
Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecasting

Shijie Li, Yanying Zhou, Jinhui Yi, and Juergen Gall
University of Bonn

Abstract

Trajectory forecasting is a crucial step for autonomous
vehicles and mobile robots in order to navigate and in-
teract safely. In order to handle the spatial interactions
between objects, graph-based approaches have been pro-
posed. These methods, however, model motion on a frame-
to-frame basis and do not provide a strong temporal model.
To overcome this limitation, we propose a compact model
called Spatial-Temporal Consistency Network (STC-Net). In
STC-Net, dilated temporal convolutions are introduced to
model long-range dependencies along each trajectory for
better temporal modeling while graph convolutions are em-
ployed to model the spatial interaction among different tra-
jectories. Furthermore, we propose a feature-wise convolu-
tion to generate the predicted trajectories in one pass and re-
fine the forecast trajectories together with the reconstructed
observed trajectories. We demonstrate that STC-Net gen-
erates spatially and temporally consistent trajectories and
outperforms other graph-based methods. Since STC-Net re-
quires only 0.7k parameters and forecasts the future with a
latency of only 1.3ms, it advances the state-of-the-art and
satisfies the requirements for realistic applications.

1. Introduction
Intelligent agents like autonomous vehicles and mobile

robots navigate and interact in spaces that are shared with
humans. The safety of the humans is therefore of the high-
est priority. To this end, agents are required to understand
and forecast the trajectories of surrounding pedestrians or
vehicles such that they can make the right decisions and for
instance navigate safely and smoothly through a crowd. Tra-
jectory forecasting, however, is challenging due to the com-
plex behavior and interactions of humans in crowds. Fur-
thermore, the available resources will always be a limiting
factor as the agents are equipped with energy-efficient hard-
ware. Hence, there is a need for compact forecasting mod-
els with a very low latency. In practice, a low latency is
required for most applications since there is otherwise not
enough time to adjust the motion and any millisecond can
save lives.

(a) Social-STGCNN [24] (b) Ours
Figure 1: State-of-the-art graph-based approaches like [24]
do not model the temporal motion of the trajectories well,
which results in shaky and unrealistic trajectories (dashed
yellow) as shown in (a). In this figure, red denotes the ob-
served trajectory and blue the ground-truth future trajectory.
Our approach addresses this issue and forecasts spatially and
temporally consistent trajectories (b).

Over the last years, several approaches have been pro-
posed for trajectory forecasting. RNN-based methods [1,
20, 36] utilize a recurrent model to model the trajectory of
each pedestrian in the scene and their interactions are taken
into account by a pooling operation. GAN-based meth-
ods [13, 17, 29] enable RNN-based methods to produce
multiple socially plausible trajectories. Graph-based meth-
ods [15, 34, 24] model spatial relations as a graph and uti-
lize graph convolutions. These methods, however, have in
common that they use recurrent neural networks to generate
the future trajectories, which results in a relatively high la-
tency. To address this issue, Social-STGCNN [24] proposed
a CNN for time-extrapolation. As a result, Social-STGCNN
achieves a very low latency of 2ms. This, however, comes at
the cost that the forecast trajectories are noisy and not tem-
porally consistent as shown in Fig. 1a.

In this work, we therefore address this issue and present
an approach that generates spatially and temporally consis-
tent trajectories with a latency of less than 2ms. To achieve
this, the proposed Spatial-Temporal Consistency Network
(STC-Net), which is shown in Fig. 2, utilizes graph convolu-
tions for spatial modeling and dilated temporal convolutions
for temporal modeling. Our network generates trajectories
that are consistent over the past and the future. This con-
sistency is implicitly enforced by reconstructing the past,
jointly refining the reconstructed past and forecast future,
and computing the loss over the entire trajectory. In order

GC

DTCs

GC

DTCs

Obs

Pred

FWC

Figure 2: The proposed spatial-temporal consistency network takes observed trajectories (solid curves) of 𝑁 objects as input
and forecasts the future trajectories (dashed curves). It combines graph convolutions (GC) for modeling interactions of trajec-
tories in close proximity and dilated temporal convolutions (DTCs) for capturing temporal relations over the entire trajectories.
The feature-wise convolution (FWC) forecasts the features in one pass and the final refinement ensures the consistency of the
reconstructed and forecast part of a trajectory.

to achieve a very low latency, we do not use any recurrent
layers, but propose feature-wise convolutions that generate
the future trajectories with variable length in one pass. The
proposed network design yields very compact networks with
only 0.7k parameters and 1.3ms latency.

We thoroughly evaluate the approach on three datasets
with six different scenes and analyze its generalization abil-
ity by performing a cross-dataset experiment and evaluating
the approach for different temporal sampling rates. The pro-
posed approach outperforms other graph-based methods in
terms of accuracy, model size, and latency. It is also im-
portant to note that most approaches cannot keep up with
the frame-rate, i.e., the forecasting cannot be performed un-
til the next frame is captured. This means that these meth-
ods are not fast enough for real-world applications. Even
for a very slow frame-rate of 2.5 frames per second, only
[13, 25, 24] are able to process the data fast enough. Com-
pared to these methods, our approach is not only faster, but
it is also by far more accurate.

2. Related Work
We briefly discuss the recent progress in trajectory fore-

casting and network architecture search. RNN-based meth-
ods model the motion of each pedestrian by a recurrent ar-
chitecture and the context of nearby trajectories by pooling
operations. Social-LSTM [1] is one of the earliest methods
following this approach and several methods explore differ-
ent strategies to improve the performance. PIF [20] takes
human behavioral information into consideration and intro-
duces rich visual features. SR-LSTM [36] proposes a social-
aware information selection mechanism to select useful in-
formation from neighboring pedestrians. FvTraj [4] focuses
on first-person view based trajectory forecasting with multi-
head attention mechanisms. Recently, [23] proposed a vari-
ational auto-encoder to predict first the end-points of the tra-
jectories and then the corresponding trajectories in a second
step. While it achieves impressive results, it is too expen-
sive for most applications. In contrast, our approach requires

3,000 times less parameters and is 467 times faster.
GAN-based methods take into account that many future

trajectories might be plausible. To handle this problem,
Social-LSTM [1] is converted into a generative model in
Social-GAN [13]. Based on it, SoPhie [29] combines a so-
cial attention mechanism with a physical attention mecha-
nism. CGNS [17] replaces the LSTMs in SoPhie [29] by
GRUs. Similar to [23], Goal-GAN [9] uses a two-stage pro-
cess for trajectory forecasting. Since these works also rely
on recurrent architectures, they are as inefficient as RNN-
based methods.

Graph-based methods use graph convolutions instead of
simple pooling operations for modeling the spatial interac-
tions. Social-BiGAT [15] is a graph-based generative model
that uses a graph attention network to encode social interac-
tions between pedestrians and a recurrent encoder-decoder
architecture to predict future trajectories. Similar to Social-
BiGAT [15], STGAT [14] captures spatial interactions by
a graph attention mechanism at each time-step and uses
LSTMs for forecasting. RSBG [30] proposes a social behav-
ior graph which encodes the social representations. DAG-
Net [25] uses a double attentive graph neural network for
trajectory forecasting. These methods, however, remain in-
efficient since they still use a recurrent architecture. Social-
STGCNN [24] omits the RNNs and uses a CNN for time
extrapolation. While this results in a very low latency, it
comes at the cost of a very weak temporal model.

Many approaches have been proposed for neural archi-
tecture search using, e.g., reinforcement learning [37, 38] or
evolutionary search [21]. The large search space, however,
makes these approaches extremely expensive and resource
demanding. Hence, a well-designed search space is of vital
importance. Aiming at this, some new methods have been
proposed, including differentiable architecture search [22],
single-path one-shot sampling [8, 12], path-level binariza-
tion [6], and weight sharing [5, 33]. Recently, the design
of efficient models with neural architecture search has been
investigated for 2D image tasks [31, 32].

3. Spatial-Temporal Consistency Network
The goal of trajectory forecasting is predicting the up-

coming trajectories given past observed trajectories. We de-
note the observed trajectory of each object 𝑛, which are com-
monly pedestrians but can also be other objects like vehicles,
by 𝑛

𝑜 = {𝐩𝑛𝑡 = (𝑥𝑛𝑡 , 𝑦
𝑛
𝑡) | 𝑡 ∈ {1, ..., 𝑇𝑜}} and the future tra-

jectory by 𝑛
𝑓 = {𝐩𝑛𝑡 = (𝑥𝑛𝑡 , 𝑦

𝑛
𝑡) | 𝑡 ∈ {𝑇𝑜 + 1, ..., 𝑇𝑜 + 𝑇𝑓}},

where 𝐩𝑛𝑡 is the location of the object 𝑛 at time 𝑡.
For forecasting, we use a Gaussian distribution

𝐩𝑛𝑡
(�̂�𝑛

𝑡 , Σ̂
𝑛
𝑡), i.e., we estimate for each 𝐩𝑛𝑡 ∈ 𝑛

𝑓 the mean
�̂�𝑛
𝑡 and the covariance matrix Σ̂𝑛

𝑡 . In order to vectorize the
covariance matrix, we use

Σ̂ =
(

�̂�21 �̂��̂�1�̂�2
�̂��̂�1�̂�2 �̂�22

)

. (1)

The covariance matrix is then defined by the three-
dimensional vector (�̂�1, �̂�2, �̂�).

For training, we minimize the negative log-likelihood,
i.e., given for each trajectory the ground-truth position 𝐩𝑛𝑡 ,
we minimize

𝐿𝑓 = −
𝑁
∑

𝑛=1

𝑇𝑜+𝑇𝑓
∑

𝑡=𝑇𝑜+1
log

(

𝐩𝑛𝑡
(�̂�𝑛

𝑡 , Σ̂
𝑛
𝑡)
)

, (2)

where 𝑁 is the number of present objects.
In contrast to previous works, our proposed network not

only estimates the future trajectory 𝑛
𝑓 , but also reconstructs

the observed trajectory 𝑛
𝑜 and refines them both as a single

trajectory as it is illustrated in Fig. 2. This helps to learn a
better representation that is spatially and temporally consis-
tent as we will show in the experiments. For the observed
trajectory 𝑛

𝑜 , we use the squared error as reconstruction
loss:

𝐿𝑜 =
𝑁
∑

𝑛=1

𝑇𝑜
∑

𝑡=1

‖

‖

�̂�𝑛𝑡 − 𝐩𝑛𝑡 ‖‖
2 , (3)

where �̂�𝑛𝑡 is the reconstructed position for object 𝑛 at frame
𝑡 and 𝐩𝑛𝑡 is the observed position.

For training the network, we sum the two loss functions
Equ. (2) and Equ. (3) with equal weights, i.e.,

𝐿 = 𝐿𝑓 +𝑤𝐿𝑜. (4)

where 𝑤 = 1. For the ablation study, however, we also in-
vestigate different values of 𝑤.

3.1. Spatial Graph Representation

As in other graph-based approaches [15, 34, 24], we use
a graph structure to model the spatial relations between the
objects. Since we focus on the temporal modeling, we use
for a fair comparison the graph representation that has been
proposed in [24]. At each timestamp 𝑡, a spatial graph 𝐺𝑡 =

d = 1

d = 2

d = 4

Figure 3: We model the observed trajectories (green) and
forecast trajectories (blue) together by using dilated tem-
poral convolutions that are stacked with increasing dilation
rates. This provides a very strong temporal model for tra-
jectories since the motion is modeled over a large temporal
receptive field.
(𝑉𝑡, 𝐸𝑡) is constructed where 𝑉𝑡 = {𝑣𝑛𝑡 | 𝑛 ∈ {1, ..., 𝑁}}
are the vertices corresponding to the 𝑁 objects and 𝐸𝑡 =
{𝑒𝑛𝑚𝑡 | 𝑛, 𝑚 ∈ {1, ..., 𝑁}} denote the edges that encode the
spatial relationship between object 𝑛 and 𝑚. For each edge,
the affinity 𝑎𝑛𝑚𝑡 is computed by

𝑎𝑛𝑚𝑡 =
{

‖

‖

𝐩𝑛𝑡 − 𝐩𝑚𝑡 ‖‖
−1 , if ‖

‖

𝐩𝑛𝑡 − 𝐩𝑚𝑡 ‖‖ > 0
0 , otherwise.

(5)

This means that the objects influence each other when they
are close. Suppose 𝑉 (𝑙) is the stack of 𝑉 (𝑙)

𝑡 , that is the ver-
tices at time step 𝑡 and network layer 𝑙. The features of the
vertices 𝑓 (𝑉 (𝑙)) are updated in a graph convolution layer as
follows:

𝑓
(

𝑉 (𝑙+1)) = 𝑅𝑒𝐿𝑈
(

�̃�− 1
2 �̃��̃�− 1

2 𝑓
(

𝑉 (𝑙))𝑊 (𝑙)
)

(6)

where 𝑊 (𝑙) are the learnable convolution weights, �̃� is the
stack of �̃�𝑡 = 𝐴𝑡 + 𝐼 , and the diagonal matrix �̃� is the stack
of 𝑑𝑛𝑛𝑡 =

∑

𝑚 �̃�𝑛𝑚𝑡 .
While Equ. (6) describes the layer for a single frame 𝑡,

some works simply stack the features and matrices for mul-
tiple frames in order to extend the graph to the temporal
domain. This, however, results in a poor temporal model
that generates noisy trajectories which are not very consis-
tent over time as we show in the experiments. In this work,
we therefore propose to use dilated temporal and feature-
wise convolutions for forecasting trajectories and combine
them with graph convolutional layers. In the experiments,
we will show that this results in forecast trajectories that are
spatially and temporally more consistent.

3.2. Architecture

In order to forecast spatially and temporally consistent
trajectories, we propose to combine different convolutions
as shown in Fig. 4. While graph convolutions model the re-
lations of objects that are close, they are not the best choice
for temporal modeling as discussed in Section 3.1. We there-
fore propose graph convolutions for spatial modeling and

To

Cin

N

To

Cout

N

(a) Vanilla 1 × 1 Convolution
To

Cin

N

Tf

Cin

N

(b) Feature-wise Convolution
To

N

To

N

Cin
Cout

(c) Graph Convolution
To

N

To

Cin Cout

N

(d) Dilated Temporal Convolution

Figure 4: The four different convolutions that are used in STC-Net. For the illustrations, the input tensor is (𝐶𝑖𝑛, 𝑇𝑜, 𝑁) where
𝑇𝑜 are the observed frames, 𝑁 denotes the number of objects, and 𝐶𝑖𝑛 is the dimensionality of the input features. (a) Vanilla
1 × 1 convolutions map the feature to another space with dimensionality 𝐶𝑜𝑢𝑡. The output tensor is thus (𝐶𝑜𝑢𝑡, 𝑇𝑜, 𝑁). (b) In
contrast, the proposed feature-wise convolutions keep the feature dimensionality but adjust the temporal dimension. Since the
predicted length 𝑇𝑓 is variable, it is suitable for forecasting and we use them to forecast the future features. The output tensor
is (𝐶𝑖𝑛, 𝑇𝑓 , 𝑁). (c) Graph convolutions aggregate the features at a frame based on the spatial relations of the objects and they
are used to model interactions between objects. Depending on the number of kernels, the feature dimensionality can change
and the output tensor is (𝐶𝑜𝑢𝑡, 𝑇𝑜, 𝑁). (d) Temporal convolutions operate over time and aggregate for each trajectory temporal
information. Due to dilated convolution kernels, the temporal convolutions can take the entire trajectory into account. While
graph convolutions model spatial relations, the temporal convolutions model temporal relations.

dilated temporal convolutions for temporal modeling. In
contrast to graph convolutions that only consider neighbors
based on the affinity matrix𝐴, dilated temporal convolutions
with gradual increasing dilation rates capture long range de-
pendencies as it is illustrated in Fig. 3.

For our network, which is shown in Fig. 2, we first aggre-
gate spatial information among different observed trajecto-
ries at each frame using graph convolutions. We then aggre-
gate temporal information using dilated temporal convolu-
tions [18]. We use 3 dilated temporal convolutions with ker-
nel size 3 and dilation rates 2𝑙−1, where 𝑙 is the layer number,
and apply it to each trajectory. Finally, we use a graph con-
volution to aggregate again the spatial information. In this
way, the network is able to consider the interaction of trajec-
tories that are in close proximity as well as the full temporal
information that is available for each trajectory.

After the interaction of both spatial and temporal infor-
mation, the initial trajectory prediction is generated by a
feature-wise convolution, which is illustrated in Fig. 4. It
is similar to a 1 × 1 convolution, but the main difference is
the information aggregation dimension. At this stage of the
network, the size of the feature tensor is (𝐶𝑖𝑛, 𝑇𝑜, 𝑁) where
𝐶𝑖𝑛 is the feature dimension, 𝑇𝑜 is the length of the observed
trajectories, and 𝑁 is the number of objects in the current
scene. While a vanilla 1 × 1 convolution changes the fea-
ture dimensionality and aggregates the information across
the features, a feature-wise convolution aggregates for each
channel in the feature vector all observed information along
the temporal dimension and can be used to predict the future
for each channel with variable length. After the feature-wise
convolution, the size of the feature tensor is (𝐶𝑖𝑛, 𝑇𝑓 , 𝑁)
where 𝑇𝑓 is the length of the future trajectories. In contrast
to recurrent or auto-regressive approaches, the feature-wise
convolution predicts the future in one pass.

Different from previous works that only predict the future
trajectories, we also reconstruct the observed trajectories to
ensure that the observed and forecast part of a trajectory are
consistent. As shown in Fig. 2, we refine both parts as a
single consistent trajectory. Specially, the features of the ob-
served and forecast trajectories are concatenated and refined
by dilated temporal convolutions as before. The only differ-
ence is that we use 5 layers since the concatenated trajectory
is longer than the observed one. For training, we use the loss
Equ. (4).

3.3. Network Architecture Search

The architecture shown in Fig. 2 is one instance of
spatial-temporal consistency networks. Depending on the
number of layers, we obtain different instances. While we
evaluate the impact of each component of the network as
part of the ablation studies, we additionally perform a net-
work architecture search to analyze which instance performs
best. For the search algorithm, we adopt ENAS [27] which
is a one-shot search algorithm. As search space, we allow
different types of convolutions (temporal or graph convo-
lution), temporal convolutions with different dilation rates,
and a varying depth of the network. ENAS models all com-
binations as large directed acyclic graph and any valid net-
work is a subgraph of it. A controller is then trained with

𝑜 NLL NLL L2 L2
𝑓 NLL L2 NLL L2

ADE / FDE 0.63 / 1.09 1.00 / 1.95 0.51 / 0.85 0.93 / 1.79

Table 1: Impact of different loss terms for the reconstructed
(𝑜) and forecast (𝑓) trajectory. While NLL denotes the
negative log-likelihood in Equ. (2), L2 denotes the L2 loss
in Equ. (3).

𝑤 0.5 0.7 1.0 1.3 w/o obs w/o refine
ADE / FDE 0.55 / 0.91 0.54 / 0.87 0.51 / 0.85 0.54 / 0.91 0.58 / 0.97 0.60 / 1.04

Table 2: Impact of 𝑤 in Equ. (4). While ‘w/o obs’ denotes a setting where the reconstructed observed trajectories are not
concatenated with the forecast trajectories, ‘w/o refine’ uses the forecast trajectories directly after the feature-wise convolution
without the last layer of dilated temporal convolutions.

w/o GC w/o DTC w/o FWC Ours
ADE 0.64 0.59 0.55 0.51
FDE 1.02 0.99 0.91 0.85

Latency 0.7ms 1.4ms 2.3ms 1.5ms

Table 3: Impact of the different types of convolutions.

policy gradient to select a subgraph that maximizes the ex-
pected reward on the validation set. In order to accelerate the
search process, ENAS applies a parameter sharing strategy
between child models.

4. Experiment
4.1. Datasets

We evaluate our method on three common trajectory
forecasting datasets which are described below. As in pre-
vious works, 8 frames are used as observation and the fol-
lowing 12 frames need to be forecast. All trajectories are
provided in 2D coordinates.

The ETH [26] and UCY [16] datasets aim at pedestrian
trajectory forecasting. ETH contains 2 top view scenes with
750 trajectories and UCY contains 3 scenes close to the top
view with 786 trajectories. The data processing is done as
[13]. The sampling rate is 2.5 frames per second (one frame
per 0.4s), which means that the model observes 3.2 seconds
and predicts the trajectories for the next 4.8 seconds.

The Stanford Drone Dataset [28] includes a series of
videos captured by a hovering drone from 8 different college
campuses with more than 10,000 trajectories. The dataset is
much larger than ETH and UCY and includes other objects
like bikes or cars apart from pedestrians. The frame rate is
2.5 frames per second, which is the same as for ETH and
UCY. We evaluate our approach as setting [25] for two pro-
tocols, namely 2D world and 2D image coordinates.

4.2. Metrics

There are two commonly used metrics to evaluate the
performance of trajectory forecasting methods: average dis-
placement error (ADE) [26] and final displacement error
(FDE) [1]. The average displacement error is defined as:

𝐴𝐷𝐸 =

∑𝑁
𝑛=1

∑𝑇𝑜+𝑇𝑓
𝑡=𝑇𝑜+1

‖

‖

‖

�̂�𝐧𝐭 − 𝐩𝐧𝐭
‖

‖

‖2
𝑁 × 𝑇𝑓

, (7)

where �̂�𝐧𝐭 is the estimated position of object 𝑛 at frame 𝑡 and
𝐩𝐧𝐭 is the ground-truth position. It measures the average pre-
diction performance along the whole trajectory. The final

displacement error (FDE) is defined as:

𝐹𝐷𝐸 =

∑𝑁
𝑛=1

‖

‖

‖

�̂�𝐧𝐓𝐨+𝐓𝐟
− 𝐩𝐧𝐓𝐨+𝐓𝐟

‖

‖

‖2
𝑁

. (8)

In contrast to ADE, it only measures the prediction accu-
racy at the end point. Because the prediction of our method
is a distribution, we follow the evaluation protocol used in
Social-LSTM [1] to compare the predicted distribution with
the ground truth value. Specially, we sample 20 predictions
from the predicted distribution and take the closest sample
to the ground truth to compute ADE and FDE.

4.3. Ablation Study

We conduct the ablation study on the Stanford Drone
Dataset [28] since it is the largest dataset and has the high-
est diversity. We first evaluate the proposed loss function
Equ. (4), which uses the L2 loss for reconstructed trajectory
in Equ. (3) and negative log-likelihood (NLL) for the fore-
cast trajectory in Equ. (2). The results are shown in Tab. 1.

From the table we can see that applying the L2 loss on
the reconstructed observed trajectory and the negative log-
likelihood on the forecast trajectory achieves the lowest error
(col 3). This is reasonable because the observed trajectory
is determined, which means that there is no uncertainty in
the ground-truth. In contrast, the future trajectory can be
uncertain since the future is not necessarily determined and
several trajectories might be plausible. If we use the L2 loss
for the forecast trajectory (col 2 and 4), the error drastically
increases since the L2 loss does not handle the uncertainty
of the future. On the other hand, if we use only the nega-
tive log-likelihood (col 1), the error is higher than for the
proposed setting (col 3). This is expected since the L2 er-
ror enforces a more accurate reconstruction of the observed
trajectory, which is beneficial for the forecasting task.

As discussed in Sec. 3, we do not weight the two loss
terms in Equ. (4). Nevertheless, we evaluate in Tab. 2 the
impact of an additional weighting parameter 𝑤. We can see
that the error first decreases as 𝑤 increases to 1.0 and then
increases again when 𝑤 is larger than 1.0. This shows that
there is no need to weight the two loss functions. In the sec-
ond to last column, we show why it is important to take the
observed trajectory for the final estimate into account. If we
do not concatenate the reconstructed observed and the fore-
cast trajectories (w/o obs) but refine only the forecast trajec-
tory, the error increases. If we do not refine the trajectories at
all (w/o refine), the error even increases further. This shows
the importance of the additional refinement layers.

ETH HOTEL UNIV ZARA1 ZARA2 AVG
S-LSTM [1] 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

PIF [20] 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00
SR-LSTM [36] 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94
DS-LSTM [7] 0.66 / 1.21 0.27 / 0.46 0.50 / 1.07 0.33 / 0.68 0.28 / 0.60 0.41 / 0.80

FvTraj [4] 0.56 / 1.14 0.28 / 0.55 0.52 / 1.12 0.37 / 0.78 0.32 / 0.68 0.41 / 0.85
S-GAN [13] 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18
SoPhie [29] 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15
CGNS [17] 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97

Social-Ways [2] 0.39 / 0.64 0.39 / 0.66 0.55 / 1.31 0.44 / 0.64 0.51 / 0.92 0.46 / 0.83
Goal-GAN [9] 0.59 / 1.18 0.19 / 0.35 0.60 / 1.19 0.43 / 0.87 0.32 / 0.65 0.43 / 0.85

TPNet [11] 0.84 / 1.73 0.24 / 0.46 0.42 / 0.94 0.33 / 0.75 0.26 / 0.60 0.42 / 0.90
PECNet [23] 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48
STSGN [35] 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

Social-BiGAT [15] 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00
RSBG [30] 0.80 / 1.53 0.33 / 0.64 0.59 / 1.25 0.40 / 0.86 0.30 / 0.65 0.48 / 0.99

Social-STGCNN [24] 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
STGAT [14] 0.65 / 1.12 0.35 / 0.66 0.52 / 1.10 0.34 / 0.69 0.29 / 0.60 0.43 / 0.83

STC-Net 0.66 / 1.28 0.33 / 0.58 0.41 / 0.78 0.29 / 0.51 0.27 / 0.45 0.39 / 0.72
STC-Net-NAS 0.64 / 1.18 0.33 / 0.54 0.39 / 0.74 0.29 / 0.49 0.26 / 0.45 0.38 / 0.68

Table 4: Results on the ETH [26] and UCY [16] datasets.

ADE FDE
Social LSTM+ [1] 0.73 0.96

Social-STGCNN+ [24] 0.71 1.14
Social-Ways [2] 0.62 1.16

STGAT [14] 0.58 1.11
STGAT+ [14] 0.63 1.19
DAG-Net [25] 0.54 1.05
DAG-Net∗ [25] 0.53 1.02

STC-Net 0.51 0.85
STC-Net-NAS 0.49 0.82

Table 5: Results on the Stanford Drone dataset (world coor-
dinates) [28]. + means that we train the model with the code
offered by the authors. ∗ denotes that we use the pre-tained
model offered by the authors.

ADE FDE
SoPhie [29] 16.27 29.38

Social GAN [13] 27.23 41.44
CF-VAE [3] 12.6 22.3
P2TIRL [10] 12.58 22.07

SimAug+ [19] 10.27 19.71
PECNet [23] 9.96 15.88

STC-Net 11.96 20.12
STC-Net-NAS 11.88 20.08

Table 6: Results on the Stanford Drone dataset (image coor-
dinates) [28]. + the approach uses additional training data.

In Tab. 3, we analyze the impact of the used convolu-
tions on the latency as well as accuracy. Since we cannot
simply remove the convolutions, we replaced them by other
operations. We used pooling instead of graph convolutions
(w/o GC), temporal convolutions instead of dilated tempo-

ral convolutions (w/o DTC), and the TXP-CNN of Social-
STGCNN [24] instead of the feature-wise convolution (w/o
FWC). The results show that both graph convolutions and di-
lated temporal convolutions are required in order to achieve
accurate predictions. It also shows that the graph convolu-
tions take more than 50% of the processing time. Further-
more, the proposed feature-wise convolution is much more
efficient and effective compared to TXP-CNN.

4.4. Comparison with state-of-the-art methods

Accuracy. We compare our method with other state-of-
the-art methods on the ETH [26], UCY [16], and Stanford
Drone [28] datasets. The results for the ETH [26] and UCY
[16] datasets are shown in Tab. 4. When we compare our
approach to other graph-based methods [35, 15, 30, 24, 14],
we observe that our approach achieves the lowest average
(ADE) and final displacement error (FDE) among graph-
based methods. When we compare our approach to the
state-of-the-art, we observe that only PECNet [23] achieves
a lower error. PECNet uses a two step approach that first
predicts the end-points and then the trajectories based on the
predicted end-points. While predicting end-points is com-
plementary to our approach, the high accuracy comes at high
computational cost as shown in Tab. 9. PECNet requires
3,000 times more parameters and is 467 times slower. In
fact, a latency of over 600ms is too high for applications.

As discussed in Sec. 3.3, we also generated an instance
of the spatial-temporal consistency networks by network ar-
chitecture search. It needs to be noted that we used only the
Stanford Drone Dataset [28] for the network optimization
since it is the largest dataset. If we use this instance, which

0.4s 0.8s 1.2s 1.6s 2.0s AVG
Social-STGCNN [24] 0.71 / 1.15 0.73 / 1.14 0.69 / 1.10 0.61 / 0.92 0.67 / 1.01 0.68 / 1.06

DAG-Net [25] 0.53 / 1.02 0.53 / 1.01 0.58 / 1.14 0.56 / 1.11 0.82 / 1.64 0.60 / 1.18
STGAT [14] 0.63 / 1.19 0.64 / 1.17 0.61 / 1.14 0.51 / 0.92 0.57 / 1.05 0.59 / 1.09

STC-Net 0.51 / 0.85 0.50 / 0.80 0.50 / 0.83 0.43 / 0.69 0.50 / 0.80 0.49 / 0.79
STC-Net-NAS 0.49 / 0.82 0.49 / 0.80 0.48 / 0.82 0.41 / 0.67 0.47 / 0.78 0.47 / 0.78

Table 7: Temporal robustness. The errors (ADE / FDE) for different sampling rates on the Stanford Drone dataset [28].

ETH HOTEL UNIV ZARA1 ZARA2 AVG
Social-STGCNN [24] 0.64 / 0.88 0.44 / 0.67 0.50 / 0.79 0.53 / 0.71 0.48 / 0.70 0.52 / 0.75

STGAT [14] 0.71 / 1.31 0.33 / 0.61 0.61 / 1.26 0.43 / 0.83 0.38 / 0.75 0.49 / 0.95
DAG-Net [25] 0.71 / 1.23 0.22 / 0.41 0.70 / 1.47 0.43 / 0.88 0.29 / 0.60 0.47 / 0.92

STC-Net 0.61 / 1.10 0.20 / 0.27 0.43 / 0.79 0.35 / 0.59 0.28 / 0.47 0.37 / 0.64
STC-Net-NAS 0.59 / 1.12 0.20 / 0.25 0.40 / 0.75 0.33 / 0.55 0.27 / 0.46 0.36 / 0.63

Table 8: Cross-scene robustness. For this experiment, the approaches are trained on the Stanford Drone dataset [28] and
evaluated on the ETH [26] and UCY [16] datasets.

Parameters Inference time
PECNet [23] 2.10M (3000x) 0.6070s (467x)

Social LSTM [1] 264K (377.1x) 1.1800s (907.7x)
SR-LSTM [36] 64.9K (92.7x) 1.1789s (906.8)

STGAT [14] 44.6K (63.7x) 1.3497s (1038.2x)
DAG-Net [25] 2.35M (3357.1x) 0.0463s (35.6x)

PIF [20] 360.3K (514.7x) 0.1145s (88.1x)
Social GAN [13] 46.3K (66.1x) 0.0968s (74.5x)

Social-STGCNN [24] 7.6K (11x) 0.0020s (1.5x)
STC-Net 0.8K (1.1x) 0.0015s (1.2x)

STC-Net-NAS 0.7K 0.0013s
Table 9: Model size and efficiency. Only [25, 20, 13, 24]
achieve a latency that is lower than the frame-rate.

𝐿 CH ADE FED Params Inf time
3 1× 11.96 20.12 0.8K 0.0015s
6 1× 11.61 18.79 1.0K 0.0017s
3 2× 11.65 19.79 2.6K 0.0015s
3 4× 11.49 19.04 10.0K 0.0015s
6 4× 11.34 18.65 13.6K 0.0017s

Table 10: Changing the size of the model. From top to bot-
tom, we show the results of the original model, a deeper
model, a wider model, and finally a combination of them. 𝐿
denotes number of layers and CH means increase of num-
ber of channels, i.e., K× means increasing the number of
channels by K times compared to the original model.

is denoted by STC-Net-NAS, for the other two datasets, we
observe that the error is slightly reduced.

The results for the Stanford Drone dataset [28] are re-
ported in Tab. 5 and Tab. 6, respectively. The results confirm
the very good results from ETH and UCY. Our approach
achieves a much lower error compared to other graph-based
approaches. Only the recent approaches [19, 23] achieve
a lower accuracy. While PECNet [23] uses a much bigger
network and is much slower than our approach as discussed
before, the numbers of [19] are not comparable since the ap-
proach uses additional training data.

Efficiency. Since methods for forecasting trajectories
need to be compact and to have a very low inference time, we
compare the size and inference time of STC-Net with other
state-of-the-art methods in Tab. 9. For measuring the infer-
ence time, we used a single 1080Ti GPU. In contrast to pre-
vious works, our approach is very compact and comprises
less than 1K parameters. From the state-of-the-art methods,
only Social-STGCNN [24] achieves a very low inference
time. STC-Net, however, not only achieves a much lower
forecasting error than Social-STGCNN, it is even more com-
pact and has a lower latency. It is interesting to note that the
neural network search finds an instance that not only makes
more accurate predictions, but it also reduces the model size
and inference time. STC-Net-NAS runs with more than 750
frames per seconds on a low-budget GPU, yielding a latency
of less than 2ms.

Furthermore, we evaluated on the Stanford Drone dataset
(image coordinates) the impact of the model size by in-
creasing the number of dilated convolutional layers before
the feature-wise convolution and/or the number of channels.
The results are shown in Tab. 10. The results show that
the error can be further reduced by adding more layers or
increasing the number of channels per layer at the cost of
increasing the number of parameters or the inference time.
Note that for all configurations the approach is still faster
than previous works.

Temporal Robustness. We used so far a sampling rate
of 2.5 frames per second, which corresponds to one frame
every 0.4 seconds, for training and inference. In Tab. 7, we
report the results when we use a lower sampling rate dur-
ing inference while keeping the number of frames the same.
When the sampling rate is higher, we simulate the case when
the objects move faster than observed during training. Note
that the numbers for different sampling rates are not directly
comparable since the sampled trajectories also differ for the
different sampling rates, but they indicate how robust the
methods are. The results show that our and the other graph-

(a) Social-STGCNN [24] (b) STGAT [14] (c) STC-Net

Figure 5: Qualitative results. The red line is the observed trajectory, the blue line is the ground-truth of the future trajectory
and the yellow dashed line is the prediction.

based approaches [24, 14] are very robust and can handle
objects that are 5 times faster than the ones in the training
set. Only for [25], we observe a drastic increase of the error
for 2.0 seconds.

Cross-scene Robustness. In Tab. 8, we evaluate how
robust the methods are across different scenes. This means
that we train the approaches on the Stanford Drone dataset
[28] and evaluate them on the ETH [26] and UCY [16]
datasets. We use the Stanford Drone dataset for training
since it is the largest dataset and contains not only pedestri-
ans but also other objects. Compared with Tab. 4, the aver-
age error of Social-STGCNN [24] and STGAT [14] is only
slightly higher. While the error increases for most scenes,
it even decreases for the HOTEL scene. This is reasonable
since the Stanford Drone dataset provides a larger dataset
and the trajectories of the HOTEL scenes are relatively sim-
ple. This shows that these methods are quite robust to scene
changes. Our approach, however, performs even better and
the error even slightly decreases in average. This shows that
our approach models the motion very well, is very robust to
changes of the sampling rate, and generalizes to new scenes.

Qualitative Analysis. We show some qualitative results
in Fig. 5 and compare our approach to the graph-based ap-
proaches Social-STGCNN [24] and STGAT [14]. From the
images, we can see that the predictions of Social-STGCNN
are not smooth and some trajectories even cross which is
implausible. The predictions of STGAT are nearly linear,
which results in larger errors when the direction changes. In
contrast, our method forecasts more plausible trajectories.

5. Conclusion
In this paper, we proposed a highly efficient forecasting

model that generates spatially and temporally consistent tra-
jectories. The network utilizes graph and dilated tempo-
ral convolutions to model the spatial and temporal relations
of each trajectory. Furthermore, a feature-wise convolution
is utilized to forecast trajectories in one pass, and the re-
constructed observed and forecast trajectories are jointly re-
fined. By using a neural network architecture search, the
network is further optimized. The proposed approach out-
performs most other methods in terms of accuracy, is very
compact with 0.7K parameters, and achieves a very low la-
tency of 1.3ms. In our evaluation, we also demonstrate that
the approach is robust to changes in the sampling rate and
to scene variations. This makes the proposed approach per-
fectly suitable for realistic applications.

Acknowledgement The work has been funded by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) - GA 1927/5-2 (FOR 2535 Anticipating
Human Behavior), under Germany’s Excellence Strategy -
EXC 2070 - 390732324, and the ERC Starting Grant ARCA
(677650).

References
[1] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan,

Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. So-

cial lstm: Human trajectory prediction in crowded spaces. In
CVPR, pages 961–971, 2016.

[2] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. So-
cial ways: Learning multi-modal distributions of pedestrian
trajectories with gans. In CVPR Workshops, pages 0–0, 2019.

[3] Apratim Bhattacharyya, Michael Hanselmann, Mario Fritz,
Bernt Schiele, and Christoph-Nikolas Straehle. Conditional
flow variational autoencoders for structured sequence predic-
tion. arXiv preprint arXiv:1908.09008, 2019.

[4] Huikun Bi, Ruisi Zhang, Tianlu Mao, Zhigang Deng, and
Zhaoqi Wang. How can i see my future? fvtraj: Using first-
person view for pedestrian trajectory prediction. In ECCV,
2020.

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791,
2019.

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018.

[7] QJ Chaofan Tao and P Luo. Dynamic and static context-
aware lstm for multi-agent motion prediction. In ECCV,
2020.

[8] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,
Xinyu Xiao, and Jian Sun. Detnas: Backbone search for ob-
ject detection. In NIPS, pages 6642–6652, 2019.

[9] Patrick Dendorfer, Aljoša Ošep, and Laura Leal-Taix’e.
Goal-gan: Multimodal trajectory prediction based on goal
position estimation. In ACCV, 2020.

[10] Nachiket Deo and Mohan M Trivedi. Trajectory forecasts
in unknown environments conditioned on grid-based plans.
arXiv preprint arXiv:2001.00735, 2020.

[11] Liangji Fang, Qinhong Jiang, Jianping Shi, and Bolei Zhou.
Tpnet: Trajectory proposal network for motion prediction. In
CVPR, pages 6797–6806, 2020.

[12] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. arXiv
preprint arXiv:1904.00420, 2019.

[13] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese,
and Alexandre Alahi. Social gan: Socially acceptable trajec-
tories with generative adversarial networks. In CVPR, pages
2255–2264, 2018.

[14] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and
Zhaoqi Wang. Stgat: Modeling spatial-temporal interactions
for human trajectory prediction. In ICCV, pages 6272–6281,
2019.

[15] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín,
Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-
bigat: Multimodal trajectory forecasting using bicycle-gan
and graph attention networks. In NIPS, pages 137–146, 2019.

[16] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski.
Crowds by example. In Computer graphics forum, vol-
ume 26, pages 655–664. Wiley Online Library, 2007.

[17] Jiachen Li, Hengbo Ma, and Masayoshi Tomizuka. Con-
ditional generative neural system for probabilistic trajectory
prediction. arXiv preprint arXiv:1905.01631, 2019.

[18] Shi-Jie Li, Yazan Abu Farha, Yun Liu, Ming-Ming Cheng,
and Juergen Gall. MS-TCN++: Multi-stage temporal convo-
lutional network for action segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020.

[19] Junwei Liang, Lu Jiang, and Alexander Hauptmann. Simaug:
Learning robust representations from 3d simulation for
pedestrian trajectory prediction in unseen cameras. arXiv
preprint arXiv:2004.02022, 2020.

[20] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G
Hauptmann, and Li Fei-Fei. Peeking into the future: Predict-
ing future person activities and locations in videos. In CVPR,
pages 5725–5734, 2019.

[21] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, pages 19–34, 2018.

[22] Hanxiao Liu, Karen Simonyan, and Yiming Yang.
Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018.

[23] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal,
Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien
Gaidon. It is not the journey but the destination: Endpoint
conditioned trajectory prediction. In ECCV, pages 759–776.
Springer, 2020.

[24] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory pre-
diction. In CVPR, pages 14424–14432, 2020.

[25] Alessio Monti, Alessia Bertugli, Simone Calderara, and Rita
Cucchiara. Dag-net: Double attentive graph neural network
for trajectory forecasting. arXiv preprint arXiv:2005.12661,
2020.

[26] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc
Van Gool. You’ll never walk alone: Modeling social behavior
for multi-target tracking. In ICCV, pages 261–268. IEEE,
2009.

[27] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018.

[28] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and
Silvio Savarese. Learning social etiquette: Human trajectory
understanding in crowded scenes. In ECCV, pages 549–565.
Springer, 2016.

[29] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki
Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie:
An attentive gan for predicting paths compliant to social and
physical constraints. In CVPR, pages 1349–1358, 2019.

[30] Jianhua Sun, Qinhong Jiang, and Cewu Lu. Recursive so-
cial behavior graph for trajectory prediction. In CVPR, pages
660–669, 2020.

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile. In
CVPR, pages 2820–2828, 2019.

[32] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

[33] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng
Zhu, Chuang Gan, and Song Han. Hat: Hardware-aware
transformers for efficient natural language processing. arXiv
preprint arXiv:2005.14187, 2020.

[34] Travis Williams and Robert Li. Wavelet pooling for convo-
lutional neural networks. In ICLR, 2018.

[35] Lidan Zhang, Qi She, and Ping Guo. Stochastic trajec-
tory prediction with social graph network. arXiv preprint
arXiv:1907.10233, 2019.

[36] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and
Nanning Zheng. Sr-lstm: State refinement for lstm towards
pedestrian trajectory prediction. In CVPR, pages 12085–
12094, 2019.

[37] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

[38] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, pages 8697–8710, 2018.

