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Abstract: Determining the material category of a surface from an image is a demanding task in perception that is 

drawing increasing attention. Following the recent remarkable results achieved for image classification and 

object detection utilising Convolutional Neural Networks (CNNs), we empirically study material 

classification of everyday objects employing these techniques. More specifically, we conduct a rigorous 

evaluation of how state-of-the art CNN architectures compare on a common ground over widely used 

material databases. Experimental results on three challenging material databases show that the best 

performing CNN architectures can achieve up to 94.99% mean average precision when classifying 

materials. 

 
 
 

1 INTRODUCTION 
 
Image classification and object detection have been 
active areas of research during the last few years 

(Girshick et al., 2014, Huang et al., 2011, Wang et 

al., 2010). Initially, handcrafted approaches, such as 
Bag-of-Visual-Words (BoVW) (Csurka et al., 2004), 

were employed that yielded reasonably good results 

for these two tasks. However, the emergence of 
Convolutional Neural Networks (CNNs) (LeCun et 

al., 1989) for solving these vision based problems 
has changed the scenario altogether by 

comprehensively outperforming the handcrafted 

approaches (Donahue et al., 2014, Sharif Razavian 
et al., 2014, Sermanet et al., 2013). While the 

morphology of these networks remains handcrafted, 

the accommodation of a large number of parameters 
trained from data and numerous layers of non-linear 

feature extractors have lead the researchers to term 
them as deep representations. After setting the 

performance benchmark for image classification and 

object detection tasks (Krizhevsky et al., 2012, 
Zeiler and Fergus, 2014), these deep architectures 

are now finding their way into a number of vision 

based applications (Donahue et al., 2014, Girshick et 
al., 2014, Oquab et al., 2014, Sharif Razavian et al., 

2014, Sermanet et al., 2013, Simonyan and 

Zisserman, 2014a).  
One such application is classification of 

materials from their appearance utilising a single 

image. Indeed, perception of recognized surface 

material plays a major role in scene understanding  
and has a wide range of applications, including 

robotics. Material classification in the wild is 

considered a challenging problem due to the fact that 

materials regularly exhibit large intra-class and inter-

class variability. This particular topic has received 

attention fairly recently and a handful of computer 

vision systems have been explicitly constructed to 

recognize materials in the wild so far. In the early 

work on image texture analysis by Dana et al. (Dana 

et al., 1999), the CUReT dataset was introduced 

which was generated in a restricted environment and 

only encompassed flat texture patches. Over 95% 

classification accuracy was reported on the CUReT 

dataset by Varma and Zisserman (Varma and 

Zisserman, 2009). On the contrary, only 23% 

accuracy was accomplished on the more challenging 

Flickr material dataset (FMD) (Sharan et al., 2010). 

The work of Liu et al. (Liu et al., 2010), in which 

they presented a number of new features for 

classifying materials, achieved 45% accuracy on 

FMD. This was improved by Hu et al. (Hu et al., 

2011) that achieved 54% classification accuracy by 

expanding more on features. Finally, Cimpoli et al. 

(Cimpoli et al., 2014) developed a CNN and 

improved Fisher vector (IFV) classifier that achieved 

state-of-the-art results on FMD and KTH-TIPS2 

(Fritz et al., 2004). 

It is, however, still unclear how different 

CNN methods compare with each other for the 

material classification task as previous studies did 

not test these deep architectures extensively on a
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Figure 1: An overview of the material classification pipeline used for our experiments. The training and test datasets, 
along with the learning procedure, are fixed as different CNN architectures (pre-trained on 1000 ImageNet classes) are 
plugged into the pipeline, one at a time, to test their performance using mean average precision (mAP). 
 
common ground (Bell et al., 2015). Since the 
performance of computer vision systems depends 

significantly on implementation details (Chatfield et 
al., 2014), it is important to take into account 

factors, such as the use of very large scale datasets, 

GPU computation and data augmentation, when 
comparing CNN methods for material classification. 

To our knowledge, this particular work is the first 

attempt to do a systematic and rigorous evaluation 
of the state-of-the-art CNN architectures for material 

classification in the wild. Considering the effect of 

different design and implementation choices allowed 
a fair, unbiased comparison on a common ground-

something that has been largely missing so far in the 
literature. 
 

More specifically, we perform thorough 

assessment of the state-of-the-art CNN architectures 

utilising three widely used materials databases 
(FMD (Sharan et al., 2010), MINC-2500 (Bell et al., 

2015) and ImageNet materials (Hu et al., 2011)) 
while identifying and disclosing important 

implementation details. For performing the large set 

of experiments, we partly followed the approach of 
Chatfield et al. (Chatfield et al., 2014) which was 

used for comparing CNN architectures for 

recognition of object categories. We, on the other 
hand, tackle material classification in this particular 

work, an entirely different problem from (Chatfield 

et al., 2014). Our experimental results on three 
challenging materials databases show that the best 

performing CNN architectures can achieve up to 
94.99% mean average precision when classifying 

materials. 

  
The rest of the paper is organised as follows. 

Section 2 gives details of the material classification 
pipeline used for our experiments. The evaluation 
results for state-of-the-art CNN architectures 
employing three widely used materials databases of 
real-world images are presented in Section 3. 
Section 4 performs a cross-dataset analysis for real-
world images. Finally, conclusions are given in 
Section 5. 
 

 

2 MATERIAL CLASSIFICATION  
PIPELINE 

 

An illustration of the material classification pipeline 
used for our experiments is given in Figure 1. In this 

pipeline, every block is fixed except the feature 

extractor as different CNN architectures (pre-trained 
on 1000 ImageNet classes) are plugged in, one at a 

time, to compare their performance utilising mean 
average precision (mAP). Given a training dataset Tr 

consisting of m material categories, a test dataset Ts 

comprising unseen images of the material categories 
given in Tr, and a set of n pre-trained CNN 

architectures (C1,...Cn), the pipeline operates as 

follows: The training dataset Tr is used as input to 
the first CNN architecture C1. The output of C1 is 

then utilised to train m SVM classifiers. Once 

trained, the test dataset Ts is employed to assess the 
performance of the material classification pipeline 

using mAP. The training and testing procedures are 
then repeated after replacing C1 with the second 

CNN architecture C2 to evaluate the performance of 
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Table 1: An overview of the three material databases used for experiments. 
 

 FMD ImageNet7 MINC-2500 

Categories 10 7 23 

Samples per category 100 100 2500 

Material Samples 1000 1000 2500 

Total image number 1000 7000 57500 

 
the material classification pipeline. For a set of n 
pre-trained CNN architectures, the training and 
testing processes are repeated n times. Since the 
whole pipeline is fixed (including the training and 
test datasets, learning procedure and evaluation 
protocol) for all n CNN architectures, the 
differences in the performance of the material 
classification pipeline can be attributed to the 
specific CNN architectures used.  

Following (Chatfield et al., 2014), we have 

chosen for comparison three baseline CNN 

architectures, namely Fast (CNN-F), Medium 
(CNN-M) and Slow (CNN-S), as they represent the 

state-of-the-art for image classification. The CNN-F 

architecture is similar to the one used by Krizhevsky 
et al. (Krizhevsky et al., 2012). On the other hand, 

the CNN-M architecture is similar to the one 
employed by Zeiler and Fergus (Zeiler and Fergus, 

2014), where as the CNN-S architecture is related to 

the 'accurate' network from the OverFeat package 
(Sermanet et al., 2013). All these baseline CNN 

architectures are built on the Caffe framework (Jia et 

al., 2015) and are pre-trained on ImageNet (Deng et 
al., 2009). Each network comprises 5 convolutional 

and 3 fully connected layers for a total of 8 learnable 
layers. For further design and implementation details 

for these architectures, please see Table 1 in 

(Chatfield et al., 2014). Please note that the results 
of the penultimate layer (layer 7) are used for the 

SVM classifier in this particular work. Each test 

yields a feature vector of 4096 dimensions per 
image. The CNN-M is also tested in situations when 

the feature dimensionality is reduced to 2048, 1024, 
and 128, and in cases where the images are turned 

into grey scales. 
 

Three different types of data augmentation 
are used: 1) No augmentation, where a 224 x 224 
crop is taken from the image (image is downsized to 

 
224 pixels in the smallest dimension); 2) Flip 

augmentation, where the image is mirrored along the 
y-axis; and 3) Crop and Flip augmentation, where 

the four corners of the image and the center and their 

flips are taken and rescaled down to 256 pixels on 
the smallest side. In terms of collation, there are four 

types used: 1) No collation, where the additional 
crops generated by the various augmentation 

methods are returned as extra features; 2) Sum, 

where sum pooling is used for each image and the 
crops are generated; 3) Max, where max pooling is 

used; and 4) Stack, where the crops generated are 

stacked and thus yield feature vectors of more 
dimensions per image. 
 

 

3 PERFORMANCE  
COMPARISON OF CNN  
ARCHITECTURES 

 

This section presents the results for the three 

baseline CNN architectures, with different data 
augmentation strategies, for the material 

classification task when trained and tested on real-

world images. The evaluation procedure is divided 
into three different sets of experiments, each one 

employing a different, widely used materials 
database consisting of real-world images related to 

specific material categories. In each case, the 

employed materials database is used for generating 
the training and testing datasets which implies no 

cross-dataset analysis for these particular sets of 

experiments. This approach is used to obtain 
comparison results across all available material 

categories for each benchmark database, thus 
complementing the previous studies in the literature 

on these databases. 
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3.1 Material Databases 
 
Three different databases are used in our 

experiments: 1) Flickr Material Database (FMD) 

(Sharan et al., 2010), 2) ImageNet7 dataset (Hu et 
al., 2011) which was derived from ImageNet (Deng 

et al., 2009) by collecting 7 common material 
categories, and 3) MINC-2500 which is a patch 

classification dataset with 2500 samples per 

category (Bell et al., 2015). Table 1 gives an 
overview of the three different material databases 

used for these experiments. As evident, all three 

databases consist of neither the same number of 
images nor categories between them. For this 

specific reason and in order to keep the tests on a 
common base, we consider the first half of the 

images enclosed in each database category as 

positive training samples and the other half for 
testing. Regarding negative training samples, the 

first 10% of the total images per category are 

aggregated in order to generate the negative training 
subset. Finally, a dataset (Vedaldi and Zisserman,) 

containing 1414 random images is utilised and kept 
constant as the negative test data of our system for 

all the experiments that follow. In total, 14 different 

variants of the baseline CNN architectures with 
different data augmentation strategies are compared 

 
 
on FMD, ImageNet7 and MINC-2500. 
 

3.2 Results and Discussion 
 
Table 2 shows the results for the three databases for 

state-of-the-art CNN architectures with different data 

augmentation strategies. It is evident that the 
Medium CNN architecture with crop and flip 

augmentation enabled, whereas the corresponding 
descriptors using stacking both in training and 

testing, used for the samples of augmented images, 

performs the best for both MINC-2500 and FMD. 
On the other hand, the Medium CNN architecture, 

including lower dimensional full 7 layers of 128 

dimensions, with crop and flip augmentation 
enabled, when the corresponding descriptors using 

sum-pooling are utilised for the samples of 
augmented images in testing only, performs the best 

in the case of ImageNet7. Compared to (Oquab et 

al., 2014), where 85.0% mean accuracy was 
achieved on MINC (considering only the common 

categories with FMD) using the AlexNet 

(Krizhevsky et al., 2012), here an average of 92.48% 
on MINC-2500 is achieved across all considered 

CNN architectures. Regarding the FMD database, 
Liu et al. (Liu et al., 2010) with their optimal feature 

set    managed   44.6%   recognition   rate,  while   in 
 

 
Table 2: Material classification results with real-world images. Both training and testing are performed using the same 
database. Bold font highlights the leading mean result for every database. Three data augmentation strategies are used 
for both training and testing: 1) no augmentation (denoted Image Aug=-), 2) flip augmentation (denoted Image 
Aug=(F)), 3) crop and flip (denoted Image Aug=(C)). Augmented images are used as stand-alone samples (f), or by 
combining the corresponding descriptors using sum (s) or max (m) pooling or stacking (t). Here, GS denotes gray scale. 
The same symbols for data augmentation options and gray scale are used in the rest of the paper. 

 

 
Method 

 
Image Aug. 

 MINC-2500 ImageNet7 FMD 
   

mAP mAP mAP      
        

 (a) CNN F (C) f s 91.68 67.68 59.39 

 (b) CNN S (C) f s 92.98 70.47 64.44 
        

 (c) CNN M -   92.14 70.67 60.72 

 (d) CNN M (C) f s 92.64 72.5 62.72 

 (e) CNN M (C) f m 92.85 73.28 62.97 

 (f) CNN M (C) s s 93.17 71.86 62.57 

 (g) CNN M (C) t t 94.99 73.73 64.4 

 (h) CNN M (C) f - 91.23 69.87 58.88 

 (i) CNN M (F) f - 91.94 71.08 60.37 

 (j) CNN M GS - f  90.54 67.31 52.38 

 (k) CNN M GS (C)  s 90.87 67.48 59.23 
        

 (l) CNN M 2048 (C) f s 93.34 72.55 62.45 

 (m) CNN M 1024 (C) f s 93.61 73.09 61.92 

 (n) CNN M 128 (C) f s 92.74 74.97 48.18 
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Figure 2: Comparison of CNN architectures in terms of mAP for six overlapping categories (fabric, glass, 
metal, paper, plastic and wood) of FMD, MINC-2500, ImageNet7 databases. 

 

(Girshick et al., 2013, Girshick et al., 2014) 54% 
accuracy is achieved with their extended kernel 
descriptors. In our case, an improved mAP of 60% 

(on average) is achieved for the 14 different CNN 
configurations that we tested. Finally, the creators of 
the ImageNet7 (Hu et al., 2011) reported 60% 
recognition accuracy on their database by combining 

all 5 available kernel descriptors. On the contrary, 
mAP of 71.18% (on average) is achieved here as it 
is clear from Table 2 across all considered CNN 
configurations.  

A comparative plot for mean average 

precision achieved by the state-of-the-art CNN 
architectures for the three databases (MINC-2500, 

FMD and ImageNet7) is shown in Figure 2. This 

plot encompasses only the six common/overlapping 
categories for the three databases to demonstrate the 

variations in performance of different CNN 

architectures across these categories. The Medium 
CNN architecture gives the best mAP (91.10%) with 

stack augmentation both for training and for testing 
purposes. With the same configuration, the best 

performance of 77.46% is achieved on ImageNet7, 

while a considerably lower mAP of 51.40% is 
obtained for FMD. Such decline occurs primarily 

 

because of the limited dataset size, whereby learning 
the millions of parameters of a CNN is usually 
impractical and may lead to over-fitting. 

 

4 CROSS-DATASET ANALYSIS  
WITH REAL-WORLD IMAGES 

 

Results for three different cross-dataset experiments 

are given in Table 3: 1) Training on FMD and 

testing on ImageNet7 2) Training on FMD and 
testing on MINC-2500 3) Training on MINC-2500 

and testing on ImageNet7. Considering the fact that 

FMD dataset is quite small, with only 100 images 
per material class, it performs better when used for 

training with reduced feature dimensionality per 
image, also observed in Zheng et al (Csurka et al., 

2004). In Table 3, with FMD as training database, 

the material classification pipeline performs best in 
testing the overlapping categories with ImageNet7 

when Medium CNN architecture is used with 128 

feature points per image extracted. The crop and flip 
augmentation and sum pooling collation is also used 

in this configuration and a mAP of ~82% is 
achieved. 
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Table 3: Cross-dataset material classification results. Training and testing are performed using 3 different databases of 

real-world images. The name on the top denotes the training database, while the name on the bottom implies the testing 

database. Bold font highlights the leading mean result for every experiment.  
     FMD  FMD  MINC-2500 

 Method Image Aug.  ImageNet7  MINC-2500  ImageNet7 

     mAP  mAP  mAP 

 (a) CNN F (C) f s 78.23  71.87  85.11 

 (b) CNN S (C) f s 83.5  72.95  86.18 
          

 (c) CNN M -   82.4  73.06  87.64 

 (d) CNN M (C) f s 81.68  74.82  85.79 

 (e) CNN M (C) f m 81.69  75.46  86.55 

 (f) CNN M (C) s s 79.52  73.56  89.88 

 (g) CNN M (C) t t 80.22  74.19  89.53 

 (h) CNN M (C) f - 80.31  73.83  82.71 

 (i) CNN M (F) f - 81.91  73.01  91.03 

 (j) CNN M GS - f  71.82  66.78  89.37 

 (k) CNN M GS (C)  s 75.95  69.05  87.87 
          

 (l) CNN M 2048 (C) f s 80.27  76.35  86.82 

 (m) CNN M 1024 (C) f s 82.55  74.85  89.89 

 (n) CNN M 128 (C) f s 82.9  73.99  88.13 
          

 
For FMD as training and MINC-2500 as 

testing database, the material classification pipeline 
achieves the best accuracy in testing the overlapping 

categories when CNN-M architecture is utilised with 

2048 feature points per image extracted. Crop and 
flip augmentation and sum pooling are also used and 

the resulting mAP is ~76%. It is evident from Table 

3 that the performance of the system increases when 
MINC- 2500 is used as training database and 

overlapping categories of ImageNet7 are tested. This 

is due to the fact that MINC-2500 database enables 
the use of more images for positive training when 

testing the overlapping categories with ImageNet7. 
In this case, the highest accuracy is again achieved 

when CNN-M is used. However, only flip is used as 

augmentation and no collation is utilised with this 
CNN architecture as opposed to the above two 

cases. The resulting accuracy of the system is ~90%. 

This is the case of finding the best balance before 
over-fitting occurs. Finally, the resulting average 

across all three experiments is ~82%. 
 

 

5 CONCLUSIONS 
 
We have performed a rigorous empirical evaluation 
of state-of-the-art CNN-based approaches for the 
material classification task. Out of the three baseline 

 
CNN architectures considered, it is evident that the 
Medium CNN architecture in general performs the 
best in combination with different data augmentation 
strategies for the three widely used material 
databases (FMD, MINC-2500 and ImageNet7). It 
will be an interesting future direction to investigate 
if synthetic data can be combined with real images to 
improve accuracy and generalisation abilities of 
CNNs. 
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