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Abstract— In this work we propose to utilize information
about human actions to improve pose estimation in monocular
videos. To this end, we present a pictorial structure model that
exploits high-level information about activities to incorporate
higher-order part dependencies by modeling action specific
appearance models and pose priors. However, instead of using
an additional expensive action recognition framework, the
action priors are efficiently estimated by our pose estimation
framework. This is achieved by starting with a uniform action
prior and updating the action prior during pose estimation.
We also show that learning the right amount of appearance
sharing among action classes improves the pose estimation. We
demonstrate the effectiveness of the proposed method on two
challenging datasets for pose estimation and action recognition
with over 80,000 test images.1

I. INTRODUCTION

Human pose estimation from RGB images or videos is a
challenging problem in computer vision, especially for real-
istic and unconstrained data taken from the Internet. Popular
approaches for pose estimation [2], [5], [6], [18], [29], [38]
adopt the pictorial structure (PS) model, which resembles
the human skeleton and allows for efficient inference in
case of tree structures [7], [8]. Even if they are trained
discriminatively, PS models struggle to cope with the large
variation of human pose and appearance. This problem can
be addressed by conditioning the PS model on additional
observations from the image. For instance, [18] detects
poselets, which are examples of consistent appearance and
body part configurations, and condition the PS model on
these.

Instead of conditioning the PS model on predicted config-
urations of body parts from an image, we propose to con-
dition the PS model on high-level information like activity.
Intuitively, the information about the activity of a person
can provide a strong cue about the pose and vice versa the
activity can be estimated from pose. There have been only
few works [15], [39], [42] that couple action recognition
and pose estimation to improve pose estimation. In [39],
action class confidences are used to initialize an optimization
scheme for estimating the parameters of a subject-specific
3D human model in indoor multi-view scenarios. In [42],
a database of 3D poses is used to learn a cross-modality
regression forest that predicts the 3D poses from a sequence
of 2D poses, which are estimated by [38]. In addition, the
action is detected and the 3D poses corresponding to the
predicted action are used to refine the pose. However, both
approaches cannot be applied to unconstrained monocular

1The models and source code are available at http://pages.iai.
uni-bonn.de/iqbal_umar/action4pose/.

videos. While [39] requires a subject-specific model and
several views, [42] requires 3D pose data for training. More
recently, [15] proposed an approach to jointly estimate action
classes and refine human poses. The approach decomposes
the human poses estimated at each video frame into sub-
parts and tracks these sub-parts across time according to the
parameters learned for each action. The action class and joint
locations corresponding to the best part-tracks are selected
as estimates for the action class and poses. The estimation of
activities, however, comes at high computational cost since
the videos are pre-processed by several approaches, one for
pose estimation [16] and two for extracting action related
features [32], [34].

In this work, we present a framework for pose estimation
that infers and integrates activities with a very small compu-
tational overhead compared to an approach that estimates the
pose only. This is achieved by an action conditioned pictorial
structure (ACPS) model for 2D human pose estimation that
incorporates priors over activities. The framework of the
approach is illustrated in Figure 1. We first infer the poses for
each frame with a uniform distribution over actions. While
the binaries of the ACPS are modeled by Gaussian mixture
models, which depend on the prior distribution over the
action classes, the unaries of the ACPS model are estimated
by action conditioned regression forests. To this end, we
modify the approach [5], which consists of two layers of
random forests, on two counts. Firstly, we replace the first
layer by a convolutional network and use convolutional
channel features to train the second layer, which consists
of regression forests. Secondly, we condition the regression
forests on a distribution over actions and learn the sharing
among action classes. In our experiments, we show that these
modifications increase the pose estimation accuracy by more
than 40% compared to [5]. After the poses are inferred with a
uniform distribution over actions, we update the action prior
and the ACPS model based on the inferred poses to obtain
the final pose estimates. Since the update procedure is very
efficient, we avoid the computational expensive overhead
of [15].

We evaluate our approach on the challenging J-HMDB
[13] and Penn-Action [44] datasets, which consist of videos
collected from the Internet and contain large amount of
scale and appearance variations. In our experiments, we
provide a detailed analysis of the impact of conditioning
unaries and binaries on a distribution over actions and the
benefit of appearance sharing among action classes. We
demonstrate the effectiveness of the proposed approach for
pose estimation and action recognition on both datasets.
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Fig. 1: Overview of the proposed framework. We propose an action conditioned pictorial structure model for human pose
estimation (2). Both the unaries φ and the binaries ψ of the model are conditioned on the distribution of action classes
p

A
. While the pairwise terms are modeled by Gaussians conditioned on p

A
, the unaries are learned by a regression forest

conditioned on p
A

(1). Given an input video, we do not have any prior knowledge about the action and use a uniform prior
pA . We then predict the pose for each frame independently (3). Based on the estimated poses, the probabilities of the action
classes pA are estimated for the entire video (4). Pose estimation is repeated with the updated action prior pA to obtain
better pose estimates (5).

Compared to [15], the pose estimation accuracy is improved
by over 30%.

II. RELATED WORK

State-of-the-art approaches for pose estimation are mostly
based on neural networks [10], [17], [20], [21], [28], [30],
[35] or on the pictorial structure framework [5], [18], [38],
[43].

Several approaches have been proposed to improve the
accuracy of PS models for human pose estimation. For
instance, joint dependencies can be modeled not only by
the PS model, but also by a mid-level image representation
such as poselets [18], exemplars [23] or data dependent
probabilities learned by a neural network [1]. Pose estimation
in videos can be improved by taking temporal information
or motion cues into account [2], [10], [12], [14], [16],
[45]. In [16] several pose hypotheses are generated for
each video frame and a smooth configuration of poses over
time is selected from all hypotheses. Instead of complete
articulated pose, [22] and [2] track individual body parts
and regularize the trajectories of the body parts through the
location of neighboring parts. Similar in spirit, the approach
in [43] jointly tracks symmetric body parts in order to better
incorporate spatio-temporal constraints, and also to avoid
double-counting. Optical flow information has also been used
to enhance detected poses at each video frame by analyzing
body motion in adjacent frames [9], [45].

Recent approaches for human pose estimation use different
CNN architectures to directly obtain the heatmaps of body
parts [10], [17], [20], [21], [28], [35]. [20], [28], [35] and
[21] use fully convolutional neural network architectures,
where [35] proposes a multi-staged architecture that sequen-
tially refines the output in each stage. For pose estimation
in videos, [17] combines the heatmaps of body parts from
multiple frames with optical flow information to leverage the
temporal information in videos. More recently, [10] proposes
a convolutional recurrent neural network architecture that
takes as input a set of video frames and sequentially estimates

the body part locations in each frame, while also using the
information of estimated body parts in previous frames.

As done in this work, a few works also combine both PS
model and CNNs [1], [29]. In contrast to the approaches
that use temporal information in videos for pose refinement,
we utilize the detected poses in each video frame to extract
high-level information about the activity and use it to refine
the poses.

Action recognition based on 3D human poses has been
investigated in many works [41]. With the progress in the
area of 2D human pose estimation in recent years, 2D
poses have also gained an increased attention for action
recognition [3], [6], [13], [19], [26], [37]. However, utilizing
action recognition to aid human pose estimation is not well
studied, in particular not in the context of 2D human pose
estimation. There are only a few works [15], [31], [39], [40],
[42] that showed the benefit of it. The approaches in [39],
[42] rely on strong assumption. The approach [39] assumes
that a person-specific 3D model is given and considers pose
estimation in the context of multiple synchronized camera
views. The approach [42] focuses on 3D pose estimation
from monocular videos and assumes that 3D pose data is
available for all actions. The approach [31] adopts a mixture
of PS models, and learns a model for each action class. For
a given image, each model is weighted by the confidence
scores of an additional action recognition system and the
pose with the maximum weight is taken. A similar approach
is adopted in [40] to model object-pose relations. These
approaches, however, do not scale with the number of action
classes since each model needs to be evaluated.

The closest to our work is the recent approach of [15]
that jointly estimates the action classes and refines human
poses. The approach first estimates human poses at each
video frame and decomposes them into sub-parts. These sub-
parts are then tracked across video frames based on action
specific spatio-temporal constraints. Finally, the action labels
and joint locations are inferred from the part tracks that



maximize a defined objective function. While the approach
shows promising results, it does not re-estimate the parts but
only re-combines them over frames i. e., only the temporal
constraints are influenced by an activity. Moreover, it relies
on two additional activity recognition approaches based on
optical flow and appearance features to obtain good action
recognition accuracy that results in a very large computa-
tional overhead as compared to an approach that estimates
activities using only the pose information. In this work, we
show that additional action recognition approaches are not
required, but predict the activities directly from a sequence
of poses. In contrast to [15], we condition the pose model
itself on activities and re-estimate the entire pose per frame.

III. OVERVIEW

Our method exploits the fact that the information about
the activity of a subject provides a cue about pose and
appearance of the subject, and vice versa. In this work we
utilize the high-level information about a person’s activity
to leverage the performance of pose estimation, where the
activity information is obtained from previously inferred
poses. To this end, we propose an action conditioned pictorial
structure (PS) that incorporates action specific appearance
and kinematic models. If we have only a uniform prior over
the action classes, the model is a standard PS model, which
we will briefly discuss in Section IV. Figure 1 depicts an
overview of the proposed framework.

IV. PICTORIAL STRUCTURE

We adopt the joint representation [5] of the PS model [8],
where the vector xj ∈ X represents the 2D location of the
jth joint in image I, and X = {xj}j∈J is the set of all
body joints. The structure of a human body is represented
by a kinematic tree with nodes of the tree being the joints j
and edges E being the kinematic constraints between a joint
j and its unique parent joint p as illustrated in Figure 1.
The pose configuration in a single image is then inferred by
maximizing the following posterior distribution:

p(X|I) ∝
∏
j∈J

φj(xj |I)
∏
j,p∈E

ψjp(xj ,xp) (1)

where the unary potentials φj(xj |I) represent the likeli-
hood of the jth joint at location xj . The binary potentials
ψjp(xj ,xp) define the deformation cost for the joint-parent
pair (j, p), and are often modeled by Gaussian distributions
for an exact and efficient solution using a distance transform
[8]. We describe the unary and binary terms in Section
IV-A and Section IV-B, respectively. In Section V-A, we
then discuss how these can be adapted to build an action
conditioned PS model.

A. Unary Potentials

Random regression forests have been proven to be robust
for the task of human pose estimation [5], [24], [27]. A
regression forest F consists of a set of randomized regression
trees, where each tree T is composed of split and leaf nodes.
Each split node represents a weak classifier which passes

an input image patch P to a subsequent left or right node
until a leaf node LT is reached. As in [5], we use a separate
regression forest for each body joint. Each tree is trained with
a set of randomly sampled images from the training data. The
patches around the annotated joint locations are considered as
foreground and all others as background. Each patch consists
of a joint label c ∈ {0, j}, a set of image features FP , and
its 2D offset dP from the joint center. During training, a
splitting function is learned for each split node by randomly
selecting and maximizing a goodness measure for regression
or classification. At the leaves the class probabilities p(c|LT )
and the distribution of offset vectors p(d|LT ) are stored.

During testing, patches are densely extracted from the
input image I and are passed through the trained trees. Each
patch centered at location y ends in a leaf node LT (P (y))
for each tree T ∈ F . The unary potentials φj for the joint j
at location xj are then given by

φj(xj |I) =
∑
y∈Ω

1

|F|
∑
T∈F

{
p(c = j|LT (P (y)))

· p(x− y|LT (P (y))
}
. (2)

In [5] a two layer approach is proposed. The first layer
consists of classification forests that classify image patches
according to the body parts using a combination of color
features, HOG features, and the output of a skin color
detector. The second layer consists of regression forests that
predict the joint locations using the features of the first layer
and the output of the first layer as features. For both layers,
the split nodes compare feature values at different pixel
locations within a patch of size 24× 24 pixels.

We propose to replace the first layer by a convolu-
tional network and extract convolutional channel features
(CCF) [36] from the intermediate layers of the network to
train the regression forests of the second layer. In [36] several
pre-trained network architectures have been evaluated for
pedestrian detection using boosting as classifier. The study
shows that the “conv3-3” layer of the VGG-16 net [25]
trained on the ImageNet (ILSVRC-2012) dataset performs
very well even without fine tuning, but it is indicated that the
optimal layer depends on the task. Instead of pre-selecting a
layer, we use regression forests to select the features based on
the layers “conv2-2”, “conv3-3”, “conv4-3”, and “conv5-3”.
An example of the CCF extracted from an image is shown in
Figure 2. Since these layers are of lower dimensions than the
original image, we upsample them using linear interpolation
to make their dimensions equivalent to the input image. This
results in a 1408 (128+256+512+512) dimensional feature
representation for each pixel. As split nodes in the regression
forests, we use axis-aligned split functions. For an efficient
feature extraction at multiple image scales, we use patchwork
as proposed in [11] to perform the forward pass of the
convolutional network only once.

B. Binary Potentials

Binary potentials ψjp(xj ,xp) are modeled as a Gaussian
mixture model for each joint j with respect to its parent joint
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Fig. 2: Example of convolutional channel features extracted
using VGG-16 net [25].

p in the kinematic tree. As in [5], we obtain the relative
offsets between child and parent joints from the training
data and cluster them into k = 1, . . . ,K clusters using k-
means clustering. Each cluster k takes the form of a weighted
Gaussian distribution as

ψjp(xj ,xp) = wkjp·

exp

(
−1

2

(
djp − µkjp

)T (
Σkjp
)−1 (

djp − µkjp)
))

(3)

with mean µkjp and covariance Σkjp, where djp = (xj −xp).
The weights wkjp are set according to the cluster frequency
p(k|j, p)α with a normalization constant α = 0.1 [5].

For inference, we select the best cluster k for each joint
by computing the max-marginals for the root node and
backtrack the best pose configuration from the maximum
of the max-marginals.

V. ACTION CONDITIONED POSE ESTIMATION

As illustrated in Figure 1, our goal is to estimate the pose
X conditioned by the distribution p

A
for a set of action

classes a ∈ A. To this end, we introduce in Section V-
A a pictorial structure model that is conditioned on pA .
Since we do not assume any prior knowledge of the action,
we estimate the pose first with the uniform distribution
p

A
(a) = 1/|A|,∀a ∈ A. The estimated poses for N frames

are then used to estimate the probabilities of the action
classes pA(a|Xn=1...N ),∀a ∈ A as described in Section V-B.
Finally, the poses Xn are updated based on the distribution
p

A
.

A. Action Conditioned Pictorial Structure
In order to integrate the distribution pA of the action

classes obtained from the action classifier into (1), we make
the unaries and binaries dependent on p

A
:

p(X|p
A
, I) ∝

∏
j∈J

φj(xj |pA
, I) ·

∏
j,p∈E

ψjp(xj ,xp|pA
). (4)

While the unary terms are discussed in Section V-A.1, the
binaries ψjp(xj ,xp|pA

) are represented by Gaussians as in
(3). However, instead of computing mean and covariance
from all training poses with equal weights, we weight each
training pose based on its action class label and pA(a). In our
experiments, we will also investigate the case where p

A
(a)

is simplified to

pA(a) =

{
1 if a = argmaxa′ p

A
(a′|Xn=1...N )

0 otherwise.
(5)
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Fig. 3: Example patches centered at the wrist of the left hand
side. We can see a large amount of appearance variation for a
single body part. However, for several activities, in particular
sports such as golf and pull-up, this variation is relatively
small within the action classes. Nonetheless, a few classes
also share appearance with each other e.g., golf and baseball
or activities such as run and kick ball. This clearly shows
the importance of class specific appearance models with a
right amount of appearance sharing across action classes for
efficient human pose estimation.

1) Conditional Joint Regressors: Figure 3 shows exam-
ples of patches of the wrist extracted from images of different
action classes. We can see a large amount of appearance
variation across different classes regardless of the fact that
all patches belong to the same body joint. However, it can
also be seen that within individual activities this variation
is relatively small. We exploit this observation and propose
action specific unary potentials for each joint j. To this end
we adopt conditional regression forests [4], [27] that have
been proven to be robust for facial landmark detection in [4]
and 3D human pose estimation in [27]. While [4] trains a
separate regression forest for each head pose and selects a
specific regression forest conditioned on the output of a face
pose detector, [27] proposes partially conditioned regression
forests, where a forest is jointly trained for a set of discrete
states of a human attribute like human orientation or height
and the conditioning only happens at the leaf nodes. Since the
continuous attributes are discretized, interpolation between
the discrete states is achieved by sharing the votes.

In this work we resort to partially conditional forests
due to its significantly reduced training time and memory
requirements. During training we augment each patch P with
its action class label a. Instead of p(c|LT ) and p(d|LT ), the
leaf nodes model the conditional probabilities p(c|a, LT ) and
p(d|a, LT ). Given the distribution over action classes p

A
, we

obtain the conditional unary potentials:

φj(xj |pA , I) =
∑
y∈Ω

1

|F|
∑
T∈F

∑
a∈A

{
p

A
(a)

· p(c = j|a, LT (P (y))).p(x− y|a, LT (P (y))
}

=
∑
a∈A

φj(xj |a, I)pA
(a). (6)



Since the terms φj(xj |a, I) need to be computed only once
for an image I, φj(xj |pA , I) can be efficiently computed
after an update of pA .

2) Appearance Sharing Across Actions: Different actions
sometimes share body pose configurations and appearance of
parts as shown in Figure 3. We therefore propose to learn the
sharing among action classes within a conditional regression
forest. To this end, we replace the term φj(xj |a, I) in (6) by
a weighted combination of the action classes:

φsharing
j (xj |a, I) =

∑
a′∈A

γa(a′)φj(xj |a′, I) (7)

where the weights γa(a′) represent the amount of sharing
between action class a and a′. To learn the weights γa for
each class a ∈ A, we apply the trained conditional regression
forests to a set of validation images scaled to a constant
body size and maximize the response of (7) at the true joint
locations and minimize it at non-joint locations. Formally,
this can be stated as

γa = argmax
γ

∑
na

∑
j

{ ∑
a′∈A

γ(a′)φ∗j
(
xgt
j,na
|a′, Ina

)
− max

x∈Xneg
j,na

(∑
a′∈A

γ(a′)φ∗j (x|a′, Ina
)

)}
− λ‖γ‖2 (8)

subject to
∑
a′∈A γ(a′) = 1 and γ(a′) ≥ 0. Ina

denotes the
nth scaled validation image of action class a, xgt

j,na
is the

annotated joint position for joint j in image Ina
, and Xneg

j,na

is a set of image locations which are more than 5 pixels
away from xgt

j,na
. The set of negative samples is obtained by

computing φ∗j (x|a′, Ina
) and taking the 10 strongest modes,

which do not correspond to xgt
j,na

, for each image. For
optimization, we use the smoothed unaries

φ∗j (x|a, I) =
∑
y∈Ω

exp

(
−‖x− y‖2

σ2

)
φj(y|a, I) (9)

with σ = 3 and replace max by the softmax function to
make (8) differentiable. The last term in (8) is a regularizer
that prefers sharing, i. e., ‖γ‖2 attains its minimum value
for uniform weights. In our experiments, we use λ = 0.4
as weight for the regularizer. We optimize the objective
function by constrained local optimization using uniform
weights for initialization γ(a′) = 1/|A|. In our experiments,
we observed that similar weights are obtained when the
optimization is initialized by γ(a) = 1 and γ(a′) = 0 for
a′ 6= a, indicating that the results are not sensitive to the
initialization. In (8), we learn the weights γa for each action
class but we could also optimize for each joint independently.
In our experiments, however, we observed that this resulted
in over-fitting.

B. Action Classification

For pose-based action recognition, we use the bag-of-word
approach proposed in [13]. From the estimated joint positions
Xn=1...N , a set of features called NTraj+ is computed that

encodes spatial and directional joint information. Addition-
ally, differences between successive frames are computed to
encode the dynamics of the joint movements. Since we use
a body model with 13 joints, we compute the locations of
missing joints (neck and belly) in order to obtain the same
15 joints as in [13]. We approximate the neck position as
the mean of the face and the center of shoulder joints. The
belly position is approximated by the mean of the shoulder
and hip joints.

For each of the 3, 223 descriptor types, a codebook is
generated by running k-means 8 times on all training samples
and choosing the codebook with minimum compactness.
These codebooks are used to extract a histogram for each
descriptor type and video. For classification, we use an SVM
classifier in a multi-channel setup. To this end, for each
descriptor type t, we compute a distance matrix Dt that
contains the χ2-distance between the histograms (hti, h

t
j) of

all video pairs (vi, vj). We then obtain the kernel matrix that
we use for the multi-class classification as follows

K(vi, vj) = exp

(
− 1

L

L∑
t=1

Dt(h
t
i, h

t
j)

µt

)
(10)

where L is the number of descriptor types and µt is the
mean of the distance matrix Dt. For classification we use a
one-vs-all approach with C = 100 for the SVM.

VI. EXPERIMENTS

In order to evaluate the proposed method, we follow the
same protocol as proposed in [15]. In particular, we evaluate
the proposed method on two challenging datasets, namely
sub-J-HMDB [13] and the Penn-Action dataset [44]. Both
datasets provide annotated 2D poses and activity labels for
each video. They consist of videos collected from the Internet
and contain large amount of scale and appearance variations,
low resolution frames, occlusions and foreshortened body
poses. This makes them very challenging for human pose
estimation. While sub-J-HMDB [13] comprises videos from
12 action categories with fully visible persons, the Penn-
Action dataset comprises videos from 15 action categories
with a large amount of body part truncations. As in [15], we
discard the activity class “playing guitar” since it does not
contain any fully visible person. For testing on sub-J-HMDB,
we follow the 3-fold cross validation protocol proposed by
[13]. On average for each split, this includes 229 videos for
training and 87 videos for testing with 8, 124 and 3, 076
frames, respectively. The Penn-Action dataset consists of
1, 212 videos for training and 1, 020 for testing with 85, 325
and 74, 308 frames, respectively. To evaluate the performance
of pose estimation, we use the APK (Average Precision of
Keypoints) metric [15], [38].

A. Implementation Details

For the Penn-Action dataset, we split the training images
half and half into a training set and a validation set. Since the
dataset sub-J-HMDB is smaller, we create a validation set by
mirroring the training images. The training images are scaled
such that the mean upper body size is 40 pixels. Each forest



aaaaaaaaa
Unary

Binary
Indep. Cond. (5) Cond.

(pA )
Indep. + CCF 51.5 53.8 51.0
Cond. (5) + CCF 48.9 49.9 48.4
Cond. (5) + AS + CCF 53.8 55.3 52.9
Cond. (pA ) + CCF 52.3 53.1 52.0
Cond. (pA ) + AS + CCF 53.4 55.1 52.5

(a)

aaaaaaaaa
Unary

Binary
Indep. Cond. (5) Cond.

(pA )
Indep. 36.7 38.5 36.7
Cond. (5) 29.3 32.5 29.7
Cond. (5) + AS 38.0 39.6 37.2
Cond. (pA ) 37.0 39.0 36.8
Cond. (pA ) + AS 38.0 39.5 37.3

(b)

TABLE II: Analysis of the proposed framework under different settings. Cond. (5) denotes if the action class probabilities
p

A
are replaced by (5). (a) using CCF features. (b) using features from [5]. (APK threshold: 0.1)

Features
HOG, Color, Skin [5] CCF

36.7 51.5

TABLE I: Comparison of the features used in [5] with the
proposed convolutional channel features (CCF). APK with
threshold 0.1 on split-1 of sub-J-HMDB.

consists of 20 trees, where 10 trees are trained on the training
and 10 on the validation set, with a maximum depth of 20
and a minimum of 20 patches per leaf. We train each tree
with 50, 000 positive and 50, 000 negative patches extracted
from 5, 000 randomly selected images and generate 40, 000
split functions at each node. For the binary potentials, we
use k = 24 mixtures per part.

For learning the appearance sharing among action classes
(Section V-A.2) and training the action classifier (Section
V-B), we use the 10 trees trained on the training set and
apply them to the validation set. The action classifier and
the sharing are then learned on the validation set.

For pose estimation, we create an image pyramid and
perform inference at each scale independently. We then select
the final pose from the scale with the highest posterior (4).
In our experiments, we use 4 scales with scale factor 0.8.
The evaluation of 260 trees (20 trees for each of the 13
joints) including feature extraction takes roughly 15 seconds
on average.2 Inference with the PS model for all 4 scales
takes around 1 second. The action recognition with feature
computation takes only 0.18 seconds per image and it does
not increase the time for pose estimation substantially.

B. Pose Estimation

We first evaluate the impact of the convolutional channel
features (CCF) for pose estimation on split-1 of sub-J-
HMDB. The results in Table I show that the CCF outperform
the combination of color features, HOG features, and the
output of a skin color detector, which is used in [5].

In Table IIa we evaluate the proposed ACPS model under
different settings on split-1 of sub-J-HMDB when using CCF
features for joint regressors. We start with the first step of our
framework where neither the unaries nor the binaries depend
on the action classes. This is equivalent to the standard PS
model described in Section IV, which achieves an average

2Measured on a 3.4GHz Intel processor using only one core with NVidia
GeForce GTX 780 GPU. The image size for all videos in sub-J-HMDB is
320× 240 pixels.

joint estimation accuracy of 51.5%. Given the estimated
poses, the pose-based action recognition approach described
in Section V-B achieves an action recognition accuracy of
66.3% for split-1.

Having estimated the action priors pA , we first evaluate
action conditioned binary potentials while keeping the unary
potentials as in the standard PS model. As described in
Section V-A, we can use in our model the probabilities p

A
or

replace them by the distribution (5), which considers only the
classified action class. The first setting is denoted by “Cond.
(pA )” and the second by “Cond. (5)”. It can be seen that
the conditional binaries based on (5) already outperform the
baseline by improving the accuracy from 51.5% to 53.8%.
However, taking the priors from all classes slightly decreases
the performance. This shows that conditioning the binary
potentials on the most probable class is a better choice than
using priors from all classes.

Secondly, we analyze how action conditioned unary poten-
tials affect pose estimation. For the unaries, we have the same
options “Cond. (pA )” and “Cond. (5)” as for the binaries.
In addition, we can use appearance sharing as described
in Section V-A.2, which is denoted by “AS”. For all three
binaries, the conditional unaries based on (5) decrease the
performance. Since the conditional unaries based on (5) are
specifically designed for each action class, they do not gen-
eralize well in case of a misclassified action class. However,
adding appearance sharing to the conditional unaries boost
the performance for both conditioned on (5) and p

A
. Adding

appearance sharing outperforms all other unaries without
appearance sharing, i. e., conditional unaries, independent
unaries and the unaries conditioned on p

A
. For all unaries,

the binaries conditioned on (5) outperform the other binaries.
This shows that appearance sharing and binaries conditioned
on the most probable class performs best, which gives an
improvement of the baseline from 51.5% to 55.3%.

In Table IIb, we also evaluate the proposed ACPS when
using the weaker features from [5]. Although the accuracies
as compared to CCF features are lower, the benefit of the
proposed method remains the same. For the rest of this paper,
we will use CCF for all our experiments.

In Table III we compare the proposed action conditioned
PS model with other state-of-the-art approaches on all three
splits of sub-J-HMDB. In particular, we provide a com-
parison with [1], [2], [5], [15], [16], [38]. The accuracies
for the approaches [2], [15], [16], [38] are taken from [15]



Method Head Sho Elb Wri Hip Knee Ank Avg Avg
thr.=0.2 thr.=0.1

Cond.(5) + AS U. & Cond.(5) B. + CCF 90.3 76.9 59.3 55.0 85.9 76.4 73.0 73.8 51.6
Cond. (pA ) + AS U. & Cond.(5) B. + CCF 90.1 76.7 59.2 54.7 85.6 76.2 72.9 73.6 51.2
Indep. U. & Indep. B. + CCF 88.1 76.3 57.0 49.2 85.0 75.4 71.7 71.8 48.7

State-of-the-art approaches
Indep. U. & Indep. B. [5] 65.6 56.4 39.1 31.1 65.2 62.8 60.9 54.4 34.4
Yang & Ramanan [38] 73.8 57.5 30.7 22.1 69.9 58.2 48.9 51.6 —
Park & Ramanan [16] 79.0 60.3 28.7 16.0 74.8 59.2 49.3 52.5 —
Cherian et al. [2] 47.4 18.2 0.08 0.07 — — — 16.4 —
Nie et al. [15] 80.3 63.5 32.5 21.6 76.3 62.7 53.1 55.7 —
Chen & Yuille [1] 78.7 68.4 48.3 39.7 76.3 66.3 60.3 62.6 42.2

TABLE III: Comparison with the state-of-the-art on sub-J-HMDB using APK threshold 0.2. In the last column, the average
accuracy for the threshold 0.1 is given.

Method Head Sho Elb Wri Hip Knee Ank Avg Avg
thr.=0.2 thr.=0.1

Cond.(5) + AS U. & Cond.(5) B. + CCF 89.1 86.4 73.9 73.0 85.3 79.9 80.3 81.1 64.8
Indep. U. & Indep. B. + CCF 84.5 81.3 66.2 62.6 82.4 75.1 76.5 75.5 57.3

State-of-the-art approaches
Yang & Ramanan [38] 57.9 51.3 30.1 21.4 52.6 49.7 46.2 44.2 —
Park & Ramanan [16] 62.8 52.0 32.3 23.3 53.3 50.2 43.0 45.3 —
Nie et al. [15] 64.2 55.4 33.8 24.4 56.4 54.1 48.0 48.0 —
Gkioxari et al. [10] 95.6 93.8 90.4 90.7 91.8 90.8 91.5 91.8 —

TABLE IV: Comparison with the state-of-the-art in terms of joint localization error on the Penn-Action dataset.

where the APK threshold 0.2 is used. We also evaluated the
convolutional network based approach [1] using the publicly
available source code trained on sub-J-HMDB. Our approach
outperfroms the other methods by a margin, and notably
improves wrist localization by more than 5% as compared
to the baseline.

Table IV compares the proposed ACPS with the state-of-
the-art on the Penn-Action dataset. The accuracies for the
approaches [15], [16], [38] are taken from [15]. We can see
that the proposed method improves the baseline from 75.5%
to 81.1%, while improving the elbow and wrist localization
accuracy by more than 7% and 10%, respectively. The
proposed method also significantly outperforms other ap-
proaches Only the approach [10] achieves a higher accuracy
than our method. [10], however, uses a better multi-staged
CNN architecture as baseline compared to our network for
computing CCF features. Since the gain of ACPS compared
to our baseline even increases when better features are used
as shown in Table IIa & Table IIb, we expect at least a similar
performance gain when we use the baseline architecture from
[10] for ACPS.

C. Action Recognition

In Table VI, we compare the action recognition accuracy
obtained by our approach with state-of-the-approaches for
action recognition. On sub-J-HMDB, the obtained accuracy
using only pose as feature is comparable to the other ap-
proaches. Only the recent work [3] which combines pose,
CNN, and motion features achieves a better action recog-
nition accuracy. However, if we combine our pose-based
action recognition with Fisher vector encoding of improved
dense trajectories [33] using late fusion, we outperform other
methods that also combine pose and appearance. The results
are similar on the Penn-Action dataset.

Method sub-J-HMDB Penn-Action
Appearance features only

Dense [13] 46.0% —
IDT-FV [33] 60.9% 92.0%

Pose features only
Pose [13] 54.1% —
Pose (Ours) 61.5% 79.0%

Pose + Appearance features
MST [34] 45.3% 74.0%
Pose + Dense [13] 52.9% —
AOG [15] 61.2% 85.5%
P-CNN [3] 66.8% —
Pose (Ours) + IDT-FV 74.6% 92.9%

TABLE VI: Comparison of action recognition accuracy with
the state-of-the-art approaches on sub-J-HMDB and Penn-
Action datasets.

In Table V, we report the effect of different action
recognition approaches on pose estimation. We report the
pose estimation accuracy for split-1 of sub-J-HMDB when
the action classes are not inferred by our framework, but
estimated using improved dense trajectories with Fisher
vector encoding (IDT-FV) [33] or the fusion of our pose-
based method and IDT-FV. Although the action recognition
rate is higher when pose and IDT-FV are combined, the pose
estimation accuracy is not improved. If the action classes are
not predicted but are provided (GT), the accuracy improves
slightly for sub-J-HMDB and from 64.8% to 68.1% for
the Penn-Action dataset. We also experimented with several
iterations in our framework, but the improvements compared
to the achieved accuracy of 51.6% were not more than 0.1%
on all three splits of sub-J-HMDB.

VII. CONCLUSION

In this paper, we have demonstrated that action recognition
can be efficiently utilized to improve human pose estimation
on realistic data. To this end, we presented a pictorial



Indep. U. + Indep. B. + CCF Cond. (5)+AS U. & Cond. (5) B. + CCF
Pose IDT-FV [33] Pose+IDT-FV GT

sub-J-HMDB (split-1) 51.5 55.3 (56.2%) 52.6 (66.3%) 55.3 (76.4%) 55.9 (100%)
Penn-Action 57.3 64.8 (79.0%) — — 68.1 (100%)

TABLE V: Analysis of pose estimation accuracy with respect to action recognition accuracy. The values in the parentheses
are the corresponding action recognition accuracies. (APK threshold: 0.1)

structure model that incorporates high-level activity
information by conditioning the unaries and binaries on a
prior distribution over action labels. Although the action
priors can be estimated by an accurate, but expensive action
recognition system, we have shown that the action priors
can also be efficiently estimated during pose estimation
without substantially increasing the computational time of
the pose estimation. In our experiments, we thoroughly
analyzed various combinations of unaries and binaries
and showed that learning the right amount of appearance
sharing among action classes improves the pose estimation
accuracy. While we expect further improvements by using
a more sophisticated CNN architecture as baseline and
by including a temporal model, the proposed method has
already shown its effectiveness on two challenging datasets
for pose estimation and action recognition.
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