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Abstract. Action recognition is a fundamental problem in computer vi-
sion with a lot of potential applications such as video surveillance, human
computer interaction, and robot learning. Given pre-segmented videos,
the task is to recognize actions happening within videos. Historically,
hand crafted video features were used to address the task of action recog-
nition. With the success of Deep ConvNets as an image analysis method,
a lot of extensions of standard ConvNets were purposed to process vari-
able length video data. In this work, we propose a novel recurrent Con-
vNet architecture called recurrent residual networks to address the task
of action recognition. The approach extends ResNet, a state of the art
model for image classification. While the original formulation of ResNet
aims at learning spatial residuals in its layers, we extend the approach by
introducing recurrent connections that allow to learn a spatio-temporal
residual. In contrast to fully recurrent networks, our temporal connec-
tions only allow a limited range of preceding frames to contribute to the
output for the current frame, enabling efficient training and inference as
well as limiting the temporal context to a reasonable local range around
each frame. On a large-scale action recognition dataset, we show that
our model improves over both, the standard ResNet architecture and a
ResNet extended by a fully recurrent layer.

1 Introduction

Action recognition in videos is an important research topic [1,4,18] with many po-
tential applications such as video surveillance, human computer interaction, and
robotics. Traditionally, action recognition has been addressed by hand crafted
video features in combination with classifiers like SVMs as in [21, 22]. With the
impressive achievements of deep convolutional networks (ConvNets) for image
classification, a lot of research was devoted to extend ConvNets to process video
data, however, with unsatisfying results. While ConvNets have shown to perform
very well for spatial data, they perform poorly for temporal data since they fail
to model temporal dependencies. Heuristics were therefore developed for mod-
eling temporal relations. First attempts, which simply stacked the frames and
used a standard ConvNet for image classification [10], performed worse than
hand crafted features. More successful have been two stream architectures [18]
that use two ConvNets. While the first network is applied to the independent
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frames, the second network processes the optical flow, which needs to be com-
puted beforehand. While two stream architectures achieve lower classification
error rates than hand-crafted features, they are very expensive for training and
inference since they need two ConvNets and an additional approach to extract
the optical flow.

In this work, we propose a more principled way to integrate temporal depen-
dencies within a ConvNet. Our model is based on the state of the art residual
learning framework [6] for image classification, which learns a residual func-
tion with respect to the layer’s input. We extend the approach to a sequence
of images by having a residual network for each image and connecting them
by recurrent connections that model temporal residuals. In contrast to the two
stream architecture [4], which proposes residual connections from the motion
to the appearance stream, our approach is a single stream architecture that di-
rectly models temporal relations within the spatial stream and does not require
the additional computation of the optical flow.

We evaluate our approach on the popular UCF-101 [19] benchmark and show
that our approach reduces the error of the baseline [6] by 17%. Although two
stream architectures, which require the computation of the optical flow, achieve
a lower error rate, the proposed approach of temporal residuals could also be
integrated into a two stream architecture.

2 Related Work

Due to the difficulty of modeling temporal context with deep neural networks,
traditional methods using hand-crafted features have been state of the art in
action recognition much longer than in image classification [12, 21, 22, 24]. The
most popular approaches are dense trajectories [21] with a bag-of-words and
SVM classification as well as improved dense trajectories [22] with Fisher vector
encoding. Due to the success of deep architectures, first attempts in action recog-
nition aimed at combining those traditional features with deep models. In [15],
for instance, a combination of hand crafted features and recurrent neural net-
works have been deployed. Peng et. al. [14] proposed Stacked Fisher Vectors, a
video representation with multi-layer nested Fisher vector encoding. In the first
layer, they densely sample large subvolumes from input videos, extract local
features, and encode them using Fisher vectors. The second layer compresses
the Fisher vectors of subvolumes obtained in the previous layer, and then en-
codes them again with Fisher vectors. Compared with standard Fisher vectors,
stacked Fisher vectors allow to refine and abstract semantic information in a
hierarchical way. Another hierarchical approach has been proposed in [8], who
apply HMAX [16] with pre-defined spatio-temporal filters in the first layer. Tra-
jectory pooled deep convolutional descriptors are defined in [23]. CNN features
are extracted from a two stream architecture and are combined with improved
dense trajectories.

In the past, there have been attempts to address the task of action recognition
with deep architectures directly. However, in most of these works, the input to
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the model is a stack of consecutive video frames and the model is expected
to learn spatio-temporal dependent features in the first few layers, which is a
difficult task. In [2,13,20], spatio temporal features are learned in unsupervised
fashion by using Restricted Boltzmann machines. The approach of [7] combines
the information about objects present in the video with the motion in the videos.
3D convolution is used in [9] to extract discriminative spatio temporal features
from the stack of video frames. Three different approaches (early fusion, late
fusion, and slow fusion) were evaluated to fuse temporal context in [10]. A similar
technique as in [9] is used to fuse temporal context early in the network, in
late fusion, individual features per frame are extracted and fused in the last
convolutional layer. Slow fusion mixes late and early fusion. In contrast to these
methods, our method does not rely on temporal convolution but on a recurrent
network architecture directly.

More recently, [1] proposed concept of dynamic images. The dynamic image
is based on the rank pooling concept [5] and is obtained through the parameters
of a ranking machine that encodes the temporal evolution of the frames of the
video. Dynamic images are obtained by directly applying rank pooling on the
raw image pixels of a video producing a single RGB image per video. And finally,
by feeding the dynamic image to any CNN architecture for image analysis, it
can be used to classify actions.

The most successful approach to date is the two-stream CNN of [18], where
individual frames from the videos are the input to the spatial network, while
motion in the form of dense optical flow is the input to the temporal network.
The features learned by both networks are concatenated and finally linear SVM
is used for classification. Recently, with the success of ResNet [6], [4] proposed
a model that combines ResNet and the two stream architecture. They replace
both spatial and temporal networks in the two stream architecture by a ResNet
with 50 layers. They also introduce a temporal or motion residual, i.e. a residual
connection from the temporal network to the spatial network to enable learning
of spatio temporal features. In contrast to our method, they incorporate tempo-
ral information by extending the convolutions over temporal windows. Note that
this leads to a largely increased amount of model parameters, whereas our ap-
proach shares the weights among all frames, keeping the network size small. [26]
proposed the temporal segment networks, which are mainly based on the two
stream architecture. However, rather than densely sampling every other frame in
the video, they divide the video in segments of equal length, and then randomly
sample snippets from these segments as network input. In this way, the two
stream network produces segment level classification scores, which are combined
to produce video level output.

Deep recurrent CNN architectures are also explored to model dependencies
across the frames. In [3], convolutional features are fed into an LSTM network
to model temporal dependencies. [28] considered four networks to address action
recognition in videos. The first network is similar to spatial network in the two
stream architecture. The second network is a CNN with one recurrent layer, it
expects a single optical flow image and in recurrent layer, optical flows over a
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range of frames are combined. In the third network, they feed a stack of con-
secutive frames, the network is also equipped with a recurrent layer to capture
the long term dependencies. Similarly, the fourth network expects a stack of
optical flow fields as input. However, the network is equipped with a fully con-
nected recurrent layer. Finally, boosting is used to combine the output of all four
networks.

Finally, [27] equip a ResNet with recurrent skip connections that are, con-
trary to ours, purely temporal skip connections, whereas in our framework, we
use spatio-temporal skip connections. Note the significant difference in both ap-
proaches: while purely temporal skip connections can be interpreted as usual
recurrent connections with unit weights, spatio-temporal skip connections are a
novel concept that allow for efficient backpropagation and combine both, changes
in the temporal domain and changes in the spation domain at the same time.

3 Recurrent Residual Network

In this section, we describe our approach to address the problem of action recog-
nition in videos. Our approach is an extension of ResNet [6], which reformulates
a layer as learning the spatial residual function with respect to the layer’s input.
State of the art results were achieved in image recognition tasks by learning
spatial residual functions. We extend the approach to learn temporal residual
functions across the frames to do action recognition in videos. In our formula-
tion, the feature vector at time step t is a residual function with respect to the
feature vector at time step t− 1. By following the analogy of ResNet, temporal
residuals are learned by introducing the temporal skip (recurrent) connections.
In the following, we give a brief introduction to ResNet, explain different types
of temporal skip connections, and finally describe how to include more temporal
context.

3.1 ResNet

ResNet [6] introduces a residual learning framework. In this framework, a stack
of convolutional layers fit a residual mapping instead of the desired mapping. Let
H(x) denote the desired mapping. The principle of ResNet is to interpret the
mapping of the learned function from one layer to another as H(x) = F (x) + x,
i.e. as the original input x plus a residual function F (x). Introducing the spatial
skip connection, the input signal x is directly forwarded and added to the next
layer, so it only remains to learn the residual F (x) = H(x) − x, see Figure 1b.

3.2 Type of Temporal Skip Connection

There are multiple possibilities to model the temporal skip connection. The
standard spatial skip connections in the classical ResNet architecture are either
an identity mapping, i.e. they just forward the input signal and add it to the
destination layer, or they perform a linear transformation in order to establish
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Fig. 1: ResNet architecture, (a) shows the overall ResNet structure with four building
blocks and a final classification layer, (b) is the schema of a single block: each block
consists of multiple convolutional layers and skip connections to learn the residuals. At
the end, the output feature maps are downsampled.
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Fig. 2: Building block of our recurrent residual learning, xt−1 represents the input to
a convolutional layer at time step t− 1 and xt represents the input to the same layer
at time step t. While the spatial skip connections within a single time frame allow to
learn a spatial residual, the spatio-temporal skip connection from time t− 1 to time t

adds temporal information to the learned residual.
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the downsampling as depicted in Figure 1. The simplest case for the temporal
skip connection is to also use an identity mapping. With the notation of Figure 2,
the layer output yt at time t is the residual function

yt = σ(xt ∗W ) + xt, (1)

where σ represents the nonlinear operations performed after the linear transfor-
mation. Note that for simplicity of notation, we pretend that the residual block
contains a single convolutional layer only and W represents weights for the layer.
Extending this for the temporal skip connection, we obtain

yt = σ(xt ∗W ) + xt + xt−1. (2)

In order to allow for a weighting of the temporal skip connection with weights
Ws, a linear transformation can be applied to xt−1 before adding it to yt,

yt = σ(xt ∗W ) + xt + xt−1 ∗Ws. (3)

Moreover, in order to learn a nonlinear spatio-temporal mapping, this can be
further extended to

yt = σ(xt ∗W ) + xt + σ(xt−1 ∗Ws). (4)

3.3 Temporal Context

While recurrent connections in traditional recurrent neural networks feed the
output of a layer at time t− 1 to the same layer as input at time t, our proposed
spatio-temporal skip connections are different. For an illustration, see Figure 3.
Here, we unfold a network with two spatio-temporal skip connections over time.
Note that the temporal context that influences the output yt includes xt−2, xt−1,
and xt as there are paths from yt leading to all these inputs. If we only used one
temporal skip connection instead of two, the accessible temporal context for yt
would only be xt−1 and xt, respectively. In general, if a temporal context over
T frames is desired, at least T − 1 temporal skip connections are necessary.

In order to use this approach for action recognition, a video is divided into
M small sequences each containing T frames. A recurrent residual network with
T − 1 temporal skip connections is created to capture the dependencies over
these T time steps. In training, we optimize the cross-entropy loss of each small

video chunk. During inference, for each small sequence {x
(i)
t
}T
t=1 within one

video, the recurrent residual network computes P (y = c|{x
(i)
t
}T
t=1). In order

to obtain an overall classification of a complete video, the individual output
probabilities are averaged over the M subsequences of the video. Note that this
is similar to existing frame-wise approaches, where an output probability per
frame is computed and the overall video action probabilities are obtained by
accumulating all single frame probabilities. In our case, instead of frames, we
use small subsequences of the original video.
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Fig. 3: A network with two temporal skip connections, capable of handling temporal
context of three time steps, omitted layers are normal ResNet blocks, i.e. without any
temporal skip connections.

4 Experimental Setup

In this section, we describe our experimental setup. We use ADAM [11] as learn-
ing algorithm and except for the baseline experiments, we update the model after
observing 1% of training data, and every tenth frame from each video is sampled
as input to the model. We evaluate our approach on UCF-101 [19], a large-scale
action recognition dataset consisting of 13,000 videos from 101 different classes.
The dataset comprises about 2.5 million frames in total. All the experimental
work was done using our framework squirrel 1. In the following, we describe the
baseline experiments and the experiments with our proposed recurrent residual
network.

4.1 Baseline Experiments

As a baseline, we extract imagenet [17] features for individual frames in the
video. Averaged individual feature vectors represent the feature vector of the
complete video. Feature vectors for individual frames are extracted using a pre-
trained ResNet model with 50 layers. A batch normalization layer is added after
each layer to normalize the input to a layer. This way the network has in total
106 layers.

1 https://github.com/alexanderrichard/squirrel
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Features Method Error Rate (with Z-Norm) Error Rate (without Z-Norm)

Block4 Avg. Pool 0.236 0.237
Block4 GRU 0.239 0.276

Block3 Avg. Pool 0.309 0.313
Block3 GRU 0.403 0.325

Block2 Avg. Pool 0.431 0.434
Block2 GRU 0.440 0.493

Table 1: Results of the baseline experiments.

We extract the imagenet feature vectors for each frame at three different
positions of ResNet, i.e. after block4, block3, and block2 respectively, see Figure
1. We performed two sets of experiments on extracted features for each block.
In one set, we average the frame level feature vectors, after Z-normalization and
without Z-normalization, and train a linear classifier. We call this model the aver-
age pooling model. Similarly, in the other set, we use a recurrent neural network
with 128 gated recurrent units (GRUs) in order to evaluate the performance of
a classical recurrent network. We call this model the GRU.

Table 1 shows the baseline experiments with imagenet features. The average
pooling model outperforms the model with gated recurrent units. Also, it is
evident from the experiments that with more depth, features become richer.
Hence, the depth plays a significant role in getting good classification accuracy.

4.2 Effect of type and position of the recurrent connection

In this set of experiments, we evaluate different types of temporal skip connec-
tions along with their position in our proposed model. We evaluate temporal
skip connections at four different positions, i.e. at the beginning by making the
first skip connection in block1 recurrent (referred to as Block1), in the middle
by making last skip connection in block2 recurrent (referred to as Block2), by
making last convolutional skip connection in block4 recurrent (referred to as
Mid Block4), and finally by making last skip connection in block 4 recurrent
(referred to as Block4). Also, we evaluate the type of recurrent connections. In
these experiments, we evaluate identity mapping temporal skip connections, and
temporal skip connections with convolutional weights having kernels of size 1×1.
Table 2 shows the deeper we place the temporal skip connection in the network,
the better is the classification accuracy.

In another set of experiments, we evaluate the effect of the type of temporal
skip connection. We change the configuration of the best working setup, i.e. the
one with the skip connection in block4. The connection performs a parametrized
linear or non linear transformation and identity mapping.

Table 3 shows the results achieved by different type of connections, placed
closer to the output layer as our previous analysis shows that works best. Identity
mapping connection with non trainable weights performed best, possibly because
introducing more weights in the network causes overfitting.
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Position Type Error Rate

Block1 Convolutional 0.265
Block2 Convolutional 0.234
Mid Block4 Convolutional 0.231
Block4 Convolutional 0.219

Table 2: Placing the recurrent connection at different positions in the network.

Type Error Rate

Identity Mapping 0.197

Conv. Linear 0.219
Conv. Non-Linear 0.210

Table 3: Results achieved by different type of recurrent connections.

4.3 Effect of Temporal Context

In this set of experiments, we explore the effect of temporal context. As dis-
cussed earlier, with more recurrent connections, the network is able to include
additional temporal dependencies. We already investigated the network with one
recurrent connection that is able to include temporal context of two frames. In
these experiments, we further explore the temporal context of three frames (by
introducing two temporal connections in the network), and the temporal context
of five frames (by introducing four temporal skip connections in the network).
Figure 3 shows the network architecture to accommodate temporal context of
three frames.

As it is evident in Table 4, we do not gain much by including more temporal
context. The accuracy improves in case of temporal context three, however it
gets worse in case of temporal context five. Hence, considering training time, we
consider the model with only one temporal skip connection as the best model.
Note that due to the fact that we sample every tenth frame from the video,
the overall temporal range is actually ten frames. More precisely, the network
learns spatio-temporal residuals between the frames xt and xt−10, covering a
reasonable amount of local temporal progress within the video.

We further evaluate our best model on all three splits of UCF-101. On average
our best model achieves 0.198 on UCF-101 [19], which is a relative improvement
of 17% over the ResNet baseline which has an error rate of 0.236.

4.4 Comparison with the state of the art

In this section, our best model (with one temporal skip connection and with sam-
ple rate 10) is compared with state of the art action recognition methods. As
motion in the frames and appearance in individual frames are two complemen-
tary aspects for action recognition, most of the state of the art methods consider
two different neural networks, an appearance stream and a motion stream, to
extract and use appearance and motion for action recognition. The output of
both the networks is fused, and a simple classifier is trained to classify videos.
As our model uses the raw video frames only rather than optical flow fields,
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Temporal Context Model Error Rate

1 baseline 0.236
2 1 recurrent connection 0.197
3 2 recurrent connections 0.194

5 4 recurrent connections 0.209

Table 4: Results achieved by including more temporal context. For the best setup
(context two), the error is reduced by 17% from 0.236 to 0.194.

Method Appearance Motion App.+Motion

Improved Dense Trajectories [22] - - 0.141
Dynamic Image Networks [1] 0.231 - -
Two Stream Architecture [18] 0.270 0.163 0.120
Two Stream Architecture (GoogleNet) [25] 0.247 0.142 0.107
Two Stream Architecture (VGG-Net) [25] 0.216 0.130 0.086
Spatiotemporal ResNets [4] - - 0.066

Recurrent Residual Networks 0.198 - -

Table 5: Classification error rates for UCF-101.

fair comparison of our model and the state of the art is only possible for the
appearance stream. For completeness, we also compare our results with results
achieved after the outputs of the appearance and the motion streams are fused,
see Table 5. Our model achieves better error rates than the state of the art
appearance stream models. Only fused models perform better. Note that the
works [4,18,25] are all two-stream architectures. The dynamic image network [1]
is a purely appearance base method that reduces that video to a single frame and
uses a ConvNet to classify this frame. For a fair comparison, we provide the re-
sult of dynamic image network without the combination with dense trajectories
as this would include motion features.

5 Conclusion

We extended the ResNet architecture to include temporal skip connections in
order to model both, spatial and temporal information in video. Our model
performs well already with a single temporal skip connection, enabling to infer
context between two frames. Moreover, we showed that fusing temporal infor-
mation at a late stage in the network is beneficial and that learning a temporal
residual is superior to using a classical recurrent layer. Our method is not limited
to appearance based models and can easily be extended to motion networks that
have shown to further enhance the performance on action recognition datasets.
A comparison to both, a ResNet baseline and state of the art methods showed
that our approach outperforms other purely appearance based approaches.
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DFG projects KU 3396/2-1 and GA 1927/4-1 and the ERC Starting Grant
ARCA (677650). Further, this work was supported by the AWS Cloud Credits
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