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Abstract

Trajectory forecasting is a crucial step for autonomous
vehicles and mobile robots in order to navigate and in-
teract safely. In order to handle the spatial interactions
between objects, graph-based approaches have been pro-
posed. These methods, however, model motion on a frame-
to-frame basis and do not provide a strong temporal model.
To overcome this limitation, we propose a compact model
called Spatial-Temporal Consistency Network (STC-Net). In
STC-Net, dilated temporal convolutions are introduced to
model long-range dependencies along each trajectory for
better temporal modeling while graph convolutions are em-
ployed to model the spatial interaction among different tra-
jectories. Furthermore, we propose a feature-wise convolu-
tion to generate the predicted trajectories in one pass and re-
fine the forecast trajectories together with the reconstructed
observed trajectories. We demonstrate that STC-Net gen-
erates spatially and temporally consistent trajectories and
outperforms other graph-based methods. Since STC-Net re-
quires only 0.7k parameters and forecasts the future with a
latency of only 1.3ms, it advances the state-of-the-art and
satisfies the requirements for realistic applications.

1. Introduction

Intelligent agents like autonomous vehicles and mobile
robots navigate and interact in spaces that are shared with
humans. The safety of the humans is therefore of the high-
est priority. To this end, agents are required to understand
and forecast the trajectories of surrounding pedestrians or
vehicles such that they can make the right decisions and for
instance navigate safely and smoothly through a crowd. Tra-
jectory forecasting, however, is challenging due to the com-
plex behavior and interactions of humans in crowds. Fur-
thermore, the available resources will always be a limiting
factor as the agents are equipped with energy-efficient hard-
ware. Hence, there is a need for compact forecasting mod-
els with a very low latency. In practice, a low latency is
required for most applications since there is otherwise not
enough time to adjust the motion and any millisecond can
save lives.

(a) Social-STGCNN [24] (b) Ours

Figure 1: State-of-the-art graph-based approaches like [24]
do not model the temporal motion of the trajectories well,
which results in shaky and unrealistic trajectories (dashed

) as shown in (a). In this figure, red denotes the ob-
served trajectory and blue the ground-truth future trajectory.
Our approach addresses this issue and forecasts spatially and
temporally consistent trajectories (b).

Over the last years, several approaches have been pro-
posed for trajectory forecasting. RNN-based methods [1,
20, 36] utilize a recurrent model to model the trajectory of
each pedestrian in the scene and their interactions are taken
into account by a pooling operation. GAN-based meth-
ods [13, 17, 29] enable RNN-based methods to produce
multiple socially plausible trajectories. Graph-based meth-
ods [15, 34, 24] model spatial relations as a graph and uti-
lize graph convolutions. These methods, however, have in
common that they use recurrent neural networks to generate
the future trajectories, which results in a relatively high la-
tency. To address this issue, Social-STGCNN [24] proposed
a CNN for time-extrapolation. As a result, Social-STGCNN
achieves a very low latency of 2ms. This, however, comes at
the cost that the forecast trajectories are noisy and not tem-
porally consistent as shown in Fig. la.

In this work, we therefore address this issue and present
an approach that generates spatially and temporally consis-
tent trajectories with a latency of less than 2ms. To achieve
this, the proposed Spatial-Temporal Consistency Network
(STC-Net), which is shown in Fig. 2, utilizes graph convolu-
tions for spatial modeling and dilated temporal convolutions
for temporal modeling. Our network generates trajectories
that are consistent over the past and the future. This con-
sistency is implicitly enforced by reconstructing the past,
jointly refining the reconstructed past and forecast future,
and computing the loss over the entire trajectory. In order
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Figure 2: The proposed spatial-temporal consistency network takes observed trajectories (solid curves) of N objects as input
and forecasts the future trajectories (dashed curves). It combines graph convolutions (GC) for modeling interactions of trajec-
tories in close proximity and dilated temporal convolutions (DTCs) for capturing temporal relations over the entire trajectories.
The feature-wise convolution (FWC) forecasts the features in one pass and the final refinement ensures the consistency of the

reconstructed and forecast part of a trajectory.

to achieve a very low latency, we do not use any recurrent
layers, but propose feature-wise convolutions that generate
the future trajectories with variable length in one pass. The
proposed network design yields very compact networks with
only 0.7k parameters and 1.3ms latency.

We thoroughly evaluate the approach on three datasets
with six different scenes and analyze its generalization abil-
ity by performing a cross-dataset experiment and evaluating
the approach for different temporal sampling rates. The pro-
posed approach outperforms other graph-based methods in
terms of accuracy, model size, and latency. It is also im-
portant to note that most approaches cannot keep up with
the frame-rate, i.e., the forecasting cannot be performed un-
til the next frame is captured. This means that these meth-
ods are not fast enough for real-world applications. Even
for a very slow frame-rate of 2.5 frames per second, only
[13, 25, 24] are able to process the data fast enough. Com-
pared to these methods, our approach is not only faster, but
it is also by far more accurate.

2. Related Work

We briefly discuss the recent progress in trajectory fore-
casting and network architecture search. RNN-based meth-
ods model the motion of each pedestrian by a recurrent ar-
chitecture and the context of nearby trajectories by pooling
operations. Social-LSTM [1] is one of the earliest methods
following this approach and several methods explore differ-
ent strategies to improve the performance. PIF [20] takes
human behavioral information into consideration and intro-
duces rich visual features. SR-LSTM [36] proposes a social-
aware information selection mechanism to select useful in-
formation from neighboring pedestrians. FvTraj [4] focuses
on first-person view based trajectory forecasting with multi-
head attention mechanisms. Recently, [23] proposed a vari-
ational auto-encoder to predict first the end-points of the tra-
jectories and then the corresponding trajectories in a second
step. While it achieves impressive results, it is too expen-
sive for most applications. In contrast, our approach requires

3,000 times less parameters and is 467 times faster.

GAN-based methods take into account that many future
trajectories might be plausible. To handle this problem,
Social-LSTM [1] is converted into a generative model in
Social-GAN [13]. Based on it, SoPhie [29] combines a so-
cial attention mechanism with a physical attention mecha-
nism. CGNS [17] replaces the LSTMs in SoPhie [29] by
GRUs. Similar to [23], Goal-GAN [9] uses a two-stage pro-
cess for trajectory forecasting. Since these works also rely
on recurrent architectures, they are as inefficient as RNN-
based methods.

Graph-based methods use graph convolutions instead of
simple pooling operations for modeling the spatial interac-
tions. Social-BiGAT [15] is a graph-based generative model
that uses a graph attention network to encode social interac-
tions between pedestrians and a recurrent encoder-decoder
architecture to predict future trajectories. Similar to Social-
BiGAT [15], STGAT [14] captures spatial interactions by
a graph attention mechanism at each time-step and uses
LSTMs for forecasting. RSBG [30] proposes a social behav-
ior graph which encodes the social representations. DAG-
Net [25] uses a double attentive graph neural network for
trajectory forecasting. These methods, however, remain in-
efficient since they still use a recurrent architecture. Social-
STGCNN [24] omits the RNNs and uses a CNN for time
extrapolation. While this results in a very low latency, it
comes at the cost of a very weak temporal model.

Many approaches have been proposed for neural archi-
tecture search using, e.g., reinforcement learning [37, 38] or
evolutionary search [21]. The large search space, however,
makes these approaches extremely expensive and resource
demanding. Hence, a well-designed search space is of vital
importance. Aiming at this, some new methods have been
proposed, including differentiable architecture search [22],
single-path one-shot sampling [8, 12], path-level binariza-
tion [6], and weight sharing [5, 33]. Recently, the design
of efficient models with neural architecture search has been
investigated for 2D image tasks [31, 32].



3. Spatial-Temporal Consistency Network

The goal of trajectory forecasting is predicting the up-
coming trajectories given past observed trajectories. We de-
note the observed trajectory of each object n, which are com-
monly pedestrians but can also be other objects like vehicles,
by 7" = {p] = (x],y{) | t € {1,...,T,}} and the future tra-
jectory by Tf" ={p; = y) 1t e{T,+1,...T,+T(}},
where py is the location of the object n at time 7.

For forecasting, we use a Gaussian distribution
J\fp:. (ﬁt”, 2;’), i.e., we estimate for each p;’ S T;’ the mean

A7 and the covariance matrix X!'. In order to vectorize the
covariance matrix, we use
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The covariance matrix is then defined by the three-
dimensional vector (61, 65, p).

For training, we minimize the negative log-likelihood,
i.e., given for each trajectory the ground-truth position pf,
we minimize
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where N is the number of present objects.

In contrast to previous works, our proposed network not
only estimates the future trajectory T}Z’, but also reconstructs
the observed trajectory 7" and refines them both as a single
trajectory as it is illustrated in Fig. 2. This helps to learn a
better representation that is spatially and temporally consis-
tent as we will show in the experiments. For the observed
trajectory 7", we use the squared error as reconstruction

loss:
N
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where P/ is the reconstructed position for object  at frame
t and p} is the observed position.

For training the network, we sum the two loss functions
Equ. (2) and Equ. (3) with equal weights, i.e.,

L=L;+wL,. “)

where w = 1. For the ablation study, however, we also in-
vestigate different values of w.

3.1. Spatial Graph Representation

As in other graph-based approaches [15, 34, 24], we use
a graph structure to model the spatial relations between the
objects. Since we focus on the temporal modeling, we use
for a fair comparison the graph representation that has been
proposed in [24]. At each timestamp ¢, a spatial graph G, =

Figure 3: We model the observed trajectories (green) and
forecast trajectories (blue) together by using dilated tem-
poral convolutions that are stacked with increasing dilation
rates. This provides a very strong temporal model for tra-
jectories since the motion is modeled over a large temporal
receptive field.

(V. E,) is constructed where V; = {vf | n € {1,..,N}}
are the vertices corresponding to the N objects and E, =
{e/™ | n,m € {1,..., N}} denote the edges that encode the
spatial relationship between object n and m. For each edge,
the affinity ;" is computed by

o _ {0 —p ™ i By =P >0
ai { 0 t ' ,otherwtise. t )

This means that the objects influence each other when they
are close. Suppose V' is the stack of Vt(l), that is the ver-
tices at time step ¢ and network layer /. The features of the
vertices f(V(") are updated in a graph convolution layer as
follows:

£ (VD) = ReLU (D—%gﬁ—éf (V) W(l)) ©)

where W are the learnable convolution weights, A is the
stack of A, = A, + I, and the diagonal matrix D is the stack
of Jt"" =2, am

While Equ. (6) describes the layer for a single frame ¢,
some works simply stack the features and matrices for mul-
tiple frames in order to extend the graph to the temporal
domain. This, however, results in a poor temporal model
that generates noisy trajectories which are not very consis-
tent over time as we show in the experiments. In this work,
we therefore propose to use dilated temporal and feature-
wise convolutions for forecasting trajectories and combine
them with graph convolutional layers. In the experiments,
we will show that this results in forecast trajectories that are
spatially and temporally more consistent.

3.2. Architecture

In order to forecast spatially and temporally consistent
trajectories, we propose to combine different convolutions
as shown in Fig. 4. While graph convolutions model the re-
lations of objects that are close, they are not the best choice
for temporal modeling as discussed in Section 3.1. We there-
fore propose graph convolutions for spatial modeling and
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(a) Vanilla 1 x 1 Convolution (b) Feature-wise Convolution (c) Graph Convolution (d) Dilated Temporal Convolution

Figure 4: The four different convolutions that are used in STC-Net. For the illustrations, the input tensor is (C;,,, T,,, N ) where
T, are the observed frames, N denotes the number of objects, and C;,, is the dimensionality of the input features. (a) Vanilla
1 x 1 convolutions map the feature to another space with dimensionality C,,,. The output tensor is thus (C,,,, T,, N). (b) In
contrast, the proposed feature-wise convolutions keep the feature dimensionality but adjust the temporal dimension. Since the
predicted length T’y is variable, it is suitable for forecasting and we use them to forecast the future features. The output tensor
is (C,, Ty, N). (c) Graph convolutions aggregate the features at a frame based on the spatial relations of the objects and they
are used to model interactions between objects. Depending on the number of kernels, the feature dimensionality can change
and the output tensor is (C,,,, T,, N). (d) Temporal convolutions operate over time and aggregate for each trajectory temporal
information. Due to dilated convolution kernels, the temporal convolutions can take the entire trajectory into account. While

graph convolutions model spatial relations, the temporal convolutions model temporal relations.

dilated temporal convolutions for temporal modeling. In Different from previous works that only predict the future
contrast to graph convolutions that only consider neighbors trajectories, we also reconstruct the observed trajectories to
based on the affinity matrix A, dilated temporal convolutions ensure that the observed and forecast part of a trajectory are
with gradual increasing dilation rates capture long range de- consistent. As shown in Fig. 2, we refine both parts as a
pendencies as it is illustrated in Fig. 3. single consistent trajectory. Specially, the features of the ob-

served and forecast trajectories are concatenated and refined
by dilated temporal convolutions as before. The only differ-
ence is that we use 5 layers since the concatenated trajectory
is longer than the observed one. For training, we use the loss
Equ. (4).

For our network, which is shown in Fig. 2, we first aggre-
gate spatial information among different observed trajecto-
ries at each frame using graph convolutions. We then aggre-
gate temporal information using dilated temporal convolu-
tions [18]. We use 3 dilated temporal convolutions with ker-
nel size 3 and dilation rates 2/, where [ is the layer number,
and apply it to each trajectory. Finally, we use a graph con- 3.3. Network Architecture Search
volution to aggregate again the spatial information. In this
way, the network is able to consider the interaction of trajec-
tories that are in close proximity as well as the full temporal
information that is available for each trajectory.

The architecture shown in Fig. 2 is one instance of
spatial-temporal consistency networks. Depending on the
number of layers, we obtain different instances. While we
evaluate the impact of each component of the network as

After the interaction of both spatial and temporal infor- part of the ablation studies, we additionally perform a net-
mation, the initial trajectory prediction is generated by a work architecture search to analyze which instance performs
feature-wise convolution, which is illustrated in Fig. 4. It best. For the search algorithm, we adopt ENAS [27] which
is similar to a 1 X 1 convolution, but the main difference is is a one-shot search algorithm. As search space, we allow
the information aggregation dimension. At this stage of the different types of convolutions (temporal or graph convo-
network, the size of the feature tensor is (C;,, T,, N) where lution), temporal convolutions with different dilation rates,
C,, is the feature dimension, T}, is the length of the observed and a varying depth of the network. ENAS models all com-
trajectories, and N is the number of objects in the current binations as large directed acyclic graph and any valid net-
scene. While a vanilla 1 X 1 convolution changes the fea- work is a subgraph of it. A controller is then trained with

ture dimensionality and aggregates the information across
the features, a feature-wise convolution aggregates for each

channel in the feature vector all observed information along 7, NLL NLL L2 L2
the temporal dimension and can be used to predict the future Ty NLL L2 NLL L2
for each channel with variable length. After the feature-wise ADE/FDE | 0.63/1.09 | 1.00/1.95 | 0.51/0.85 | 093/1.79

convolution, the size of the feature tensor is (Cy,, Ty, N)

here T is the leneth of the f i s, 1 Table 1: Impact of different loss terms for the reconstructed
where 1 1s the length of the future trajectories. In contrast (T,) and forecast (Tf) trajectory. While NLL denotes the

to recurrent or auto-regressive approaches, the feature-wise negative log-likelihood in Equ. (2), L2 denotes the 1.2 loss
convolution predicts the future in one pass. in Equ. (3) ’
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‘ 1.3 H w/o obs H w/o refine

ADE/FDE | 0.55/091 | 0.54/0.87 | 0.51/0.85 | 0.54/091 || 0.58/0.97 || 0.60/ 1.04

Table 2: Impact of w in Equ. (4). While ‘w/o obs’ denotes a setting where the reconstructed observed trajectories are not
concatenated with the forecast trajectories, ‘w/o refine’ uses the forecast trajectories directly after the feature-wise convolution

without the last layer of dilated temporal convolutions.

w/o GC | w/o DTC | w/o FWC | Ours

ADE 0.64 0.59 0.55 0.51
FDE 1.02 0.99 0.91 0.85
Latency | 0.7ms 1.4ms 2.3ms 1.5ms

Table 3: Impact of the different types of convolutions.

policy gradient to select a subgraph that maximizes the ex-
pected reward on the validation set. In order to accelerate the
search process, ENAS applies a parameter sharing strategy
between child models.

4. Experiment
4.1. Datasets

We evaluate our method on three common trajectory
forecasting datasets which are described below. As in pre-
vious works, 8 frames are used as observation and the fol-
lowing 12 frames need to be forecast. All trajectories are
provided in 2D coordinates.

The ETH [26] and UCY [16] datasets aim at pedestrian
trajectory forecasting. ETH contains 2 top view scenes with
750 trajectories and UCY contains 3 scenes close to the top
view with 786 trajectories. The data processing is done as
[13]. The sampling rate is 2.5 frames per second (one frame
per 0.4s), which means that the model observes 3.2 seconds
and predicts the trajectories for the next 4.8 seconds.

The Stanford Drone Dataset [28] includes a series of
videos captured by a hovering drone from 8 different college
campuses with more than 10,000 trajectories. The dataset is
much larger than ETH and UCY and includes other objects
like bikes or cars apart from pedestrians. The frame rate is
2.5 frames per second, which is the same as for ETH and
UCY. We evaluate our approach as setting [25] for two pro-
tocols, namely 2D world and 2D image coordinates.

4.2. Metrics

There are two commonly used metrics to evaluate the
performance of trajectory forecasting methods: average dis-
placement error (ADE) [26] and final displacement error
(FDE) [1]. The average displacement error is defined as:

N T0+T/- N
Z:n=1 Zt=T0+l p:l - p? 2
ADE = , (N
N X Tf

where f){‘ is the estimated position of object » at frame ¢ and
py is the ground-truth position. It measures the average pre-
diction performance along the whole trajectory. The final

displacement error (FDE) is defined as:

N
Zn:l

An N
pT0+Tf pTo+Tf ”2
N .

In contrast to ADE, it only measures the prediction accu-
racy at the end point. Because the prediction of our method
is a distribution, we follow the evaluation protocol used in
Social-LSTM [1] to compare the predicted distribution with
the ground truth value. Specially, we sample 20 predictions
from the predicted distribution and take the closest sample
to the ground truth to compute ADE and FDE.

4.3. Ablation Study

We conduct the ablation study on the Stanford Drone
Dataset [28] since it is the largest dataset and has the high-
est diversity. We first evaluate the proposed loss function
Equ. (4), which uses the L2 loss for reconstructed trajectory
in Equ. (3) and negative log-likelihood (NLL) for the fore-
cast trajectory in Equ. (2). The results are shown in Tab. 1.

From the table we can see that applying the L2 loss on
the reconstructed observed trajectory and the negative log-
likelihood on the forecast trajectory achieves the lowest error
(col 3). This is reasonable because the observed trajectory
is determined, which means that there is no uncertainty in
the ground-truth. In contrast, the future trajectory can be
uncertain since the future is not necessarily determined and
several trajectories might be plausible. If we use the L2 loss
for the forecast trajectory (col 2 and 4), the error drastically
increases since the L2 loss does not handle the uncertainty
of the future. On the other hand, if we use only the nega-
tive log-likelihood (col 1), the error is higher than for the
proposed setting (col 3). This is expected since the L2 er-
ror enforces a more accurate reconstruction of the observed
trajectory, which is beneficial for the forecasting task.

As discussed in Sec. 3, we do not weight the two loss
terms in Equ. (4). Nevertheless, we evaluate in Tab. 2 the
impact of an additional weighting parameter w. We can see
that the error first decreases as w increases to 1.0 and then
increases again when w is larger than 1.0. This shows that
there is no need to weight the two loss functions. In the sec-
ond to last column, we show why it is important to take the
observed trajectory for the final estimate into account. If we
do not concatenate the reconstructed observed and the fore-
cast trajectories (w/o obs) but refine only the forecast trajec-
tory, the error increases. If we do not refine the trajectories at
all (w/o refine), the error even increases further. This shows
the importance of the additional refinement layers.

FDE =

®)



ETH HOTEL UNIV ZARAL1 ZARA2 AVG
S-LSTM [1] 1.09/235 | 0.79/1.76 | 0.67/1.40 | 047/1.00 | 0.56/1.17 | 0.72/1.54
PIF [20] 0.73/1.65 | 0.30/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 | 0.46/1.00
SR-LSTM [36] 0.63/1.25 | 0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.32/0.70 | 0.45/0.94
DS-LSTM [7] 0.66/1.21 | 0.27/0.46 | 0.50/1.07 | 0.33/0.68 | 0.28/0.60 | 0.41/0.80
FvTraj [4] 0.56/1.14 | 0.28/0.55 | 0.52/1.12 | 0.37/0.78 | 0.32/0.68 | 0.41/0.85
S-GAN [13] 0.81/152 | 0.72/1.61 | 0.60/1.26 | 0.34/0.69 | 0.42/0.84 | 0.58/1.18
SoPhie [29] 0.70/1.43 | 076 /1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 | 0.54/1.15
CGNS [17] 0.62/1.40 | 0.70/0.93 | 048/1.22 | 0.32/0.59 | 0.35/0.71 | 0.49/0.97
Social-Ways [2] 0.39/0.64 | 0.39/0.66 | 0.55/1.31 | 0.44/0.64 | 0.51/0.92 | 0.46/0.83
Goal-GAN [9] 0.59/1.18 | 0.19/0.35 | 0.60/1.19 | 0.43/0.87 | 0.32/0.65 | 0.43/0.85
TPNet [11] 0.84/1.73 | 0.24/0.46 | 042/0.94 | 0.33/0.75 | 0.26/0.60 | 0.42/0.90
PECNet [23] 0.54/0.87 | 0.18/0.24 | 0.35/0.60 | 0.22/0.39 | 0.17/0.30 | 0.29/0.48
STSGN [35] 0.75/1.63 | 0.63/1.01 | 048/1.08 | 0.30/0.65 | 0.26/0.57 | 0.48/0.99
Social-BiGAT [15] 0.69/129 | 049/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 | 0.48/1.00
RSBG [30] 0.80/1.53 | 0.33/0.64 | 0.59/1.25 | 0.40/0.86 | 0.30/0.65 | 0.48/0.99
Social-STGCNN [24] | 0.64/1.11 | 0.49/0.85 | 0.44/0.79 | 0.34/0.53 | 0.30/0.48 | 0.44/0.75
STGAT [14] 0.65/1.12 | 0.35/0.66 | 0.52/1.10 | 0.34/0.69 | 0.29/0.60 | 0.43/0.83
STC-Net 0.66/1.28 | 0.33/0.58 | 0.41/0.78 | 0.29/0.51 | 0.27/0.45 | 0.39/0.72
STC-Net-NAS 0.64/1.18 | 0.33/0.54 | 0.39/0.74 | 0.29/0.49 | 0.26/0.45 | 0.38/0.68
Table 4: Results on the ETH [26] and UCY [16] datasets.
ADE | FDE ral convolutions (w/o DTC), and the TXP-CNN of Social-
Social LSTM™ [1] 0.73 | 0.96 STGCNN [24] instead of the feature-wise convolution (w/o
Social-STGCNN* [24] | 0.71 1.14 FWC). The results show that both graph convolutions and di-
Social-Ways [2] 0.62 | 1.16 lated temporal convolutions are required in order to achieve
STGAT [14] 0.58 | 1.11 accurate predictions. It also shows that the graph convolu-
STGATT [14] 0.63 1.19 tions take more than 50% of the processing time. Further-
DAG-Net [25] 054 | 1.05 more, the proposed feature-wise convolution is much more
DAG-Net* [25] 0.53 | 1.02 efficient and effective compared to TXP-CNN.
STC-Net 051 | 0.85 4.4. Comparison with state-of-the-art methods
STC-Net-NAS 0.49 | 0.82

Table 5: Results on the Stanford Drone dataset (world coor-
dinates) [28]. * means that we train the model with the code
offered by the authors. * denotes that we use the pre-tained
model offered by the authors.

ADE | FDE

SoPhie [29] 16.27 | 29.38
Social GAN [13] | 27.23 | 41.44
CF-VAE [3] 126 | 223
P2TIRL [10] 12.58 | 22.07
SimAug™ [19] 10.27 | 19.71
PECNet [23] 9.96 | 15.88
STC-Net 11.96 | 20.12
STC-Net-NAS 11.88 | 20.08

Table 6: Results on the Stanford Drone dataset (image coor-
dinates) [28]. * the approach uses additional training data.

In Tab. 3, we analyze the impact of the used convolu-
tions on the latency as well as accuracy. Since we cannot
simply remove the convolutions, we replaced them by other
operations. We used pooling instead of graph convolutions
(w/o GC), temporal convolutions instead of dilated tempo-

Accuracy. We compare our method with other state-of-
the-art methods on the ETH [26], UCY [16], and Stanford
Drone [28] datasets. The results for the ETH [26] and UCY
[16] datasets are shown in Tab. 4. When we compare our
approach to other graph-based methods [35, 15, 30, 24, 14],
we observe that our approach achieves the lowest average
(ADE) and final displacement error (FDE) among graph-
based methods. When we compare our approach to the
state-of-the-art, we observe that only PECNet [23] achieves
a lower error. PECNet uses a two step approach that first
predicts the end-points and then the trajectories based on the
predicted end-points. While predicting end-points is com-
plementary to our approach, the high accuracy comes at high
computational cost as shown in Tab. 9. PECNet requires
3,000 times more parameters and is 467 times slower. In
fact, a latency of over 600ms is too high for applications.

As discussed in Sec. 3.3, we also generated an instance
of the spatial-temporal consistency networks by network ar-
chitecture search. It needs to be noted that we used only the
Stanford Drone Dataset [28] for the network optimization
since it is the largest dataset. If we use this instance, which



0.4s 0.8s 1.2s 1.6s 2.0s AVG
Social-STGCNN [24] | 0.71/1.15 | 0.73/1.14 | 0.69/1.10 | 0.61/0.92 | 0.67/1.01 | 0.68/1.06
DAG-Net [25] 0.53/1.02 | 0.53/1.01 | 0.58/1.14 | 0.56/1.11 | 0.82/1.64 | 0.60/1.18
STGAT [14] 063/1.19 | 0.64/1.17 | 0.61/1.14 | 0.51/0.92 | 0.57/1.05 | 0.59/1.09
STC-Net 0.51/0.85 | 0.50/0.80 | 0.50/0.83 | 0.43/0.69 | 0.50/0.80 | 0.49/0.79
STC-Net-NAS 0.49/0.82 | 0.49/0.80 | 0.48/0.82 | 0.41/0.67 | 0.47/0.78 | 0.47/0.78
Table 7: Temporal robustness. The errors (ADE / FDE) for different sampling rates on the Stanford Drone dataset [28].
ETH HOTEL UNIV ZARA1 ZARA2 AVG
Social-STGCNN [24] | 0.64/0.88 | 0.44/0.67 | 0.50/0.79 | 0.53/0.71 | 0.48/0.70 | 0.52/0.75
STGAT [14] 0.71/1.31 | 0.33/0.61 | 0.61/1.26 | 0.43/0.83 | 0.38/0.75 | 0.49/0.95
DAG-Net [25] 0.71/123 | 0.22/041 | 0.70/1.47 | 0.43/0.88 | 0.29/0.60 | 0.47/0.92
STC-Net 0.61/1.10 | 0.20/0.27 | 0.43/0.79 | 0.35/0.59 | 0.28/0.47 | 0.37/0.64
STC-Net-NAS 0.59/1.12 | 0.20/0.25 | 0.40/0.75 | 0.33/0.55 | 0.27/0.46 | 0.36/0.63

Table 8: Cross-scene robustness. For this experiment, the approaches are trained on the Stanford Drone dataset [28] and

evaluated on the ETH [26] and UCY [16] datasets.

Inference time
0.6070s (467x)
1.1800s (907.7x)
1.1789s (906.8)

Parameters
2.10M (3000x)
264K (377.1x)
64.9K (92.7x)

PECNet [23]
Social LSTM [1]
SR-LSTM [36]

STGAT [14] 44.6K (63.7x) | 1.3497s (1038.2x)
DAG-Net [25] 2.35M (3357.1x) | 0.0463s (35.6x)
PIF [20] 360.3K (514.7x) | 0.1145s (88.1x)
Social GAN [13] 463K (66.1x) | 0.0968s (74.5x)
Social-STGCNN [24] 7.6K (11x) 0.0020s (1.5%)
STC-Net 0.8K (1.1x) 0.0015s (1.2x)
STC-Net-NAS 0.7K 0.0013s

Table 9: Model size and efficiency. Only [25, 20, 13, 24]
achieve a latency that is lower than the frame-rate.

L | CH | ADE | FED | Params | Inf time
3] 1x | 11.96 | 20.12 0.8K 0.0015s
6 | 1x | 11.61 | 18.79 1.0K 0.0017s
3| 2x | 11.65 | 19.79 2.6K 0.0015s
3 ] 4x | 11.49 | 19.04 | 10.0K | 0.0015s
6 | 4x | 11.34 | 18.65 | 13.6K | 0.0017s

Table 10: Changing the size of the model. From top to bot-
tom, we show the results of the original model, a deeper
model, a wider model, and finally a combination of them. L
denotes number of layers and CH means increase of num-
ber of channels, i.e., KX means increasing the number of
channels by K times compared to the original model.

is denoted by STC-Net-NAS, for the other two datasets, we
observe that the error is slightly reduced.

The results for the Stanford Drone dataset [28] are re-
ported in Tab. 5 and Tab. 6, respectively. The results confirm
the very good results from ETH and UCY. Our approach
achieves a much lower error compared to other graph-based
approaches. Only the recent approaches [19, 23] achieve
a lower accuracy. While PECNet [23] uses a much bigger
network and is much slower than our approach as discussed
before, the numbers of [19] are not comparable since the ap-
proach uses additional training data.

Efficiency. Since methods for forecasting trajectories
need to be compact and to have a very low inference time, we
compare the size and inference time of STC-Net with other
state-of-the-art methods in Tab. 9. For measuring the infer-
ence time, we used a single 1080Ti GPU. In contrast to pre-
vious works, our approach is very compact and comprises
less than 1K parameters. From the state-of-the-art methods,
only Social-STGCNN [24] achieves a very low inference
time. STC-Net, however, not only achieves a much lower
forecasting error than Social-STGCNN, it is even more com-
pact and has a lower latency. It is interesting to note that the
neural network search finds an instance that not only makes
more accurate predictions, but it also reduces the model size
and inference time. STC-Net-NAS runs with more than 750
frames per seconds on a low-budget GPU, yielding a latency
of less than 2ms.

Furthermore, we evaluated on the Stanford Drone dataset
(image coordinates) the impact of the model size by in-
creasing the number of dilated convolutional layers before
the feature-wise convolution and/or the number of channels.
The results are shown in Tab. 10. The results show that
the error can be further reduced by adding more layers or
increasing the number of channels per layer at the cost of
increasing the number of parameters or the inference time.
Note that for all configurations the approach is still faster
than previous works.

Temporal Robustness. We used so far a sampling rate
of 2.5 frames per second, which corresponds to one frame
every 0.4 seconds, for training and inference. In Tab. 7, we
report the results when we use a lower sampling rate dur-
ing inference while keeping the number of frames the same.
When the sampling rate is higher, we simulate the case when
the objects move faster than observed during training. Note
that the numbers for different sampling rates are not directly
comparable since the sampled trajectories also differ for the
different sampling rates, but they indicate how robust the
methods are. The results show that our and the other graph-



(a) Social-STGCNN [24]

(b) STGAT [14]

(c) STC-Net

Figure 5: Qualitative results. The red line is the observed trajectory, the blue line is the ground-truth of the future trajectory

and the dashed line is the prediction.

based approaches [24, 14] are very robust and can handle
objects that are 5 times faster than the ones in the training
set. Only for [25], we observe a drastic increase of the error
for 2.0 seconds.

Cross-scene Robustness. In Tab. 8, we evaluate how
robust the methods are across different scenes. This means
that we train the approaches on the Stanford Drone dataset
[28] and evaluate them on the ETH [26] and UCY [16]
datasets. We use the Stanford Drone dataset for training
since it is the largest dataset and contains not only pedestri-
ans but also other objects. Compared with Tab. 4, the aver-
age error of Social-STGCNN [24] and STGAT [14] is only
slightly higher. While the error increases for most scenes,
it even decreases for the HOTEL scene. This is reasonable
since the Stanford Drone dataset provides a larger dataset
and the trajectories of the HOTEL scenes are relatively sim-
ple. This shows that these methods are quite robust to scene
changes. Our approach, however, performs even better and
the error even slightly decreases in average. This shows that
our approach models the motion very well, is very robust to
changes of the sampling rate, and generalizes to new scenes.

Qualitative Analysis. We show some qualitative results
in Fig. 5 and compare our approach to the graph-based ap-
proaches Social-STGCNN [24] and STGAT [14]. From the
images, we can see that the predictions of Social-STGCNN
are not smooth and some trajectories even cross which is
implausible. The predictions of STGAT are nearly linear,
which results in larger errors when the direction changes. In
contrast, our method forecasts more plausible trajectories.

5. Conclusion

In this paper, we proposed a highly efficient forecasting
model that generates spatially and temporally consistent tra-
jectories. The network utilizes graph and dilated tempo-
ral convolutions to model the spatial and temporal relations
of each trajectory. Furthermore, a feature-wise convolution
is utilized to forecast trajectories in one pass, and the re-
constructed observed and forecast trajectories are jointly re-
fined. By using a neural network architecture search, the
network is further optimized. The proposed approach out-
performs most other methods in terms of accuracy, is very
compact with 0.7K parameters, and achieves a very low la-
tency of 1.3ms. In our evaluation, we also demonstrate that
the approach is robust to changes in the sampling rate and
to scene variations. This makes the proposed approach per-
fectly suitable for realistic applications.
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