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Abstract

The task of temporally detecting and segmenting actions
in untrimmed videos has seen an increased attention re-
cently. One problem in this context arises from the need to
define and label action boundaries to create annotations for
training which is very time and cost intensive. To address
this issue, we propose an unsupervised approach for learn-
ing action classes from untrimmed video sequences. To this
end, we use a continuous temporal embedding of framewise
features to benefit from the sequential nature of activities.
Based on the latent space created by the embedding, we
identify clusters of temporal segments across all videos that
correspond to semantic meaningful action classes. The ap-
proach is evaluated on three challenging datasets, namely
the Breakfast dataset, YouTube Instructions, and the 50Sal-
ads dataset. While previous works assumed that the videos
contain the same high level activity, we furthermore show
that the proposed approach can also be applied to a more
general setting where the content of the videos is unknown.

1. Introduction
The task of action recognition has seen tremendous suc-

cess over the last years. So far, high-performing approaches
require full supervision for training. But acquiring frame-
level annotations of actions in untrimmed videos is very
expensive and impractical for very large datasets. Recent
works, therefore, explore alternative ways of training action
recognition approaches without having full frame annota-
tions at training time. Most of those concepts, which are
referred to as weakly supervised learning, rely on ordered
action sequences which are given for each video in the train-
ing set.

Acquiring ordered action lists, however, can also be very
time consuming and it assumes that it is already known what
actions are present in the videos before starting the anno-
tation process. For some applications like indexing large
∗This work was mainly done at University of Bonn. Asterisk denotes

equal contribution.

video datasets or human behavior analysis in neuroscience
or medicine, it is often unclear what action should be anno-
tated. It is therefore important to discover actions in large
video datasets before deciding which actions are relevant or
not. Recent works [27, 1] therefore proposed the task of
unsupervised learning of actions in long, untrimmed video
sequences. Here, only the videos themselves are used and
the goal is to identify clusters of temporal segments across
all videos that correspond to semantic meaningful action
classes.

In this work we propose a new method for unsupervised
learning of actions from long video sequences, which is
based on the following contributions. The first contribu-
tion is the learning of a continuous temporal embedding of
frame-based features. The embedding exploits the fact that
some actions need to be performed in a certain order and we
use a network to learn an embedding of frame-based fea-
tures with respect to their relative time in the video. As the
second contribution, we propose a decoding of the videos
into coherent action segments based on an ordered cluster-
ing of the embedded frame-wise video features. To this end,
we first compute the order of the clusters with respect to
their timestamp. Then a Viterbi decoding approach is used
such as in [26, 13, 24, 19] which maintains an estimate of
the most likely activity state given the predefined order.

We evaluate our approach on the Breakfast [15] and
YouTube Instructions datasets [1], following the evaluation
protocols used in [27, 1]. We also conduct experiments on
the 50Salads dataset [31] where the videos are longer and
contain more action classes. Our approach outperforms the
state-of-the-art in unsupervised learning of action classes
from untrimmed videos by a large margin. The evalua-
tion protocol used in previous works, however, divides the
datasets into distinct clusters of videos using the ground-
truth activity label of each video, i.e., unsupervised learning
and evaluation are performed only on videos, which contain
the same high level activity. This simplifies the problem
since in this case most of the actions occur in all videos.

As a third contribution, we therefore propose an exten-
sion of our approach that allows to go beyond the scenario
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of processing only videos from known activity classes, i.e.,
we discover semantic action classes from all videos of each
dataset at once, in a completely unsupervised way without
any knowledge of the related activity. To this end, we learn
a continuous temporal embedding for all videos and use the
embedding to build a representation for each untrimmed
video. After clustering the videos, we identify consistent
video segments for all videos within a cluster. In our ex-
periments, we show that the proposed approach not only
outperforms the state-of-the-art using the simplified proto-
col, but it is also capable to learn actions in a completely
unsupervised way. Code is available on-line.1

2. Related work

Action recognition [18, 32, 30, 3, 5] as well as the under-
standing complex activities [15, 35, 29] has been studied
for many years with a focus on fully supervised learning.
Recently, there has been an increased interest in methods
that can be trained with less supervision. One of the first
works in this field has been proposed by Laptev et al. [18]
where the authors learn actions from movie scripts. An-
other dataset that follows the idea of using subtitles has
been proposed by Alayrac et al. [1], also using YouTube
videos to automatically learn actions from instructional
videos. A multi-modal version of this idea has been pro-
posed by [21]. Here, the authors also collected cooking
videos from YouTube and used a combination of subtitles,
audio, and vision to identify receipt steps in videos. An-
other way of learning from subtitles is proposed by Sener et
al. [28] by representing each frame via the occurrence of ac-
tions atoms given the visual comments at this point. These
works, however, assume that the narrative text is well-
aligned with the visual data. Another form of weak supervi-
sion are video transcripts [12, 17, 24, 7, 26], which provide
the order of actions but that are not aligned with the videos,
or video tags [33, 25].

There are also efforts for unsupervised learning of action
classes. One of the first works that was tackling the prob-
lem of human motion segmentation without training data
was proposed by Guerra-Filho and Aloimonos [11]. They
propose a basic segmentation with subsequent clustering
based on sensory-motor data. Based on those representa-
tions, they propose the application of a parallel synchronous
grammar system to learn atomic action representations sim-
ilar to words in language. Another work in this context is
proposed by Fox et al. [10] where a Bayesian nonparamet-
ric approach helps to jointly model multiple related time
series without further supervision. They apply their work
on motion capture data.

In the context of video data, the temporal structure of
video data has been exploited to fine-tune networks on train-

1https://github.com/annusha/unsup_temp_embed

ing data without labels [34, 2]. The temporal ordering of
video frames has also been used to learn feature represen-
tations for action recognition [20, 23, 9, 4]. Lee et al. [20]
learn a video representation in an unsupervised manner by
solving a sequence sorting problem. Ramanathan et al. [23]
build their temporal embedding by leveraging contextual in-
formation of each frame on different resolution levels. Fer-
nando et al. [9] presented a method to capture the temporal
evolution of actions based on frame appearance by learning
a frame ranking function per video. In this way, they obtain
a compact latent space for each video separately. A similar
approach to learn a structured representation of postures and
their temporal development was proposed by Milbich et al.
[22]. While these approaches address different tasks, Sener
et al. [27] proposed an unsupervised approach for learning
action classes. They introduced an iterative approach which
alternates between discriminative learning of the appear-
ance of sub-activities from visual features and generative
modeling of the temporal structure of sub-activities using a
Generalized Mallows Model.

3. Unsupervised Learning of Action Classes
3.1. Overview

As input we are given a set {Xm}Mm=1 of M videos and
each video Xm = {xmn}Nm

n=1 is represented by Nm frame-
wise features. The task is then to estimate the subaction
label lmn ∈ {1, . . . ,K} for each video frame xmn. Follow-
ing the protocol of [1, 27], we define the number of possible
subactions K separately for each activity as the maximum
number of possible subactions as they occur in the ground-
truth. The values of K are provided in the supplementary
material.

Fig. 1 provides an overview of our approach for unsuper-
vised learning of actions from long video sequences. First,
we learn an embedding of all features with respect to their
relative time stamp as described in Sec. 3.2. The resulting
embedded features are then clustered and the mean tempo-
ral occurrence of each cluster is computed. This step, as
well as the temporal ordering of the clusters is described in
Sec. 3.3. Each video is then decoded with respect to this
ordering given the overall proximity of each frame to each
cluster as described in Sec. 3.4.

We also present an extension to a more general proto-
col, where the videos have a higher diversity. Instead of
assuming as in [1, 27] that the videos contain the same high-
level activity, we discuss the completely unsupervised case
in Sec. 3.5. We finally introduce a background model to
address background segments in Sec. 3.6.

3.2. Continuous Temporal Embedding

The idea of learning a continuous temporal embedding
relies on the assumption that similar subactions tend to ap-
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Figure 1. Overview of the proposed pipeline. We first compute the embedding of features with respect to their relative time stamp. The
resulting embedded features are then clustered and the mean temporal appearance of each cluster is computed and the ordering of clusters
is computed. Each video is then decoded with respect to this ordering given the overall proximity of each frame to each cluster.

pear at a similar temporal range within a complex activity.
For instance a subaction like “take cup” will usually occur
in the beginning of the activity “making coffee”. After that
people probably pour coffee into the mug and finally stir
coffee. Thus many subactions that are executed to conduct
a specific activity are softly bound to their temporal position
within the video.

To capture the combination of visual appearance and
temporal consistency, we model a continuous latent space
by capturing simultaneously relative time dependencies and
the visual representation of the frames. For the embedding,
we train a network architecture which optimizes the embed-
ding of all framewise features of an activity with respect to
their relative time t(xmn) = n

Nm
. As shown in Fig. 1, we

take an MLP with two hidden layers with dimensionality
2D and D, respectively, and logistic activation functions.
As loss, we use the mean squared error between the pre-
dicted time stamp and the true time stamp t(xmn) of the
feature. The embedding is then given by the second hidden
layer.

Note that this embedding does not use any subaction la-
bel associations as in [27, 1], thus the network needs to be
trained only once instead of retraining the model at each
iteration. For the rest of the paper, xmn denotes the embed-
ded D-dimensional features.

3.3. Clustering and Ordering

After the embedding, the features of all videos are clus-
tered into K clusters by k-Means. Since in Sec. 3.4 we
need the probability p(xmn|k), i.e., the probability that the
embedded feature xmn belongs to cluster k, we estimate a
D-dimensional Gaussian distribution for each cluster:

p(xmn|k) = N (xmn;µk,Σk). (1)

Note that this clustering does not define any specific order-
ing. To order clusters with respect to their temporal occur-

rence, we compute the mean over time stamps of all frames
belonging to each cluster

X(k) = {xmn|p(xmn|k) ≥ p(xmn|k′),∀k′ 6= k},

t(k) =
1

|X(k)|
∑

xmn∈X(k)

t(xmn). (2)

The clusters are then ordered with respect to the time
stamp so that {k1, .., kK} is the set of ordered cluster labels
subject to 0 ≤ t(k1) ≤ .. ≤ t(kK) ≤ 1. The resulting
ordering is then used for the decoding of each video.

3.4. Frame Labeling

We finally temporally segment each video Xm sepa-
rately, i.e., we assign each frame xmn to one of the or-
dered clusters lmn ∈ {k1, . . . , kK}. We first calculate the
probability of each frame that it belongs to cluster k as de-
fined by (1). Based on the cluster probabilities for the given
video, we want to maximize the probability of the sequence
following the order of the clusters k1 → .. → kK to get
consistent assignments for each frame of the video:

l̂Nm
1 = argmax

l1,..,lNm

p
(
xNm
1 |lNm

1

)
(3)

= argmax
l1,..,lNm

Nm∏
n=1

p
(
xmn|ln

)
· p
(
ln|ln−1

)
,

where p(xmn|ln = k) is the probability that xmn belongs to
the cluster k, and p(ln|ln−1) are the transition probabilities
of moving from the label ln−1 at frame n − 1 to the next
label ln at frame n,

p(ln|ln−1) = 10≤ln−ln−1≤1. (4)

This means that we allow either a transition to the next clus-
ter in the ordered cluster list or we keep the cluster assign-
ment of the previous frame. Note that (3) can be solved
efficiently using a Viterbi algorithm.
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Figure 2. Proposed pipeline for unsupervised learning with unknown activity classes. We first compute an embedding with respect to the
whole dataset at once. In a second step, features are clustered in the embedding space to build a bag-of-words representation for each
video. We then cluster all videowise vectors into K′ clusters and apply the previously described method for each video set.

3.5. Unknown Activity Classes

So far we discussed the case of applying unsupervised
learning to a set of videos that all belong to the same ac-
tivity. When moving to a larger set of videos without any
knowledge of the activity class, the assumption of sharing
the same subactions within the collection cannot be applied
anymore. As it is illustrated in Fig. 2, we therefore cluster
the videos first into more consistent video subsets.

Similar to the previous setting, we learn aD-dimensional
embedding of the features but the embedding is not re-
stricted to a subset of the training data, but it is computed
for the whole dataset at once. Afterward, the embedded fea-
tures are clustered in this space to build a video representa-
tion based on bag-of-words using quantization with a soft
assignment. In this way, we obtain a single bag-of-words
feature vector per video sequence. Using this representa-
tion, we cluster the videos into K ′ video sets. For each
video set, we then separately infer clusters for subactions
and assign them to each video frame as in Fig. 1. However,
we do not learn an embedding for each video set but use the
embedding learned on the entire dataset for each video set.
The impact of K and K ′ will be evaluated in the experi-
mental section.

3.6. Background Model

As subactions are not always executed continuously and
without interruption, we also address the problem of model-
ing a background class. In order to decide if a frame should
be assigned to one of the K clusters or the background,
we introduce a parameter τ which defines the percentage
of features that should be assigned to the background. To
this end, we keep only 1 − τ percent of the points within
each cluster that are closest to the cluster center and add
the other features to the background class. For the label-
ing described in Sec. 3.4, we remove all frames that have

been already assigned to the background before estimating
lmn ∈ {k1, . . . , kK} (3), i.e., the background frames are
first labeled and the remaining frames are then assigned to
the ordered clusters {k1, . . . , kK}.

4. Evaluation

4.1. Dataset

We evaluate the proposed approach on three challeng-
ing datasets: Breakfast [15], YouTube Instructional [1], and
50Salads [31].

The Breakfast dataset is a large-scale dataset that com-
prises ten different complex activities of performing com-
mon kitchen activities with approximately eight subactions
per activity class. The duration of the videos varies signif-
icantly, e.g. coffee has an average duration of 30 seconds
while cooking pancake takes roughly 5 minutes. Also in
regards to the subactivity ordering, there are considerable
variations. For evaluation, we use reduced Fisher Vector
features as proposed by [16] and used in [27] and we follow
the protocol of [27], if not mentioned otherwise.

The YouTube Instructions dataset contains 150 videos
from YouTube with an average length of about two min-
utes per video. There are five primary tasks: making cof-
fee, changing car tire, cpr, jumping car, potting a plant.
The main difference with respect to the Breakfast dataset
is the presence of a background class. The fraction of back-
ground within different tasks varies from 46% to 83%. We
use the original precomputed features provided by [1] and
used by [27].

The 50Salads dataset contains 4.5 hours of different peo-
ple performing a single complex activity, making mixed
salad. Compared to the other datasets, the videos are much
longer with an average video length of 10k frames. We
perform evaluation on two different action granularity lev-



els proposed by the authors: mid-level with 17 subaction
classes and eval-level with 9 subaction classes.

4.2. Evaluation Metrics

Since the output of the model consists of temporal sub-
action bounds without any particular correspondences to
ground-truth labels, we need a one-to-one mapping between
{k1, .., kK} and the K ground-truth labels to evaluate and
compare the method. Following [27] and [1], we use the
Hungarian algorithm to get a one-to-one matching and re-
port accuracy as the mean over frames (MoF) for the Break-
fast and 50Salads datasets. Note that especially MoF is not
always suitable for imbalanced datasets. We therefore also
report the Jaccard index as intersection over union (IoU) as
an additional measurement. For the YouTube Instruction
dataset, we also report the F1-score since it is used in previ-
ous works. Precision and recall are computed by evaluating
if the time interval of a segmentation falls inside the corre-
sponding ground-truth interval. To check if a segmentation
matches a time interval, we randomly draw 15 frames of the
segments. The detection is considered correct if at least half
of the frames match the respective class, and incorrect oth-
erwise. Precision and recall are computed for all videos and
F1 score is computed as the harmonic mean of precision and
recall.

4.3. Continuous Temporal Embedding

In the following, we first evaluate our approach for the
case of know activity classes to compare with [27] and [1]
and consider the case of completely unsupervised learning
in Sec. 4.7. First, we analyze the impact of the proposed
temporal embedding by comparing the proposed method to
other embedding strategies as well as to different feature
types without embedding on the Breakfast dataset. As fea-
tures we consider AlexNet fc6 features, pre-trained on Im-
ageNet as used in [23], I3D features [3] based on the RGB
and flow pipeline, and pre-computed dense trajectories [32].
We further compare with previous works with a focus on
learning the temporal embedding [23, 9]. We trained these
models following the settings of each paper and construct
the latent space, which is used to substitute ours.

As can be seen in Table 1, the results with the con-
tinuous temporal embedding are clearly outperforming all
the above-mentioned approaches with and without tempo-
ral embedding. We also used OPN [20] to learn an em-
bedding, which is then used in our approach. However, we
observed that for long videos nearly all frames where as-
signed to a single cluster. When we exclude the long videos
with degenerated results, the MoF was lower compared to
our approach.

Comp. of temporal embedding strategies

ImageNet [14] + proposed 21.2%
I3D [3] + proposed 25.1%
dense trajectories [32] + proposed 31.6%

video vector [23] + proposed 30.1%
video darwin [9] + proposed 36.6%
ours 41.8%

Table 1. Evaluation of the influence of the temporal embedding.
Results are reported as MoF accuracy on the Breakfast dataset.

4.4. Mallow vs. Viterbi

We compare our approach, which uses Viterbi decoding,
with the Mallow model decoding that has been proposed
in [27]. The authors propose a rankloss embedding over
all video frames from the same activity with respect to a
pseudo ground-truth subaction annotation. The embedded
frames of the whole activity set are then clustered and the
likelihood for each frame and for each cluster is computed.
For the decoding, the authors build a histogram of features
with respect to their clusters with a hard assignment and set
the length of each action with respect to the overall amount
of features per bin. After that, they apply a Mallow model
to sample different orderings for each video with respect to
the sampled distribution. The resulting model is a combi-
nation of Mallow model sampling and action length estima-
tion based on the frame distribution.

For the first experiment, we evaluated the impact of the
different decoding strategies with respect to the proposed
embedding. In Table 2 we compare the results of decod-
ing with the Mallow model only, Viterbi only, and a com-
bination of Mallow-Viterbi decoding. For the combination,
we first sample the Mallow ordering as described by [27]
leading to an alternative ordering. We then apply a Viterbi
decoding to the new as well as to the original ordering and
choose the sequence with the higher probability. It shows
that the original combination of Mallow model and multino-
mial distribution sampling performs worst on the temporal
embedding. Also, the combination of Viterbi and Mallow
model can not outperform the Viterbi decoding alone. To
have a closer look, we visualize the observation probabil-
ities as well as the resulting decoding path over time for
two videos in Fig. 3. It shows that the decoding, which
is always given the full sequence of subactions, is able to
marginalize subactions that do not occur in the video by
just assigning only very few frames to those ones and the
majority of frames to the clusters that occur in the video.
This means that the effect of marginalization allows to dis-
card subactions that do not occur. Overall, it turns out that
this strategy of marginalization usually performs better than
re-ordering the resulting subaction sequence as done by the
Mallow model. To further compare the proposed setup to
[27], we additionally compare the impact of different de-



Mallow vs. Viterbi

Acc. (MoF)

Mallow+multi only 29.5%
Mallow-Viterbi 34.8%
Viterbi only 41.8%

Table 2. Comparison of the Mallow model and Viterbi decoding.
Results are reported as MoF accuracy on the Breakfast dataset.
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Figure 3. Comparison of Viterbi decoded paths with respective
predicted and ground-truth segmentation for two videos. The ob-
servation probabilities with red indicating high and blue indicat-
ing low probabilities of belonging to subactions. It shows that
the decoding assigns most frames to occurring subactions while
marginalizing actions that do not occur in the sequence by assign-
ing only a few frames.

Comparison with rankloss and Mallow model

Rankloss emb. Temp. emb.

Mallow model (MoF) 34.6% 29.5%
Viterbi dec. (MoF) 27.1% 41.8%

Table 3. Comparison of proposed embedding and Viterbi decod-
ing with respect to the previously proposed Mallow model [27].
Results are reported as MoF accuracy on the Breakfast dataset.

coding strategies, Mallow model and Viterbi, with respect
to the two embeddings, rankloss [27] and continuous tem-
poral embedding, in Table 3. It shows that the rankloss em-
bedding works well in combination with the multinomial
Mallow model, but fails when combined with Viterbi de-
coding because of the missing temporal prior in this case,
whereas the Mallow model is not able to decode sequences
in the continuous temporal embedding space. This shows
the necessity of a suitable combination of both, the embed-
ding and the decoding strategy.
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Figure 4. Evaluation of different accuracy measurements with re-
spect to the amount of sampled background on the YouTube In-
structions dataset.

4.5. Background Model

Finally, we assess the impact of the proposed back-
ground model for the given setting. For this evaluation, we
choose the YouTube Instructions dataset. Note that for this
dataset, two different evaluation protocols have been pro-
posed so far. [1] evaluates results on the YTI dataset usually
without any background frames, which means that during
evaluation, only frames with a class label are considered
and all background frames are ignored. Note that in this
case it is not penalized if estimated subactions become very
long and cover the background. Including background for
a dataset with a high background portion, however, leads to
the problem that a high MoF accuracy is achieved by label-
ing most frames as background. We therefore introduce for
this evaluation the Jaccard index as intersection over union
(IoU) as additional measurement, which is also common in
comparable weak learning scenarios [24]. For the following
evaluation, we vary the ratio of desired background frames
as described in Sec. 3.6 from 75% to 99% and show the re-
sults in Fig. 4. As can be seen, a smaller background ratio
leads to better results when computing MoF without back-
ground, whereas a higher background ratio leads to better
results when the background is considered in the evalua-
tion. When we compare it to the IoU with and without
background, it shows that the IoU without background suf-
fers from the same problems as the MoF in this case, but
that the IoU with background gives a good measure con-
sidering the trade-off between background and class labels.
For τ of 75%, our approach achieves 9.6% and 9.8% IoU
with and without background, respectively, and 14.5% and
39.0% MoF with and without background, respectively.

4.6. Comparison to State-of-the-art

We further compare the proposed approach to cur-
rent state-of-the-art approaches, considering unsupervised
learning setups as well as weakly and fully supervised ap-
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Figure 5. Qualitative analysis of segmentation results on the
Breakfast and the YouTube Instructions dataset.

Breakfast dataset

Fully supervised

MoF

HOGHOF+HTK [15] 28.8%
TCFPN [7] 52.0%
HTK+DTF w. PCA [16] 56.3%
RNN+HMM [7] 60.6%

Weakly supervised

MoF

ECTC [12] 27.7%
GMM+CNN [17] 28.2%
RNN-FC [24] 33.3%
TCFPN [7] 38.4%
NN-Vit. [26] 43.0%

Unsupervised

F1-score MoF

Mallow [27] − 34.6%
Ours 26.4% 41.8%

Table 4. Comparison of proposed method to other state-of-the-
art approaches for fully, weakly and unsupervised learning on the
Breakfast dataset.

proaches for both datasets. However, even though evalu-
ation metrics are directly comparable to weakly and fully
supervised approaches, one needs to consider that the re-
sults of the unsupervised learning are reported with respect
to an optimal assignment of clusters to ground-truth classes
and therefore report the best possible scenario for this task.

We compare our approach to recent works on the Break-
fast dataset in Table 4. As already discussed in Sec. 4.4, our
approach outperforms the current state-of-the-art for unsu-
pervised learning on this dataset by 7.2%. But it also shows
that the resulting segmentation is comparable to the results
gained by the best weakly supervised system so far [26] and
outperforms all other recent works in this field. In the case
of YouTube Instructions, we compare to the approaches of
[1] and [27] for the case of unsupervised learning only. Note
that we follow their protocol and report the accuracy of our
system without considering background frames. Here, our
approach again outperforms both recent methods with re-

YouTube Instructions

Unsupervised

F1-score MoF

Frank-Wolfe [1] 24.4% −
Mallow [27] 27.0% 27.8%
Ours 28.3% 39.0%

Table 5. Comparison of the proposed method to other state-of-
the-art approaches for unsupervised learning on the YouTube In-
structions dataset. We report results for a background ratio τ of
75%. Results of F1-score and MoF are reported without back-
ground frames as in [1, 27].

50Salads

Supervision Granularity level MoF

Fully supervised [8] eval 88.5%
Unsupervised (Ours) eval 35.5%

Fully supervised [6] mid 67.5%
Weakly supervised [26] mid 49.4%
Unsupervised (Ours) mid 30.2%

Table 6. Comparison of proposed method to other state-of-the-
art approaches for fully, weakly and unsupervised learning on the
50Salads dataset.

spect to Mof as well as F1-score. A qualitative example of
the segmentation on both datasets is given in Fig. 5. Al-
though we cannot compare with other unsupervised meth-
ods on the 50Salads dataset, we compare our approach with
the state-of-the-art for weakly and fully supervised learning
in Table 6. Each video in this dataset has a different order of
subactions and includes many repetitions of the subactions.
This makes unsupervised learning very difficult compared
to weakly or fully supervised learning. Nevertheless, 30.2%
and 35.5% MoF accuracy are still competitive results for an
unsupervised method.

4.7. Unknown Activity Classes

Finally, we assess the performance of our approach with
respect to a complete unsupervised setting as described in
Sec. 3.5. Thus, no activity classes are given and all videos
are processed together. For the evaluation, we again per-
form matching by the Hungarian method and match all sub-
actions independent of their video cluster to all possible ac-
tion labels. In the following, we conduct all experiments on
the Breakfast dataset and report MoF accuracy unless stated
otherwise. We assume in case of BreakfastK ′ = 10 activity
clusters with K = 5 subactions per cluster, we then match
50 different subaction clusters to 48 ground-truth subaction
classes, whereas the frames of the leftover clusters are set
to background. For the evaluation of the activity clusters,
we perform the Hungarian matching on activity level as de-
scribed earlier. Activity-level clustering. We first evaluate
the correctness of the resulting activity clusters with respect



Accuracy of activity clustering

mean over videos

no BoW 19.3%
BoW hard ass. 29.8%
BoW soft ass. 31.8%

Table 7. Evaluation of activity based clustering on Breakfast with
K′ = 10 activity clusters.

Multiple embeddings

MoF

full w add. cluster emb. 16.4%
full w/o add. cluster emb. 18.3%

Table 8. Evaluation of the impact of learning additional embed-
dings for each video cluster on the Breakfast dataset.

to the proposed bag-of-words clustering. We therefore eval-
uate the accuracy of the completely unsupervised pipeline
with and without bag-of-words clustering, as well as the
case of hard and soft assignment. As can be seen in Ta-
ble 7, omitting the quantization step significantly reduces
the overall accuracy of the video-based clustering.
Influence of additional embedding. We also evaluate the
impact of learning only one embedding for the entire dataset
as in Fig. 2 or learning additional embeddings for each
video set. The results in Table 8 show that a single em-
bedding learned on the entire dataset achieves 18.3% MoF
accuracy. If we learn additional embeddings for each of
the K ′ video clusters, the accuracy even slightly drops. For
completeness, we also compare our approach to a very sim-
ple baseline, which uses k-Means clustering with 50 clus-
ters using the video features without any embedding. This
baseline achieves only 6.1% MoF accuracy. This shows that
a single embedding learned on the entire dataset performs
best. Influence of cluster size. For all previous evaluations,
we approximated the cluster sizes based on the ground-truth
number of classes. We therefore evaluate how the overall
ratio of activity and subaction clusters influences the over-
all performance. To this end, we fix the overall number
of final subaction clusters to 50 to allow mapping to the
48 ground-truth subaction classes and vary the ratio of ac-
tivity (K ′) to subaction (K) clusters. Table 9 shows the
influence of the various cluster sizes. It shows that omit-
ting the activity clustering (K ′ = 1), leads to significantly
worse results. Depending on the measure, good results are
achieved forK ′ = 5 andK ′ = 10. Unsupervised learning
on YouTube Instructions. Finally, we evaluate the accu-
racy for the completely unsupervised learning setting on the
YouTube Instructions dataset in Table 10. We use K = 9
and K ′ = 5 and follow the protocol described in Sec. 4.5,
i.e., we report the accuracy with respect to the parameter τ
as MoF and IoU with and without background frames. As

Influence of cluster size

K′ / K mean over videos MoF IoU

1 / 50 10.9% 10.7% 4.0%
2 / 25 19.9% 15.3% 5.6%
3 / 16 25.6% 16.2% 6.1%
5 / 10 30.6% 18.8% 7.1%
10 / 5 31.8% 18.3% 13.2%

Table 9. Evaluation of the number of activity clusters (K′) with
respect to the number of subaction clusters (K) on the Breakfast
dataset. The second column (mean over videos) reports the accu-
racy of the activity clusters (K′) as in Table 7.

Influence of background ratio τ

MoF IoU

τ wo bg. w bg. wo bg. w bg.

60 19.8% 8.0% 4.9% 4.9%
70 19.6% 9.0% 4.9% 4.8%
75 19.4% 10.1% 4.8% 4.8%
80 18.9% 12.0% 4.8% 4.9%
90 15.6% 22.7% 4.3% 4.7%
99 2.5% 58.6% 1.5% 2.7%

Table 10. Evaluation of τ reported as MoF and IoU without and
with background on the YouTube Instructions dataset.

we already observed in Fig. 4, IoU with background frames
is the only reliable measure in this case since the other mea-
sures are optimized by declaring all or none of the frames as
background. Overall we observe a good trade-off between
background and class labels for τ = 75%.

5. Conclusion

We proposed a new method for the unsupervised learn-
ing of actions in sequential video data. Given the idea that
actions are not performed in an arbitrary order and thus
bound to their temporal location in a sequence, we propose
a continuous temporal embedding to enforce clusters at sim-
ilar temporal stages. We combine the temporal embedding
with a frame-to-cluster assignment based on Viterbi decod-
ing which outperforms all other approaches in the field. Ad-
ditionally, we introduced the task of unsupervised learning
without any given activity classes, which is not addressed
by any other method in the field so far. We show that the
proposed approach also works on this less restricted, but
more realistic task.
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