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Abstract. The work in this paper is driven by the question if spatio-temporal
correlations are enough for 3D convolutional neural networks (CNN)? Most of
the traditional 3D networks use local spatio-temporal features. We introduce a
new block that models correlations between channels of a 3D CNN with respect
to temporal and spatial features. This new block can be added as a residual unit to
different parts of 3D CNNs. We name our novel block ‘Spatio-Temporal Chan-
nel Correlation’ (STC). By embedding this block to the current state-of-the-art
architectures such as ResNext and ResNet, we improve the performance by 2-3%
on the Kinetics dataset. Our experiments show that adding STC blocks to cur-
rent state-of-the-art architectures outperforms the state-of-the-art methods on the
HMDB51, UCF101 and Kinetics datasets. The other issue in training 3D CNNs
is about training them from scratch with a huge labeled dataset to get a reason-
able performance. So the knowledge learned in 2D CNNs is completely ignored.
Another contribution in this work is a simple and effective technique to transfer
knowledge from a pre-trained 2D CNN to a randomly initialized 3D CNN for a
stable weight initialization. This allows us to significantly reduce the number of
training samples for 3D CNNs. Thus, by fine-tuning this network, we beat the
performance of generic and recent methods in 3D CNNs, which were trained on
large video datasets, e.g. Sports-1M, and fine-tuned on the target datasets, e.g.
HMDB51/UCF101. 1

1 Introduction

Compelling advantages of exploiting temporal rather than merely spatial cues for video
classification have been shown lately [1–3]. In recent works, researchers have focused
on improving modeling of spatio-temporal correlations. Like 2D CNNs, 3D CNNs try
to learn local correlation along input channels. Therefore, 3D CNNs neglect the hid-
den information in between channels correlations in both directions: space and time,
which limits the performance of these architectures. Another major problem in using
3D CNNs is training the video architectures calls for extra large labeled datasets. All
of these issues negatively influence their computational cost and performance. To avoid

1 ?Ali Diba and Mohsen Fayyaz contributed equally to this work. Mohsen Fayyaz contributed
to this work while he was at Sensifai.
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these limitations, we propose (i) a new network architecture block that efficiently cap-
tures both spatial-channels and temporal-channels correlation information throughout
network layers; and (ii) an effective supervision transfer that bridges the knowledge
transfer between different architectures, such that training the networks from scratch is
no longer needed.

Motivated by the above observations, we introduce the spatio-temporal channel cor-
relation (STC) block. The aim of this block is considering the information of inter chan-
nels correlations over the spatial and temporal features simultaneously. For any set of
transformation in the network (e.g. convolutional layers) a STC block can be used for
performing spatio-temporal channel correlation feature learning. The STC block has
two branches: a spatial correlation branch (SCB) and a temporal correlation branch
(TCB). The SCB considers spatial channel-wise information while TCB considers the
temporal channel-wise information. The input features I ∈ RH×W×T×C are fed to
SCB and TCB. In SCB a spatial global pooling operation is done to generate a rep-
resentation of the global receptive field which plays two vital roles in the network: (i)
considering global correlations in I by aggregating the global features over the input,
(ii) providing a channel-wise descriptor for analyzing the between channels correla-
tions. This channel-wise feature vector is then fed to two bottleneck fully connected
layers which learn the dependencies between channels. The same procedure happens in
TCB, however, for the first step a temporal global pooling is used instead of the spatial
global pooling. Output features of these two branches are then combined and returned
as the output of the STC block. These output features can be combined with the output
features of the corresponding layer(s). By employing such features along-side tradi-
tional features available inside a 3D CNN, we enrich the representation capability of
3D CNNs. Therefore, the STC block equipped 3D CNNs are capable of learning chan-
nel wise dependencies which enables them to learn better representations of videos. We
have added the STC block to the current state-of-the-art 3D CNN architectures such as
3D-ResNext and 3D-ResNet [4]. The STC block is inserted after each residual block of
these networks.

As mentioned before, training 3D CNNs from scratch needs a large labeled dataset.
It has been shown that training 3D Convolution Networks [2] from scratch takes two
months [5] for them to learn a good feature representation from a large scale dataset
like Sports-1M, which is then finetuned on target datasets to improve performance.
Another major contribution of our work therefore is to achieve supervision transfer
across architectures, thus avoiding the need to train 3D CNNs from scratch. Specifically,
we show that a 2D CNN pre-trained on ImageNet can act as ‘a teacher’ for supervision
transfer to a randomly initialized 3D CNN for a stable weight initialization. In this way
we avoid the excessive computational workload and training time. Through this transfer
learning, we outperform the performance of generic 3D CNNs (C3D [2]) which was
trained on Sports-1M and finetuned on the target datasets HMDB51 and UCF101.

2 Related Work

Video Classification with and without CNNs: Video classification and understanding
has been studied for decades. Several techniques have been proposed to come up with
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efficient spatio-temporal feature representations that capture the appearance and motion
propagation across frames in videos, such as HOG3D [6], SIFT3D [7], HOF [8], ES-
URF [9], MBH [10], iDTs [11], and more. These were all hand-engineered. Among
these, iDTs yielded the best performance, at the expense of being computationally
expensive and lacking scalability to capture semantic concepts. It is noteworthy that
recently several other techniques [12] have been proposed that also try to model the
temporal structure in an efficient way.

Using deep learning, the community went beyond hand-engineered representations
and learned the spatio-temporal representations in an end-to-end manner. These meth-
ods operate on 2D (frame-level) or 3D (video-level) information. In the 2D setting,
CNN-based features of individual frames are modeled via LSTMs/RNNs to capture
long-term temporal dependencies [13, 3], or via feature aggregation and encoding us-
ing Bilinear models [1], VLAD [14], Fisher encoding [15] etc. Recently, several tem-
poral architectures have been proposed for video classification, where the input to the
network consists of either RGB video clips or stacked optical-flow frames. The filters
and pooling kernels for these architectures are 3D (x, y, time). The most intuitive are 3D
convolutions (s×s×d) [3] where the kernel temporal depth d corresponds to the number
of frames used as input, and s is the kernel spatial size. Simonyan et al. [16] proposed
a two-stream network, cohorts of RGB and flow CNNs. In their flow stream CNNs, the
3D convolution has d set to 10. Tran et al. [2] explored 3D CNNs with filter kernel of
size 3×3×3 and in [5] extended the ResNet architecture with 3D convolutions. Feicht-
enhofer et al. [17] propose 3D pooling. Sun et al. [18] decomposed the 3D convolutions
into 2D spatial and 1D temporal convolutions. Carreira et al. [19] proposed converting a
pre-trained 2D Inception-V1 [20] architecture to 3D by inflating all the filters and pool-
ing kernels with an additional temporal dimension d. The Non-local Neural Networks
[21] proposes a new building block for CNNs which captures long range dependencies.
Feichtenhofer et al. [22] introduce residual connections for learning the dependencies
between motion and appearance stream of a two stream CNN. Varol et al. [23] have
studied the long-term temporal convolutions for learning better representations of long-
term activities in video. The spatio-temporal feature gating method introduced in [24]
addresses a similar issue by introducing the feature gating module. Miech et al. [25]
introduce the context gating method which applies gating to the features of the output
layer. Most of these architectures neglect the channel wise information throughout the
whole architecture. To the best of our knowledge, our STC block is the first 3D block
that integrates channel wise information over 3D networks’ layers.

Transfer Learning: Finetuning or specializing the learned feature representations
of a pre-trained network trained on another dataset to a target dataset is commonly
referred to as transfer learning. Recently, several works have shown that transferring
knowledge within or across modalities (e.g. RGB→RGB [26] vs. RGB→Depth [27],
RGB→Optical-Flow [27, 28], RGB→Sound [29], Near-Infrared→RGB [30]) is effec-
tive, and leads to significant improvements in performance. They typically amount to
jointly learning representations in a shared feature space. Mansimov et al. [31] have
studied various methods of weight initialization which are the principle idea for in-
flation approaches. Our work differs substantially. Our goal is to transfer supervision
across architectures (i.e. 2D→3D CNNs), not necessarily limited to transferring infor-
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Fig. 1. STC-ResNet. Our STC block is applied to the 3D ResNet. The 3D network uses video
clips as input. The 3D feature-maps from the clips are densely propagated throughout the net-
work. The STC operates on the different levels of feature maps in the network to extract spatial
and temporal channel relations as new source of information. The output of the network is a
video-level prediction.

mation between RGB models only, as our solution can be easily adopted across modal-
ities too.

3 Proposed Method

Our approach with the newly proposed neural block, STC, is to capture different and
new information in deep CNNs from videos. The spatio-temporal channel correlation
block is meant to extract relations between different channels in the different layers
of 3D CNNs. The STC block considers these relations in space and time dimensions.
In addition, as another major contribution of our work, we show knowledge transfer
between cross architectures (i.e. 2D→3D CNNs), thus avoiding the need to train 3D
CNNs from scratch. Details about the transfer learning is given in Section 3.2.

3.1 Spatio-Temporal Channel Correlation (STC) Block

STC is a computational block which can be added to any 3D CNN architecture. There-
fore, we have added our STC block to the ResNet and ResNext 3D CNNs introduced by
[4]. After each convolutional block in ResNet and ResNext, the STC blocks are inserted
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to enrich the feature representation. As it was mentioned previously, this new block is
exploiting both spatial and temporal information by considering the filters correlation
in both spatial and temporal dimension. As input to the STC block, we consider feature
maps coming from previous convolution layers.
The STC block has a dual path structure which represents different levels of concept
and information. Each of these paths have different modules; channel or filter informa-
tion embedding and capturing dependencies. Our approach is inspired by the Squeeze-
and-Excitation [32] method which uses global average pooling (spatial and temporal)
following with two bottleneck fully connected layers and sigmoid activation. In contrast
to [32], the STC block has two branches or in other words a dual path; one considering
pure channel-wise information and the other takes temporal channel-wise information.
Since we are solving video classification, it makes sense to extract more meaningful
representations in both spatial and temporal approaches. The STC is capturing chan-
nel dependencies information based on this theory. In the following we describe both
branches and their integration into the known 3D architectures like 3D-ResNet [4].

Notation. The output feature-maps of the 3D convolutions and pooling kernels at
the lth layer extracted for an input video is a tensor X ∈ RH×W×T×C where H , W ,
T and C are the height, width, temporal depth and number of channels of the feature
maps, respectively. The 3D convolution and pooling kernels are of size (s× s× d),
where d is the temporal depth and s is the spatial size of the kernels.

Temporal Correlation Branch (TCB): In this path the feature map will be squeezed
by both spatial and temporal dimensions to extract channel descriptors. If we consider
X as the input to STC, the output of the first stage, which is a global spatio-temporal
pooling is:

ztcb =
1

W ×H × T

W∑
i

H∑
j

T∑
t

xijt . (1)

To obtain the filters non-linear relations, we apply two fully connected layers. The
feature dimension is reduced in the first FC layer to C/r (r is reduction ratio) and is
increased again to C by the second FC layer. Since we used global spatial-temporal
pooling over all dimensions of receptive fields, in the next operation, channel-wise in-
formation will be extracted. Right after the sigmoid function, the output of the temporal
branch (xtcb) will be calculated by rescaling X using the stcb vector. So stcb, output of
the bottleneck layers, and xtcb, the branch output, are calculated in this way:

stcb = Ftcb(ztcb,W ) = W2(W1ztcb) (2)

xtcb = stcb ·X . (3)

W is the parameter set for the bottleneck layers, including W1 ∈ RC
r ×C , W2 ∈ RC×C

r

which are FC layers parameters respectively. Ftcb is the symbol of fully-connected func-
tions to calculate the stcb.

Spatial Correlation Branch (SCB): The main difference in this branch compared
to the temporal branch is in the aggregation method. The spatial branch shrinks the
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Table 1. 3D ResNet vs. STC-ResNet and STC-ResNext. All the proposed architectures incor-
porate 3D filters and pooling kernels. Each convolution layer shown in the table corresponds the
composite sequence BN-ReLU-Conv operations.

Layers Output Size 3D-ResNet101 3D STC-ResNet101 3D STC-ResNext101
3D Convolution 56× 56× 8 7× 7× 7 conv, stride 2

3D Pooling 56× 56× 8 3× 3× 3 max pool, stride 1

Res1 28× 28× 8

 conv, 1× 1× 1, 64
conv, 3× 3× 3, 64
conv, 1× 1× 1, 256

× 3


conv, 1× 1× 1, 64
conv, 3× 3× 3, 64
conv, 1× 1× 1, 256

fc, [16, 256]

× 3


conv, 1× 1× 1, 128

conv, 3× 3× 3, 128 C = 32
conv, 1× 1× 1, 256

fc, [16, 256]

× 3

Res2 14× 14× 4

conv, 1× 1× 1, 128
conv, 3× 3× 3, 128
conv, 1× 1× 1, 512

× 4


conv, 1× 1× 1, 128
conv, 3× 3× 3, 128
conv, 1× 1× 1, 512

fc, [32, 512]

× 4


conv, 1× 1× 1, 256

conv, 3× 3× 3, 256 C = 32
conv, 1× 1× 1, 512

fc, [32, 512]

× 4

Res3 7× 7× 2

 conv, 1× 1× 1, 256
conv, 3× 3× 3, 256
conv, 1× 1× 1, 1024

× 23


conv, 1× 1× 1, 256
conv, 3× 3× 3, 256
conv, 1× 1× 1, 1024

fc, [64, 1024]

× 23


conv, 1× 1× 1, 512

conv, 3× 3× 3, 512 C = 32
conv, 1× 1× 1, 1024

fc, [64, 1024]

× 23

Res4 4× 4× 1

 conv, 1× 1× 1, 512
conv, 3× 3× 3, 512
conv, 1× 1× 1, 2048

× 3


conv, 1× 1× 1, 512
conv, 3× 3× 3, 512
conv, 1× 1× 1, 2048

fc, [128, 2048]

× 3


conv, 1× 1× 1, 512

conv, 3× 3× 3, 512 C = 32
conv, 1× 1× 1, 2048

fc, [128, 2048]

× 3

Classification 1× 1× 1 4× 4× 1 avg pool
Layer 400D softmax

channel-wise information with respect to the temporal dimension and does global spa-
tial pooling on the input feature map. Therefore this branch is considering the temporal-
channel information extraction to enrich the representation in each layer. The calcula-
tion of the first operation of the branch comes as following:

zscb =
1

W ×H

W∑
i

H∑
j

xijT (4)

After the pooling layer, we obtain zscb which is a vector with size of T × C. Af-
terward, there are the fully connected layers to extract the temporal based channel rela-
tions. In this branch the first FC layer size is (T × C)/r and the second FC size is C.
Here is the computation description:

sscb = Fscb(zscb,W ) = W2(W1zscb) (5)

xscb = sscb ·X (6)

with W1 ∈ R
(T×C)

r ×(T×C) and W2 ∈ RC×T×C
r . By considering both of the branches,

the final output of the block (xstc) is computed by averaging over xtcb and xscb.

xstc = avg(xtcb, xscb) (7)

In the case of 3D ResNet or ResNext, this output will be added to the residual layer to
have the final output of the Convolution (Conv) blocks.
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3.2 Knowledge Transfer

In this section, we describe our method for transferring knowledge between architec-
tures, i.e. pre-trained 2D CNNs to 3D CNNs. Therefore we bypass the need to train the
3D CNNs from scratch with supervision or training with large datasets.

3D ConvNet

Pre-trained 2D ConvNet

Positive/Negative
Pairs

1024
1024
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0/1

Frames avg
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Fig. 2. Architecture for knowledge transfer from a pre-trained 2D CNN to a 3D CNN. The
2D network operates on RGB frames, and the 3D network operates on video clips for the same
time stamp. The 2D CNN acts as a teacher for knowledge transfer to the 3D CNN, by teaching
the 3D CNN to learn mid-level feature representation by solving an image-video correspondence
task. The model parameters of the 2D CNN are frozen, while the task is to effectively learn the
model parameters of the 3D CNN only.

Lets I be a pre-trained 2D CNN which has learned a rich representation from la-
beled images dataset, while V being a 3D CNN which is randomly initialized using [33]
and we want to transfer the knowledge of the representation from I to V for a stable
weight initialization. This allows us to avoid training V from scratch, which has million
more parameters, and would require heavy computational workload and training time
of months [5]. In the current setup, I acts as a teacher for knowledge transfer to the V
architecture.

Intuitively, our method uses correspondence between frames and video clips avail-
able by the virtue of them appearing together at the same time. Given a pair of X
frames and video clip for the same time stamp, the visual information in both frames
and video are the same. We leverage this for learning mid-level feature representations
by an image-video correspondence task between the 2D and 3D CNN architecture, as
depicted in Figure 2. We use 2D ResNet [34] pre-trained on ImageNet [35] as I , and
the STC-ResNet network as V . The 2D ResNet CNN has 4 convolution blocks and
one fully connected layer at the end, while our 3D architecture has 4 3D-convolution
blocks with an STC block and we add a fully-connected layer after the last block. We
concatenate the last fc layers of both architectures, and connect them with the 2048-
dimensional fc layer which is in turn connected to two fully connected layers with 512
and 128 sizes (fc1 , fc2) and to the final binary classifier layer. We use a binary match-
ing classifier: given X frames and a video clip, decide whether the pairs belong to each
other or not. For a given pair, X frames are fed sequentially into the network I and
we average the last 2D fc features over the X frames, resulting in a 1024-D feature
representation. In parallel the video clip is fed to the network V , and we extract the 3D
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fc features (1024-D), and concatenate them, which is then passed to the fully connected
layers for classification. For training, we use a binary classification loss.

During the training, the model parameters of I are frozen, while the task is to ef-
fectively learn the model parameters of V without any additional supervision than cor-
respondences between frames and video. The pairs belonging to the same time stamp
from the same video are positive pairs, while the pairs coming from two different videos
by randomly sampling X frames and video clips from two different videos is a negative
pair. Note that, during back-propagation, only the model parameters for V are updated,
i.e., transferring the knowledge from I to V . In our experiments we show that a sta-
ble weight initialization of V is achieved, and when fine-tuned on the target dataset, it
adapts quickly, thus avoiding training the model from scratch. We also show that by us-
ing our proposed knowledge transfer method, 3D CNNs can be trained directly on small
datasets like UCF101 and achieve a better performance than training from scratch.

Since our transfer learning is unsupervised and there is no need of video label,
we have applied on a collection of unlabeled videos. Further, our experiments in Sec-
tion 4 demonstrate that our proposed transfer learning of STC-ResNext outperforms the
generic 3D CNNs by a significant margin which was trained on a large video dataset,
Sports-1M [36], and finetuned on the target datasets, HMDB51 or UCF101.

4 Experiments

In this section, we first introduce the datasets and implementation details of our pro-
posed approach. Afterwards, we provide an extensive study on the architecture of the
proposed STC-ResNet and STC-ResNext, which are 3D CNNs. Following, we eval-
uate and compare our proposed methods with the baselines and other state-of-the-art
methods. Finally, we compare our transfer learning: 2D → 3D CNN performance with
generic state-of-the-art 3D CNN methods.

4.1 Datasets

We evaluate our proposed method on three challenging video datasets with human ac-
tions, namely HMDB51 [37], UCF101 [38], and Kinetics [19]. Table 2 shows the details
of the datasets. For all of these datasets, we use the standard training/testing splits and
protocols provided by the datasets. For HMDB51 and UCF101, we report the average
accuracy over the three splits and for Kinetics, we report the performance on the vali-
dation and test set.

Kinetics: Kinetics is a new challenging human action recognition dataset intro-
duced by [19], which contains 400 action classes. There are two versions of this dataset:
untrimmed and trimmed. The untrimmed videos contain the whole video in which the
activity is included in a short period of it. However, the trimmed videos contain the
activity part only. We evaluate our models on the trimmed version. We use all training
videos for training our models from scratch.

UCF101: For evaluating our STC-Nets architectures, we first trained them on the
Kinetics dataset, and then fine-tuned them on UCF101. Furthermore, we also evalu-
ate our models by training them from scratch on UCF101 using randomly initialized
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weights to be able to investigate the effect of pre-training on a huge dataset, such as
Kinetics.

HMDB51: Same as UCF101 evaluation we fine-tune the models on HMDB51,
which were pre-trained from scratch on Kinetics. Also, we similarly evaluate our mod-
els by training them from scratch on HMDB51 using randomly initialized weights.

Table 2. Details of the datasets used for evaluation. The ‘Clips’ shows the total number of short
video clips extracted from the ‘Videos’ available in the dataset.

Data-set # Clips # Videos # Classes
HMDB51 [37] 6,766 3,312 51
UCF101 [38] 13,320 2,500 101
Kinetics [19] 306,245 306,245 400

4.2 Implementation Details

We use the PyTorch framework for the implementation and all the networks are trained
on 8 Tesla P100 NVIDIA GPUs. Here, we describe the implementation details of our
two schemes, 3D CNN architectures and knowledge transfer from 2D to 3D CNNs for
stable weight initialization.

STC-Nets.
Training: We train our STC-Nets (STC-ResNet/ResNext) from scratch on Kinetics.

Our STC-Net operates on a stack of 16/32/64 RGB frames. We resize the video to
122px when smaller, and then randomly apply 5 crops (and their horizontal flips) of
size 112 × 112. For the network weight initialization, we adopt the same technique
proposed in [33]. For the network training, we use SGD, Nesterov momentum of 0.9,
weight decay of 10−4 and batch size of 128. The initial learning rate is set to 0.1, and
reduced by a factor of 10 manually when the validation loss is saturated. The maximum
number of epochs for the whole Kinetics dataset is set to 200. Batch normalization also
has been applied. The reduction parameter in STC blocks, r, is set to 4.

Testing: For video prediction, we decompose each video into non-overlapping clips
of 16/32/64 frames. The STC-Net is applied over the video clips by taking a 112× 112
center-crop, and finally we average the predictions over all clips to make a video-level
prediction.

Knowledge Transfer: 2D → 3D CNNs. We employ 2D ResNet architecture, pre-
trained on ImageNet [35], while the 3D CNN is our STC-ResNet network. To the 2D
CNN, 16 RGB frames are fed as input. The input RGB images are randomly cropped
to the size 112× 112, and then mean-subtracted for the network training. To supervise
transfer to the STC-ResNet, we replace the previous classification layer of the 2D CNN
with a 2-way softmax layer to distinguish between positive and negative pairs. We use
stochastic gradient descent (SGD) with mini-batch size of 32 with a fixed weight decay
of 10−4 and Nesterov momentum of 0.9. For network training, we start with learning
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rate set to 0.1 and decrease it by a factor of 10 every 30 epochs. The maximum number
of epochs is set to 150. For training data, we use approx. 500K unlabeled videos from
YouTube8m dataset [39].

4.3 Ablation Study on Architecture Design

To evaluate our STC block on 3D CNNs model, we conducted an architecture study and
evaluated different configurations. For this work, we mainly focused on 3D versions for
ResNet and ResNext with different input size and depth. Our choice is based on the
recently presented good performance of these networks in video classification [4].

Model Depth: We first analyze the impact of the architecture depth with 3D-ResNet
and 3D-ResNext and we have done a series of evaluations on the network size. For the
architecture study, the model weights were initialized using [33].

We employ three different sizes of 3D STC-ResNet; 18, 50, 101 with STC blocks.
Evaluations results of these 3D STC-ResNet models are reported in the Table 3. As
it can be observed, by adding small overhead of STC blocks, STC-Nets can achieve
reasonable performance even in a smaller version of ResNet, since our STC-ResNet50
is comparable in accuracy with a regular ResNet101.

Table 3. Evaluation results of 3D STC-ResNet model with network sizes of 18, 50, and 101 on
UCF101 split 1. All models were trained from scratch.

Model Depth Accuracy %
3D-ResNet 101 46.7
STC-ResNet 18 42.8
STC-ResNet 50 46.2

STC-ResNet 101 47.9

Temporal Input Size: The number of input frames plays a key role in activity recog-
nition. Therefore, we have reported the performance of our 3D STC-ResNet and 3D
STC-ResNext with different number of input frames in Table 4. Our evaluation shows
that longer clips as input will yield better performance, which confirms the observations
made in [4, 19].

TCB vs SCB: We also have studied the impact of the TCB and SCB branches in our
STC-Nets. Since each of them considers a different concept in the branch, we evaluated
the performance for three settings: SCB only, TCB only, and SCB-TCB combination
(STC). In Table 5, the importance of the channel correlation branches is shown. As
it is shown, incorporating both branches to capture different types of correlations is
performing better than SCB or TCB alone.
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Table 4. Evaluation results of STC-ResNet and 3D STC-ResNext models with temporal depths
of 16, 32, and 64 frames for all three splits of UCF101 and HMDB51.

Model UCF101 HMDB51
STC-ResNet 101 (16 frames) 90.1 62.6
STC-ResNet 101 (32 frames) 93.2 68.9
STC-ResNet 101 (64 frames) 93.7 70.5
STC-ResNext 101 (16 frames) 92.3 65.4
STC-ResNext 101 (32 frames) 95.8 72.6
STC-ResNext 101 (64 frames) 96.5 74.9

Table 5. Performance comparison using different channel correlation blocks (TCB vs SCB) for
UCF101 split 1.

Channel Correlation Branch Accuracy %
SCB 46.1
TCB 47.2

TCB + SCB 47.9

Frame Sampling Rate: Finding the right configuration of input-frames which are fed
to the CNNs for capturing the appearance and temporal information plays a very critical
role in temporal CNNs. For this reason, we investigated the impact of the frame sam-
pling rate for the input stream. The STC-ResNet101 has been used for the ablation study
on frame sampling rate for training and testing. We evaluate the model by varying the
temporal stride of the input frames in the following set {1, 2 ,4, 16}. Table 6 presents the
accuracy of STC-ResNet101 trained on inputs with different sampling rates. The best
results are obtained with sampling rate of 2, which we also used for other 3D CNNs in
the rest of the experiments.

Table 6. Evaluation results of different frame sampling rates for the STC-ResNet101 model.
Trained and tested on UCF101 split 1.

Input Stride 1 2 4 16
Accuracy % 44.6% 47.9% 46.8% 40.3%

4.4 Knowledge Transfer

To apply our proposed supervision transfer, we have tested 2D ResNet as basic pre-
trained model on ImageNet, while 3D-ResNet and our STC-ResNet are randomly ini-
tialized using [33] and used as target 3D CNNs. We show that a stable weight initial-
ization via transfer learning is possible for 3D CNN architectures, which can be used as
a good starting model for training on small datasets like UCF101 or HMDB51. Since
the transfer learning pipeline for 3D CNNs have been tested with two different deep ar-
chitectures (3D-ResNet and STC-Nets), we clearly show the generalization capacity of
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our method in deep architectures, which can be easily adopted for other deep networks
and tasks which use the similar architectures.

Table 7. Transfer learning results for 3D CNNs by 2D CNNs over all three splits of UCF101 and
HMDB51. All models have the same depth of 101.

3D CNNs UCF101 HMDB51
3D-ResNet-Baseline 88.9 61.7
3D-ResNet-Inflation 90.4 62.6
3D-ResNet-Transfered 91.3 64.2
STC-ResNet-Baseline 90.1 62.6
STC-ResNet-Transfered 92.6 66.1

Table 7 shows the results. The baseline is trained from scratch using random ini-
tialization. As it is shown, our transfer method performs better than the baseline for the
standard 3D-ResNet as well as for our proposed STC-ResNet. Using inflation also im-
proves the baseline, but it is outperformed by our approach. Note that inflation can only
be used if the structure of the 2D and 3D network are the same, while our approach al-
lows to transfer the knowledge from any 2D CNN to a 3D CNN, e.g., from 2D-ResNet
to the 3D STC-ResNet as in Table 7, which is not possible by inflation.

Table 8. Comparison results of our models with other state-of-the-art methods on Kinetics
dataset. * denotes the pre-trained version of C3D on the Sports-1M.

Method Top1-Val Top5-Val
DenseNet3D 59.5 -
Inception3D 58.9 -
C3D* [4] 55.6 -
3D ResNet101 [4] 62.8 83.9
3D ResNext101 [4] 65.1 85.7
RGB-I3D [19] 68.4 88

STC-ResNet101 (16 frames) 64.1 85.2
STC-ResNext101 (16 frames) 66.2 86.5
STC-ResNext101 (32 frames) 68.7 88.5

4.5 Comparison with the state-of-the-art

Finally, after exploring and studying on STC-Net architectures and the configuration of
input-data and architecture, we compare our STC-ResNet and STC-ResNext with the
state-of-the-art methods by pre-training on Kinetics and finetuning on all three splits of
the UCF101 and HMDB51 datasets. For UCF101 and HMDB51, we report the average
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Table 9. Accuracy (%) performance comparison of STC-Nets (STC-ResNet/ResNext) with state-
of-the-art methods over all three splits of UCF101 and HMDB51.

Method UCF101 HMDB51
DT+MVSM [40] 83.5 55.9
iDT+FV [41] 85.9 57.2
C3D [2] 82.3 56.8
Conv Fusion [17] 82.6 56.8
Two Stream [16] 88.6 −
TDD+FV [42] 90.3 63.2
RGB+Flow-TSN [43] 94.0 68.5
P3D [44] 88.6 −
RGB-I3D [19] 95.6 74.8
RGB+Flow-I3D [19] 98.0 80.7
Inception3D 87.2 56.9
3D ResNet 101 (16 frames) 88.9 61.7
3D ResNet 101-Transfered Knowledge 91.3 64.2
3D ResNext 101 (16 frames) 90.7 63.8
STC-ResNext 101 (16 frames) 92.3 65.4
STC-ResNext 101 (64 frames) 96.5 74.9

accuracy over all three splits. The results for supervision transfer technique experiments
were reported in the previous part of experiments.

Table 8 shows the result on Kinetics dataset for STC-Nets compared with state-
of-the-art methods. The STC-ResNext101 with 32 frames input depth achieves higher
accuracies than RGB-I3D which has the input size of 64 frames.

Table 9 shows the results on the UCF101 and HMDB51 datasets for comparison
of STC-Nets with other RGB based action recognition methods. Our STC-ResNext101
(64 frames) model outperforms the 3D-ResNet [5], Inception3D, RGB-I3D[19] and
C3D [2] on both UCF101 and HMDB51 and achieves 96.5% and 74.9% accuracy re-
spectively. We also trained Inception3D, a similar architecture to the I3D [19], without
using ImageNet on Kinetics and fine-tuned it on UCF101 and HMDB51 to be able
to have a fair comparison. As shown in Table 9, STC-ResNext performs better than
3D-ResNext by almost 2% on UCF101. Moreover, we note that the state-of-the-art
CNNs [19, 43] use expensive optical-flow maps in addition to RGB input-frames, as in
I3D which obtains a performance of 98% on UCF101 and 80% on HMDB51. Because
of such a high computation needs, we are not able to run the similar experiments, but as
it can be concluded from Table 9, our best RGB model has superior performance than
the other RGB based models.

Note that in our work we have not used dense optical-flow maps, and still achieving
comparable performance to the state-of-the-art methods [43]. This shows the effec-
tiveness of our STC-Nets to exploit temporal information and spatio-temporal channel
correlation in deep CNNs for video clips. This calls for efficient methods like ours in-
stead of computing the expensive optical-flow information (beforehand) which is very
computationally demanding, and therefore difficult to obtain for large scale datasets.
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5 Conclusion

In this work, we introduced a new ‘Spatio-Temporal Channel Correlation’ (STC) block
that models correlations between the channels of a 3D CNN. We clearly show the bene-
fit of exploiting spatio-temporal channel correlations features using the STC block. We
equipped 3D-ResNet and 3D-ResNext with our STC block and improved the accura-
cies by 2-3% on the Kinetics dataset. Our STC blocks are added as a residual unit to
other parts of networks and learned in an end-to-end manner. The STC feature-maps
model the feature interaction in a more expressive and efficient way without an unde-
sired loss of information throughout the network. Our STC-Nets are evaluated on three
challenging action recognition datasets, namely HMDB51, UCF101, and Kinetics. The
STC-Net architectures achieve state-of-the-art performance on HMDB51, UCF101 and
comparable results on Kinetics in comparison to other temporal deep neural network
models. We expect that the proposed STC blocks will also improve other 3D CNNs.
Further, we show the benefit of transfer learning between cross architectures, specifi-
cally supervision transfer from 2D to 3D CNNs. This provides a valuable and stable
weight initialization for 3D CNNs instead of training them from scratch which is also
very expensive. Our transfer learning approach is not limited to transfer supervision
between RGB models only, as our approach for transfer learning can be easily adopted
for transfer across modalities.
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