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1 Implementation Details

We implemented our approach using the Pytorch [8] framework. As backbone
network, we use a randomly initialized ResNet3D-18 [4]. For self-supervised
training, two additional heads are added to the backbone network: projection
head and order prediction head. We use a non-linear projection head for self-
supervised learning following [1] and an order head for order prediction. Both
projection head and order head operate on the output features of the backbone
network and consist of two linear layers with a ReLU. They are only used for
self-supervised learning and are discarded afterwards. For the loss computation,
we sample 10 triplets from each video. For videos with less than 10 clips, we sam-
ple as many triplets as number of clips in the video. For the temporal contrastive
loss, the temperature is set to τ = 0.07. Training is done in mixed precision using
Adam [7] optimizer with starting learning rate lr = 0.001 on 4 NVIDIA TITAN
Xp GPUs with a per-GPU batch size of 28 examples.

For downstream tasks, the pre-trained backbone network is used as a feature
extractor and a linear layer for the specific downstream task is added. For clas-
sification and localization, the network is trained on 4 GPUs with batch size 128
(linear) and 64 (finetuning). For anticipation, we use 2 GPUs with batch size 64.
Other training parameters remain the same as during the pre-training stage.

2 Oops Dataset

2.1 Comparison to Fully-supervised Approaches

We compare our proposed self-supervised approach to the fully-supervised meth-
ods [3,11,12] for unintentional action prediction on the Oops dataset. While [3,11]
tackle both classification and localization tasks, [12] only considered the problem
of unintentional action localization. While our approach is trained self-supervised
and uses the labels only for training the linear classifier, these methods train a
full network on the labeled videos. Xu et al. [11] uses additional 3004 training
videos that contain only intentional actions.



2 Zatsarynna et al.

Method Add. Data Classifier Finetune

Supervised

LGF [3] × Transformer 77.9

UAL-CE [11] ✓ LSTM 82.6

Unsupervised

Ours × Linear 61.9
Table 1. Classification accuracy on the Oops dataset.

We present the comparison of our approach to the fully-supervised methods
for the tasks of classification and localization in Table 1 and Table 2, respec-
tively. We can observe that for classification all considered approaches perform
better than our method. However, it needs to be noted that the fully-supervised
methods use non-linear classification layers. More specifically, Epstein et al. [3]
use the Transformer encoder [9], while Xu et al. [11] make use of an LSTM
network [5].

Although our approach uses only a linear classifier, our approach outperforms
[3, 12] for the task of unintentional action localization with a threshold of 0.25
seconds. This shows that the video representations learned by our proposed self-
supervised approach are sufficiently distinctive to detect the transition point. [11]
shows the highest accuracy for both tasks, but it uses additional training data.

2.2 Cut Detection Network

To detect videos that contain two or more unrelated scenes due to failures of
the automatic cut detection, we train a cut detection network. To this end, we
harness a subset of 15000 videos from the Kinetics dataset [6] re-sampled at 16
fps, without using the video labels. Given these videos, we formulate the task of
cut detection as a binary classification task. We train a cut detection network
to predict whether a given 16-frame clip does or does not contain frames from
two different scenes. For this, we create two types of clips during training. The
clips of the first type consist of contiguous frames from a single video. Formally,
from a video vi, we randomly select a 16-frame clip xi = {f1

i , . . . , f
16
i }. Such

Method Add. Data Classifier Accuracy within

1 sec 0.25 sec

Supervised

LGF [3] × Transformer 72.4 39.9

TLA [12] × LSTM 73.2 40.3

UAL-CE [11] ✓ LSTM 81.2 55.4

Unsupervised

Ours × Linear 70.5 41.3
Table 2. Temporal localization accuracy on the Oops dataset.
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clips are assigned the label l = 0. The clips of the second type are created by
concatenating contiguous frames from two separate videos into a single clip. They
get assigned the label l = 1. More specifically, given two separate videos vi and
vj , we randomly select 16-frame clips xi = {f1

i , . . . , f
16
i } and xj = {f1

j , . . . , f
16
j }

from each video. Then, we randomly select a time point t from the interval
{4, . . . , 12} and create a concatenated clip x = {f1

i , . . . , f
t
i , f

t+1
j , . . . , f16

j }. As
network, we use the same ResNet3D-18 [4] as for the self-supervised pre-training,
which receives input clips of 16 frames. On top of the backbone network, we
define a non-linear head for cut prediction that consists of two linear layers with
a ReLU. The training is performed for 20 epochs with a batch size of 32, from
which half of the clips have label l = 0 and the other half has label l = 1.
Training is done in mixed precision using Adam [7] optimizer with learning rate
lr = 0.001. After training the network for cut prediction, we use it in a sliding
window fashion to detect the missed cuts in the training videos of the Oops
dataset [2]. If at a certain time point of a video the score of label l = 1 exceeds
the threshold tr = 0.85, the video is filtered out and is not used for the self-
supervised pre-training. According to our estimates, approximately 20% of all
videos from the dataset contain a missed scene change.

To understand the effect of the video filtering, we present the results for
linear classification and linear localization if the representation has been learned
on the filtered videos (Filtered) or all videos (All) in Table 3. While for linear
classification, the network trained with all videos slightly outperforms the model
trained only with the filtered videos, the localization performance suffers from
using all videos for self-supervised learning. However, our approach outperforms
in both cases the previous state-of-the-art method Video Speed [2].

3 LAD2000 Dataset

3.1 Dataset

LAD2000 [10] is a dataset of anomalous video sequences. It contains 2000 video
sequences that include both normal and abnormal videos belonging to 14 anoma-
lous categories. All videos have both a video-level label and frame-wise annota-
tions specifying abnormal frames. As our focus is to learn representations from
unintentional actions, we only consider videos with anomalous actions. So, in
total we make use of 762 videos, 482 for training and 280 videos for testing.

Linear classifier

Localization Classification

Method 1 sec 0.25 sec All labels

Video Speed [2] 65.3 36.6 53.4

Filtered (Ours) 70.5 41.3 60.9

All 69.9 39.3 61.6
Table 3. Effect of video filtering on the Oops dataset.
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Method Classification

Linear Non-Linear

Kinetics 63.2 65.8

Video Speed [2] 45.0 49.6

Ours 51.3 57.3
Table 4. Classification accuracy on the LAD2000 dataset.

Additionally, since our backbone network operates on clips rather than frames,
we transform the original frame labels into clip labels. Specifically, we resample
the original frames and labels from 25 fps to 16 fps. As previously, the input to
our model are clips of 16 frames extracted from videos in 0.25 second intervals.
Clip labels are defined as follows: if all clip frames are labeled as normal, then
the clip is labeled as intentional; else if all clip frames are labeled as abnormal,
the clip is labeled as unintentional. Otherwise the clip is labeled as transitional.

3.2 Classification

For the LAD2000 dataset, we evaluate our model only on the donwstream clas-
sification task. Apart from the linear classification, we also present results of
training a two-layer classifier with ReLU. In both cases, we use the fixed back-
bone. Since the average number of clips per video in LAD2000 (192 clips/video)
is higher than in the Oops dataset (34 clips/video) while the total number of
videos is smaller, we sampled 100 triplets per video for training instead of sam-
pling only 10 as for the Oops dataset. The training was performed on 2 GPUs
with batch size 256.

We present the results in Table 4. Our approach substantially outperforms the
previously proposed Video Speed [2] model by 6.3% and 7.7% in the linear and
non-linear setting, respectively. However, we can also observe that the model pre-
trained with full supervision on the Kinetics dataset significantly outperforms
our approach. Thus, there is still room for improvement for pre-training on
unintentional videos.
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