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Abstract

The task of temporally detecting and segmenting actions
in untrimmed videos has seen an increased attention re-
cently. One problem in this context arises from the need to
define and label action boundaries to create annotations for
training which is very time and cost intensive. To address
this issue, we propose an unsupervised approach for learn-
ing action classes from untrimmed video sequences. To this
end, we use a continuous temporal embedding of framewise
features to benefit from the sequential nature of activities.
Based on the latent space created by the embedding, we
identify clusters of temporal segments across all videos that
correspond to semantic meaningful action classes. The ap-
proach is evaluated on three challenging datasets, namely
the Breakfast dataset, YouTube Instructions, and the 50Sal-
ads dataset. While previous works assumed that the videos
contain the same high level activity, we furthermore show
that the proposed approach can also be applied to a more
general setting where the content of the videos is unknown.

1. Introduction
The task of action recognition has seen tremendous suc-

cess over the last years. So far, high-performing approaches
require full supervision for training. But acquiring frame-
level annotations of actions in untrimmed videos is very
expensive and impractical for very large datasets. Recent
works, therefore, explore alternative ways of training action
recognition approaches without having full frame annota-
tions at training time. Most of those concepts, which are
referred to as weakly supervised learning, rely on ordered
action sequences which are given for each video in the train-
ing set.

Acquiring ordered action lists, however, can also be very
time consuming and it assumes that it is already known what
actions are present in the videos before starting the anno-
tation process. For some applications like indexing large
∗This work was mainly done at University of Bonn. Asterisk denotes

equal contribution.

video datasets or human behavior analysis in neuroscience
or medicine, it is often unclear what action should be anno-
tated. It is therefore important to discover actions in large
video datasets before deciding which actions are relevant or
not. Recent works [27, 1] therefore proposed the task of
unsupervised learning of actions in long, untrimmed video
sequences. Here, only the videos themselves are used and
the goal is to identify clusters of temporal segments across
all videos that correspond to semantic meaningful action
classes.

In this work we propose a new method for unsupervised
learning of actions from long video sequences, which is
based on the following contributions. The first contribu-
tion is the learning of a continuous temporal embedding of
frame-based features. The embedding exploits the fact that
some actions need to be performed in a certain order and we
use a network to learn an embedding of frame-based fea-
tures with respect to their relative time in the video. As the
second contribution, we propose a decoding of the videos
into coherent action segments based on an ordered cluster-
ing of the embedded frame-wise video features. To this end,
we first compute the order of the clusters with respect to
their timestamp. Then a Viterbi decoding approach is used
such as in [26, 13, 24, 19] which maintains an estimate of
the most likely activity state given the predefined order.

We evaluate our approach on the Breakfast [15] and
YouTube Instructions datasets [1], following the evaluation
protocols used in [27, 1]. We also conduct experiments on
the 50Salads dataset [31] where the videos are longer and
contain more action classes. Our approach outperforms the
state-of-the-art in unsupervised learning of action classes
from untrimmed videos by a large margin. The evalua-
tion protocol used in previous works, however, divides the
datasets into distinct clusters of videos using the ground-
truth activity label of each video, i.e., unsupervised learning
and evaluation are performed only on videos, which contain
the same high level activity. This simplifies the problem
since in this case most of the actions occur in all videos.

As a third contribution, we therefore propose an exten-
sion of our approach that allows to go beyond the scenario
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of processing only videos from known activity classes, i.e.,
we discover semantic action classes from all videos of each
dataset at once, in a completely unsupervised way without
any knowledge of the related activity. To this end, we learn
a continuous temporal embedding for all videos and use the
embedding to build a representation for each untrimmed
video. After clustering the videos, we identify consistent
video segments for all videos within a cluster. In our ex-
periments, we show that the proposed approach not only
outperforms the state-of-the-art using the simplified proto-
col, but it is also capable to learn actions in a completely
unsupervised way. Code is available on-line.1

2. Related work

Action recognition [18, 32, 30, 3, 5] as well as the under-
standing complex activities [15, 35, 29] has been studied
for many years with a focus on fully supervised learning.
Recently, there has been an increased interest in methods
that can be trained with less supervision. One of the first
works in this field has been proposed by Laptev et al. [18]
where the authors learn actions from movie scripts. An-
other dataset that follows the idea of using subtitles has
been proposed by Alayrac et al. [1], also using YouTube
videos to automatically learn actions from instructional
videos. A multi-modal version of this idea has been pro-
posed by [21]. Here, the authors also collected cooking
videos from YouTube and used a combination of subtitles,
audio, and vision to identify receipt steps in videos. An-
other way of learning from subtitles is proposed by Sener et
al. [28] by representing each frame via the occurrence of ac-
tions atoms given the visual comments at this point. These
works, however, assume that the narrative text is well-
aligned with the visual data. Another form of weak supervi-
sion are video transcripts [12, 17, 24, 7, 26], which provide
the order of actions but that are not aligned with the videos,
or video tags [33, 25].

There are also efforts for unsupervised learning of action
classes. One of the first works that was tackling the prob-
lem of human motion segmentation without training data
was proposed by Guerra-Filho and Aloimonos [11]. They
propose a basic segmentation with subsequent clustering
based on sensory-motor data. Based on those representa-
tions, they propose the application of a parallel synchronous
grammar system to learn atomic action representations sim-
ilar to words in language. Another work in this context is
proposed by Fox et al. [10] where a Bayesian nonparamet-
ric approach helps to jointly model multiple related time
series without further supervision. They apply their work
on motion capture data.

In the context of video data, the temporal structure of
video data has been exploited to fine-tune networks on train-

1https://github.com/annusha/unsup_temp_embed

ing data without labels [34, 2]. The temporal ordering of
video frames has also been used to learn feature represen-
tations for action recognition [20, 23, 9, 4]. Lee et al. [20]
learn a video representation in an unsupervised manner by
solving a sequence sorting problem. Ramanathan et al. [23]
build their temporal embedding by leveraging contextual in-
formation of each frame on different resolution levels. Fer-
nando et al. [9] presented a method to capture the temporal
evolution of actions based on frame appearance by learning
a frame ranking function per video. In this way, they obtain
a compact latent space for each video separately. A similar
approach to learn a structured representation of postures and
their temporal development was proposed by Milbich et al.
[22]. While these approaches address different tasks, Sener
et al. [27] proposed an unsupervised approach for learning
action classes. They introduced an iterative approach which
alternates between discriminative learning of the appear-
ance of sub-activities from visual features and generative
modeling of the temporal structure of sub-activities using a
Generalized Mallows Model.

3. Unsupervised Learning of Action Classes
3.1. Overview

As input we are given a set fXmgM
m=1 of M videos and

each video Xm = fxmngNm
n=1 is represented by Nm frame-

wise features. The task is then to estimate the subaction
label lmn 2 f1; : : : ;Kg for each video frame xmn. Follow-
ing the protocol of [1, 27], we define the number of possible
subactions K separately for each activity as the maximum
number of possible subactions as they occur in the ground-
truth. The values of K are provided in the supplementary
material.

Fig. 1 provides an overview of our approach for unsuper-
vised learning of actions from long video sequences. First,
we learn an embedding of all features with respect to their
relative time stamp as described in Sec. 3.2. The resulting
embedded features are then clustered and the mean tempo-
ral occurrence of each cluster is computed. This step, as
well as the temporal ordering of the clusters is described in
Sec. 3.3. Each video is then decoded with respect to this
ordering given the overall proximity of each frame to each
cluster as described in Sec. 3.4.

We also present an extension to a more general proto-
col, where the videos have a higher diversity. Instead of
assuming as in [1, 27] that the videos contain the same high-
level activity, we discuss the completely unsupervised case
in Sec. 3.5. We finally introduce a background model to
address background segments in Sec. 3.6.

3.2. Continuous Temporal Embedding

The idea of learning a continuous temporal embedding
relies on the assumption that similar subactions tend to ap-
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Figure 1. Overview of the proposed pipeline. We �rst compute the embedding of features with respect to their relative time stamp. The
resulting embedded features are then clustered and the mean temporal appearance of each cluster is computed and the ordering of clusters
is computed. Each video is then decoded with respect to this ordering given the overall proximity of each frame to each cluster.

pear at a similar temporal range within a complex activity.
For instance a subaction like “take cup” will usually occur
in the beginning of the activity “making coffee”. After that
people probably pour coffee into the mug and �nally stir
coffee. Thus many subactions that are executed to conduct
a speci�c activity are softly bound to their temporal position
within the video.

To capture the combination of visual appearance and
temporal consistency, we model a continuous latent space
by capturing simultaneously relative time dependencies and
the visual representation of the frames. For the embedding,
we train a network architecture which optimizes the embed-
ding of all framewise features of an activity with respect to
their relative timet(xmn ) = n

N m
. As shown in Fig. 1, we

take an MLP with two hidden layers with dimensionality
2D andD, respectively, and logistic activation functions.
As loss, we use the mean squared error between the pre-
dicted time stamp and the true time stampt(xmn ) of the
feature. The embedding is then given by the second hidden
layer.

Note that this embedding does not use any subaction la-
bel associations as in [27, 1], thus the network needs to be
trained only once instead of retraining the model at each
iteration. For the rest of the paper,xmn denotes the embed-
dedD-dimensional features.

3.3. Clustering and Ordering

After the embedding, the features of all videos are clus-
tered intoK clusters by k-Means. Since in Sec. 3.4 we
need the probabilityp(xmn jk), i.e., the probability that the
embedded featurexmn belongs to clusterk, we estimate a
D-dimensional Gaussian distribution for each cluster:

p(xmn jk) = N (xmn ; � k ; � k ): (1)

Note that this clustering does not de�ne any speci�c order-
ing. To order clusters with respect to their temporal occur-

rence, we compute the mean over time stamps of all frames
belonging to each cluster

X (k) = f xmn jp(xmn jk) � p(xmn jk0); 8k0 6= kg;

t(k) =
1

jX (k)j

X

x mn 2 X (k )

t(xmn ): (2)

The clusters are then ordered with respect to the time
stamp so thatf k1; ::; kK g is the set of ordered cluster labels
subject to0 � t(k1) � :: � t(kK ) � 1. The resulting
ordering is then used for the decoding of each video.

3.4. Frame Labeling

We �nally temporally segment each videoX m sepa-
rately, i.e., we assign each framexmn to one of the or-
dered clusterslmn 2 f k1; : : : ; kK g. We �rst calculate the
probability of each frame that it belongs to clusterk as de-
�ned by (1). Based on the cluster probabilities for the given
video, we want to maximize the probability of the sequence
following the order of the clustersk1 ! :: ! kK to get
consistent assignments for each frame of the video:

l̂N m
1 = argmax

l 1 ;::;l N m

p
�
xN m

1 jlN m
1

�
(3)

= argmax
l 1 ;::;l N m

N mY

n =1

p
�
xmn jln

�
� p

�
ln jln � 1

�
;

wherep(xmn jln = k) is the probability thatxmn belongs to
the clusterk, andp(ln jln � 1) are the transition probabilities
of moving from the labelln � 1 at framen � 1 to the next
labelln at framen,

p(ln jln � 1) = 10� l n � l n � 1 � 1: (4)

This means that we allow either a transition to the next clus-
ter in the ordered cluster list or we keep the cluster assign-
ment of the previous frame. Note that (3) can be solved
ef�ciently using a Viterbi algorithm.



Figure 2. Proposed pipeline for unsupervised learning with unknown activity classes. We �rst compute an embedding with respect to the
whole dataset at once. In a second step, features are clustered in the embedding space to build a bag-of-words representation for each
video. We then cluster all videowise vectors intoK 0 clusters and apply the previously described method for each video set.

3.5. Unknown Activity Classes

So far we discussed the case of applying unsupervised
learning to a set of videos that all belong to the same ac-
tivity. When moving to a larger set of videos without any
knowledge of the activity class, the assumption of sharing
the same subactions within the collection cannot be applied
anymore. As it is illustrated in Fig. 2, we therefore cluster
the videos �rst into more consistent video subsets.

Similar to the previous setting, we learn aD-dimensional
embedding of the features but the embedding is not re-
stricted to a subset of the training data, but it is computed
for the whole dataset at once. Afterward, the embedded fea-
tures are clustered in this space to build a video representa-
tion based on bag-of-words using quantization with a soft
assignment. In this way, we obtain a single bag-of-words
feature vector per video sequence. Using this representa-
tion, we cluster the videos intoK 0 video sets. For each
video set, we then separately infer clusters for subactions
and assign them to each video frame as in Fig. 1. However,
we do not learn an embedding for each video set but use the
embedding learned on the entire dataset for each video set.
The impact ofK andK 0 will be evaluated in the experi-
mental section.

3.6. Background Model

As subactions are not always executed continuously and
without interruption, we also address the problem of model-
ing a background class. In order to decide if a frame should
be assigned to one of theK clusters or the background,
we introduce a parameter� which de�nes the percentage
of features that should be assigned to the background. To
this end, we keep only1 � � percent of the points within
each cluster that are closest to the cluster center and add
the other features to the background class. For the label-
ing described in Sec. 3.4, we remove all frames that have

been already assigned to the background before estimating
lmn 2 f k1; : : : ; kK g (3), i.e., the background frames are
�rst labeled and the remaining frames are then assigned to
the ordered clustersf k1; : : : ; kK g.

4. Evaluation

4.1. Dataset

We evaluate the proposed approach on three challeng-
ing datasets: Breakfast [15], YouTube Instructional [1], and
50Salads [31].

The Breakfast dataset is a large-scale dataset that com-
prises ten different complex activities of performing com-
mon kitchen activities with approximately eight subactions
per activity class. The duration of the videos varies signif-
icantly, e.g. coffeehas an average duration of 30 seconds
while cookingpancaketakes roughly 5 minutes. Also in
regards to the subactivity ordering, there are considerable
variations. For evaluation, we use reduced Fisher Vector
features as proposed by [16] and used in [27] and we follow
the protocol of [27], if not mentioned otherwise.

The YouTube Instructions dataset contains 150 videos
from YouTube with an average length of about two min-
utes per video. There are �ve primary tasks:making cof-
fee, changing car tire, cpr, jumping car, potting a plant.
The main difference with respect to the Breakfast dataset
is the presence of a background class. The fraction of back-
ground within different tasks varies from 46% to 83%. We
use the original precomputed features provided by [1] and
used by [27].

The 50Salads dataset contains 4.5 hours of different peo-
ple performing a single complex activity, making mixed
salad. Compared to the other datasets, the videos are much
longer with an average video length of 10k frames. We
perform evaluation on two different action granularity lev-


