thier method was not capable to detect (or score) the irregularity
in the frames. Inspired by this idea, we use a FCN for the detection phase,
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but train it in an adversarial manner (along with 7). Our model is, hence, an
end-to-end trainable network. We train the FCN (i.e., D network) to score (and
hence detect) all irregular regions in the input frame all at once.

Unlike conventional discriminator networks in a GAN, where the discriminator
just provides a judgment about its input as a whole, D is capable to judge about
different regions of its input. Consequently, its output is a matrix of likelihoods,
which imply if the regions of its input follow the distribution of the normal
(regular) data or not (i.e., Py). Fig. 2 shows the architecture of D, which includes
several convolutional layers. For this application, since local spatial characteristics
are crucial, we do not use any pooling or fully connected layers, which ignore the
spatial characteristics. On the other hand, to preserve the locality and enrich the
features, several 1x1 convolutional layers are used.

3.3 Adversarial Training of Z+D

Goodfellow et al. [15] proposed an efficient way for training two deep-neural
networks (Generator (G) and Discriminator (D), in their terminology) through
adversarial training, called GAN. GANs aim to learn the distribution of training
data Py, and simultaneously generate new samples based on the same distribu-
tion Py. Therefore, G maps a vector of random variables (say Z) from a specific
distribution Pz to a sample from real data distribution and D seeks to discrimi-
nate between the actual data and the fake data generated by G. Generator and
Discriminator are learned in a two-player mini-max game, formulated as:

minmax (Ex-p,log(D(X))] + Ez-p. [log(1 — D(G(2))))- (1)

Similarly, Z+D can be adversarially trained. Unlike conventional GANs, which
map a latent space Z to a sample from Py, Z maps a very noisy sample X + 7 to
a noise-less one that can fool D into identifying it as a normal scene i.e.,

X=X ~Pa)+7(n~N(0,0T) — X'~ Py, (2)

where 7 is a Gaussian noise sampled from the normal distribution with standard
deviation o, i.e., N'(0,02I). 7 is a hyperparameter that defines how severely to
contaminate X with noise. Note that the addition of n forces Z to learn how to
restore X from X, i.e., in absent of irregularity.

On the other hand, D has access to the original pool of training data, hence,
knows P,4, and is trained to identify the normal class. In our case, D decides
which region of 7 (X' ) follows from Py. To fool D, Z is implicitly forced to inpaint
its input. As mentioned above, D (i.e., our discriminator network) judges on the
regions of its input and not the whole image (which is the case for the GAN
discriminators). Consequently, output of D(X) is a matrix, O € R™**"2 in which
each cell O(i, j) corresponds to the i** and j** image region. Therefore, the joint
training aims to maximize Y7, ~)",77" O(i, j) (i.e., maximize the likelihood of
T’s output to be normal). ny X ne = n is the total number of regions judged by D.
Accordingly, Z+D can be jointly learned by optimizing the following objective:

minmax (Exp,[l0g([D(X)|)] + Exp, ., los (1Y = D)D), (3)
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Fig. 3: Examples of images (X) and their inpainted versions using Z (i.e., Z(X)).
The network is trained on images containing 0-9 digits, except digit ‘3’. These
images are created from images in the MNIST dataset [38], to show how Z and D
operate. When digit ‘3’ appears in a test image, it is considered as an irregularity.
For clarity, several irregularity regions are marked in X and Z(X).

where ) € R"1*"2 := 1™ *"2_ Bagsed on the above objective function, Z learns
to generate samples with the distribution of normal data (i.e., P4). Hence, the
parameters of this network, 6z, are learned to restore a noisy visual sample. So,
I(X ,07) would be an irregularity-free version of X. For better understanding,
suppose each frame of the video X is partitioned into n = ni X ny non-overlapping
regions (blocks), Bjc1.,. The proposed algorithm looks to find which of these
regions are irregular. After the joint training of Z-+D, the modules can be
interpreted as follows:

— Vi; Bj ~ Pq+Ny; Z(X = Bicin) = X' = Blcy.,, where Vi; B] ~ Pg. This is
the case if the input is free from irregularity and is already following Py. X' is
the output of Z, and hence || X — X’|| is minimized (will be near zero). This is
because of the fact that 67 is optimized to reconstruct its input (all B; regions)
while the output also follows P,. Note that Z works similar but not exactly
the same as the refinement network in [12], the de-noising auto-encoder in
[7], or de-nosing convolutional neural network in [39]. Consequently, if the
input frame is already free from irregularity, Z acts only as an enhancement
function.

— 3j; Bj » Pa; Z(X = Bicim) = X' = Ble,.,, where Vi; Bl ~ Py. This is
the case if at least one of the regions in X is irregular. Then, it is expected
from 7 that Z(B; = Pa) = B’ ~ Pa. The irregular region is forced to follow
the normal data distribution, as Z is trained to restore a normal region
contaminated with strong noise (y(n ~ N(0,02I))) to a clean noise-free
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Fig. 4: Examples of the output of D , i.e., matrix O, mapped on the original
frames. The colored areas on the image are the low-scored regions in O.

normal-looking region. In the testing phase, an irregular region, in Z’s point-
of-view, is consider as strong noise. Note that in our experiments, v < 0.4 is
considered as weak and v > 0.4 is considered as strong noise. Strong noise
added to the training samples (inputs of Z) is considered as concepts that
should be removed from the output of Z, for it to be able to fool D. See Fig. 3,
as a proof-of-concept example. Digit ‘3’ is considered as an irregular concept
in this example, and 74D have never seen any ‘3’ during training. So, Z tries
to replace it with a dominant concept from the normal concepts, which can
be any digit between 0-9 except ‘3’. Consequently those B;s that follow Py
are not touched (or are enhanced), while those not following the normal data
distribution are converted to a dominant concept (i.e., inpainted).

— D(X = Bijc1.n) = Oic1.n, where each element of matrix O, output of D,
indicates the confidence for the corresponding region to be normal (regularity).
Note that here O; is analogous to O(a,b) with i = b+ (a — 1) - ny. Let’s
consider 3j; B; ~ Pg; we expect that O; < O,+;. Parameters of D, 0p, are
learned to map normal regions (i.e., following Py) to 1, and 0 otherwise. Fig.
4 shows the results of D, in which the locations with an irregularity have
lower scores.

With a modification on the objective function and the structure of GANS,
our two proposed deep networks are adversarially trained. They learn to identify
irregularities from two different aspects (pixel-level and patch-level) in a self-
supervised manner. The equilibrium point as the stopping criterion for the two
networks is discussed in Section 4.3.

3.4 Irregularity Detection

In the previous subsections, detailed structures and behaviours of the two networks
are explained. As mentioned, Z acts as a pixel-level inpainting network, and D as
a patch-level irregularity detector. The difference between the input and outputs
of Z for any testing frame X (i.e., |X — Z(X)|) can be a guideline for where
pixels of the input frames are irregular. On the other hand, D(X = Bjc1.,,) shows
which regions of X are irregular (i.e., those with O; < (). As discussed earlier,
the detection based on Z leads to high false positive rate, and the detection solely
based on D leads to high detection error rates. Therefore, outputs of these two
networks are masked by each other and the intersection is considered as the
irregularity localization.
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To identify the regions of irregularities from the output of D (i.e., matrix O),
we can consider all regions with {B;|(O; < ()}, where B; is respective field of
O; on the input. As mentioned above, Z will reconstruct its whole input image,
except for the irregularities, which are inpainted. Consequently, pixels where
|X —Z(X)| > « can be considered as potential pixels containing an irregularity.
To alleviate the high false positive rate, we just mask these pixels with the above
regions. Consequently, final irregularity fine-segmentation on X can be defined as

M =A{|X - Z(X)| > o} N{B:|(O; < ()} (4)

3.5 Preprocessing of the Videos

Irregular events in visual data (especially in videos) are defined in terms of
irregular shapes, motion, or possibly a combination of both. Therefore, to identify
the motion properties of events, we require a series of frames. Two strategies can be
adopted for this purpose: (1) Adding a LSTM sequence at the end of the proposed
network [40]; (2) Using 3D kernels, instead of 2D ones in the same architectures
we proposed (such as in [11]). However, these methods increase the number of
parameters and the computational complexity of the model. [10] proposed a
simple preprocessing step to feed videos instead of images to a CNN without
any modification on the structures of a 2D CNN. To interpret both shape and
motion, we consider the pixel-wise average of frame I; and previous frame I;_1,
denoted by I] (not to be confused with a derivative): I}(p) = 3(I:(p) + Li—1(p)),
where I; is the t*" frame in the video. For detecting irregularities on I;, we use
the sequence X = (I;_,,I]_5,I}), and input it to the three channels (similar to
R, G, and B channels) of the networks.

4 Experimental Results

We evaluate the performance of the proposed method on two standard benchmarks
for detecting and localizing irregular events in videos. Also, we create a dataset,
called IR-MNIST, for evaluating and analyzing the proposed method to better
showcase the abilities of the network modules, as a proof-of-concept.

The proposed method is implemented using PyTorch [42] framework. All
reported results are from implementations on a GeForce GTX 1080 GPU. Learning
rate of Z and D are set to be the same and is equal to 0.002. Also, momentum
of both is equal to 0.9, with a batch size of 16. The hyperparameter ~, which
controls the scale of added Gaussian noise for the training samples (in 7) is equal
to 0.4.

4.1 Datasets

UCSD: This dataset [2] includes two subsets, Pedl and Ped2 . Videos are from
an outdoor scene, recorded with a static camera at 10 fps. The dominant mobile
objects in these scenes are pedestrians. Therefore, all other objects (e.g., cars,
skateboarders, wheelchairs, or bicycles) are considered as irregularities.
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Fig. 5: Examples of the output of Z on the UCSD dataset. Bottom row shows
output of Z. Top row shows the original frames.

UMN: The UMN dataset is recorded for three different scenarios. In each
scenario, a group of people walk in normal pace in an area, but suddenly all
people run away (i.e., they escape). The escape is considered to be the irregularity.
IR-MNIST (Available at http://ai.stanford.edu/ eadeli/publications/
data/IR-MNIST.zip): To show the properties of the proposed method, we create
a simple dataset using the images from MNIST [43]. To create each single image,
randomly 121 samples are selected from the MNIST dataset and are put together
as a 11 x 11 puzzle. Some samples are shown in Fig. 3. We create as much images
to have 5000 training data and 1000 test samples. Training samples are created
without using any images of the digit ‘3’. Hence, ‘3’ is considered as an irregular
concept. We expect that our method detects and localizes all patches containing
‘3’ in the testing images, as irregularity.

4.2 Results

Results on UCSD. Fig. 5 visualizes the outputs of network Z on several
examples of UCSD frames. As can be seen, irregular objects such as bicycles and
cars disappear in the output of Z(X), and the regular regions are approximately
reconstructed. Although 7 is trained to reconstruct regular regions with minimum
loss, loss of quality is unavoidable, as a consequence of the strong noise applied to
the inputs of Z during training. This shortage, however, does not adversely affect
our final decision, because maximum difference between X and Z(X) happens
in the pixels when an irregularity occurred. Fig. 4 also shows several output
samples of the proposed detector D for detecting irregularity in videos. It confirms
that irregular blocks can be appropriately detected. For a quantitative analysis,
similar to [2], two standard measures on this dataset are considered. In frame
level (FL) each of the frames is considered to be anomaly if at least one pixel
is detected as irregularity. In pixel-level (PL) analysis, the region identified as
anomaly should have an overlap of at least 40% with the ground-truth irregular
pixels to be considered as irregularity. PL is a measure for evaluating the accuracy
of the localization in a pixel-level. A comparison between the performance of
the proposed and the state-of-the-art methods is provided in Table 1. The
proposed method for detecting the irregular frames is comparable to state-of-the-
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Table 1: Frame-level accuracy (FL) and pixel-level accuracy (PL) comparisons on
the UCSD dataset. The last column shows if the methods are (1) based on Deep
learning or not, (2) End-to-end deep networks or not, and finally (3) Patched
based methods or not.

Method Pedl (FL/PL) Ped2 (FL/PL) (D/E/P)
IBC[] (14,26) (13/26)  (X/X/V)
MDT[] (25/58) (24/54)  (X/X/X)
Bertini et al. [3] (31/70) (30/-) (X/X/V)
Xu et al. [44] (22/-) (20/42) (X/X/X)
Li et al. [45] (16/-) (18/29) (X/X/X)
RE [7] (/) (15/-)  (V/¥/V)
Xu et al. [26] (16//40) (17/42)  (V/X/V)
Sabokrou et al. [27] (=/-) (19/24) (V/X/V)
Deep-Cascade|Y] (9.1/15.8) (8.2/19)  (V/X/V)
Deep-Anomaly[10] (/=) (11/15)  (//X/X)
Ravanbakhsh et al. [14] (7/34) (11/-) (V/X/V)
ALOCC [17) /) 13/ (IN)
D(X) (-/16.7) (=/17.2)  (V/V/X)
Z(X) (17.3/-) (17.8/-)  (V/V//X)
AVID (12.3/14.4) (14/15) (V' /V//X)

Table 2: EER and AUC perforamnce metrics on UMN dataset.

Chaoig nvariant - SE [2] - Cong [30]  saligrama (177 Li [15]  Ours (AVID)
EER 5.3 12.6 2.8 3.4 3.7 2.6
AUC 99.4 94.9 99.6 99.5 99.5 99.6

art methods, but the localization performance outperforms all other methods by a
large margin. As can be seen, [9, 12, 14] achieve a better performance by a narrow
margin in a frame-level aspect compared to us, but unlike ours, these methods are
not able to process images as a whole in an end-to-end fashion. They require to
split a frame into a set of patches and feed them to the network one-by-one. The
last column of Table 1 shows which methods are not patch-based and end-to-end.
Furthermore, the performances of Z and D as independent baselines are also
reported in this table, which show that each single one of them can preform
as well as previous state-of-the-arts, while our final end-to-end model, AVID,
outperforms all of these methods.

Results on UMN. Table 2 shows the irregularity detection performance in
terms of equal error rate (EER) and area under the ROC curve (AUC). As
discussed earlier, this dataset has some limitations, as there are only three types
of abnormal scenes in the dataset with very high temporal-spatial abrupt changes
between normal and abnormal frames. Also, there are no pixel-level ground
truth for this dataset. Based on these limitations, to evaluate the method, EER
and AUC are reported in frame-level settings. Since this dataset is simple, and
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Fig. 7: Examples outputs of D on IR-MNIST. Bottom row shows (resized version
of) the heat-map, for input testing images (in the top row). Here, ‘3’ is intended
as an irregular concept.

irregularity localization is not important, only the global detector is used to
evaluate the results. Because of the simplicity of this dataset, previous methods
already performed reasonably good on this dataset. AUC of our method is
comparable with the other best results and EER of our approach is better (by
0.2 percent) than the second best.

Results on IR-MNIST as a toy
data-set. Fig. 3 confirms that the net-
work Z can properly substitute irreg- &, o - Localation
ular regions with a (closest) normal & o - o
concept. Since ‘3’ is considered as an oz
irregular concept, Z converted it to an-
other digit, which is most similar to ° 01 02 03 Of e’ 07 08 08 1
‘3’. Several samples of irregular regions

in Flg 3 are marked (on both the orig_ Flg 6: ROC curves for detection and lo-
inal and inpainted version of the same calization performance on IR-MNIST.
samples). Similarly, we evaluate D in

detecting irregular regions on an image. Fig. 7 shows the heat-map of D’s output
for several samples, where blue is 1 and yellow indicates 0, and other colors are
in between (in a parula colormap). Note that the output is resized to have the
same size as the original images. Fig. 6 shows the localization and detection
performance on the IR-MNIST dataset using the receiver operating characteristic
(ROC) curve. This curve is drawn by repeatedly changing the two thresholds in
Eq. (4) and recording the results. Detection is just based on if a frame contains an
irregular concept (‘3’ digits) or not (checked over 1000 different testing samples).
For localization all 11 x 11 regions of an images are considered, and if the region
is correctly detected, it is counted as a true localization. So, 11 x 11 x 1000 regions
are evaluated. The EERs of the detection and localization are equal to 21% and
29%, receptively.

EER Curve
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4.3 Discussion
Added noise to the input of 7 in training phase. In some cases similar

to de-nosing auto-encoder [48], de-noisng CNN [39] or one-class classification
tasks [12], researchers added noise to the training data to make their network
robust against noise. We also contaminated our training data with a statistical
noise, with ~ indicating its intensity. This hyperparameter actually plays a very
interesting role for training the model. Using this hyperparameter, we can control
the learning pace between Z and D. Since, Z sees only normal samples during
training, in the noise-free case, it can easily reconstruct them so that D is fooled.
The added noise actually makes Z to learn how to inpaint and remove the
irregularity to a pixel-level. Therefore, a very small value for 7 leads to a task,
which is very easy for Z and a very large value will mislead Z from seeing the
actual normal data distribution (i.e., Py). Based on our experiments, v = 0.4
leads to good results. From another point-of-view, v is a very good means to
create a proper scheduling between Z and D, which is a very interesting and
recent topic on for GANs [19].

Stopping criterion. In conventional GANs, the stopping criterion is defined
as when the model reaches a Nash equilibrium between G and D. However, for
our case, the optimum point for Z and D is not often obtained at the same time.
During learning of these two networks, when they are competing with each other,
different conditions may occur. At a time that D is capable to efficiently classify
between fake and real data (i.e., work as an accurate classifier on the validation
data), we save its parameters, fp. Also, when 7 generates samples as well as the
normal class (i.e., || X — Z(X)||? is in the minimum point), the parameters of
7T, 07, are also saved. So, at different time spans 7 and 6p are saved , during
the training procedure. Similar to other GAN-style models, finding the optimum
point for stopping adversarial training of Z+D is a hard task.

Mode collapse. One of the major concerns in GANSs is the mode collapse issue,
which often occurs when the generator only learns a portion of the real-data
distribution and outputs samples from a single mode (i.e., ignores other modes).
For our case, it is a different story as Z directly sees all possible samples of the
normal class and implicitly learns the manifold spanned by them. Reconstructing
the training samples, instead of starting from a random latent space, is an
acceptable way to avoid the mode collapse issue [50].

5 Conclusions

In this paper, we proposed an efficient method for irregularity detection and
localization in visual data (i.e., images and videos). Two proposed deep networks,
7T and D are adversarially trained in a self-supervised setting. Z learns to efficiently
reconstruct normal (regular) regions and implicitly inpaints irregular ones. D
learns to score different regions of its input on how likely they are irregularities.
Integrating the outputs of the pixel-level results from Z, and the patch-level
results from D provides a promising irregularity detection metric, as well as
fine-segmentation of the irregularity in the visual scene. The results on several
synthetic and real datasets confirm that the proposed adversarially learned
network is capable of detecting irregularity, even when there are no irregular
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samples to use during training. Our method benefits from the advantages of both
pixel-level and patch-level methods, while not having their shortcomings.
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