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Abstract

Human motion capturing (HMC) from multiview image
sequences is an extremely difficult problem due to depth and
orientation ambiguities and the high dimensionality of the
state space. In this paper, we introduce a novel hybrid HMC
system that combines video input with sparse inertial sensor
input. Employing an annealing particle-based optimization
scheme, our idea is to use orientation cues derived from
the inertial input to sample particles from the manifold of
valid poses. Then, visual cues derived from the video in-
put are used to weight these particles and to iteratively de-
rive the final pose. As our main contribution, we propose
an efficient sampling procedure where the particles are de-
rived analytically using inverse kinematics on the orienta-
tion cues. Additionally, we introduce a novel sensor noise
model to account for uncertainties based on the von Mises-
Fisher distribution. Doing so, orientation constraints are
naturally fulfilled and the number of needed particles can be
kept very small. More generally, our method can be used to
sample poses that fulfill arbitrary orientation or positional
kinematic constraints. In the experiments, we show that our
system can track even highly dynamic motions in an out-
door environment with changing illumination, background
clutter, and shadows.

1. Introduction
Recovering 3D human motion from 2D video footage is

an active field of research [19, 3, 6, 9, 28, 32]. Although
extensive work on human motion capturing (HMC) from
multiview image sequences has been pursued for decades,
there are only few works, e.g. [13], that handle challenging
motions in outdoor scenes.

To make tracking feasible in complex scenarios, motion
priors are often learned to constrain the search space [16,
25, 26, 27, 32]. On the downside, such priors impose cer-
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tain assumptions on the motions to be tracked, thus limiting
the applicability of the tracker to general human motions.
While approaches exist to account for transitions between
different types of motion [2, 5, 10], general human motion
is highly unpredictable and difficult to be modeled by pre-
specified action classes.

Even under the use of strong priors, video HMC is lim-
ited by current technology: depth ambiguities, occlusions,
changes in illumination, as well as shadows and background
clutter are frequent in outdoor scenes and make state-of-
the-art algorithms break down. Using many cameras does
not resolve the main difficulty in outdoor scenes, namely
extracting reliable image features. Strong lighting condi-
tions also rule out the use of depth cameras. Inertial sensors
(IMU) do not suffer from such limitations but they are in-
trusive by nature: at least 17 units must be attached to the
body which poses a problem from biomechanical studies
and sports sciences. Additionally, IMU’s alone fail to mea-
sure accurately translational motion and suffer from drift.
Therefore, similar to [22, 30], we argue for a hybrid ap-
proach where visual cues are supplemented by orientation
cues obtained by a small number of additional inertial sen-
sors. While in [30] only arm motions are considered, the
focus in [22] is on indoor motions in a studio environment
where the cameras and sensors can be very accurately cali-
brated and the images are nearly noise- and clutter-free. By
contrast, we consider full-body tracking in an outdoor set-
ting where difficult lighting conditions, background clutter,
and calibration issues pose additional challenges.

In this paper, we introduce a novel hybrid tracker that
combines video input from four consumer cameras with ori-
entation data from five inertial sensors, see Fig. 1. Within
a probabilistic optimization framework, we present several
contributions that enable robust tracking in challenging out-
door scenarios. Firstly, we show how the high-dimensional
space of all poses can be projected to a lower-dimensional
manifold that accounts for kinematic constraints induced
by the orientation cues. To this end, we introduce an ex-
plicit analytic procedure based on Inverse Kinematics (IK).
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Figure 1: Orientation cues extracted from inertial sensors are used to efficiently sample valid poses using inverse kinematics.
The generated samples are evaluated against image cues in a particle filter framework to yield the final pose.

Secondly, by sampling particles from this low-dimensional
manifold the constraints imposed by the orientation cues are
naturally fulfilled. Therefore, only a small number of par-
ticles is needed, leading to a significant improvement in ef-
ficiency. Thirdly, we show how to integrate a sensor noise
model based on the von Mises-Fisher distribution in the op-
timization scheme to account for uncertainties in the orien-
tation data. In the experiments, we demonstrate that our ap-
proach can track even highly dynamic motions in complex
outdoor settings with changing illumination, background
clutter, and shadows. We can resolve typical tracking errors
such as miss-estimated orientations of limbs and swapped
legs that often occur in pure video-based trackers. More-
over, we compare it with three different alternative methods
to integrate orientation data. Finally, we make the challeng-
ing dataset and sample code used in this paper available for
scientific use1.

2. Related Work
For solving the high-dimensional pose optimization

problem, many approaches rely on local optimization tech-
niques [4, 13, 23], where recovery from false local min-
ima is a major issue. Under challenging conditions, global
optimization techniques based on particle filters [6, 9, 33]
have proved to be more robust against ambiguities in the
data. Thus, we build upon the particle-based annealing op-
timization scheme described in [9]. Here, one drawback
is the computational complexity which constitutes a bottle-
neck when optimizing in high-dimensional pose spaces.

Several approaches show that constraining particles us-
ing external pose information sources can reduce ambigu-
ities [1, 11, 12, 14, 15, 18, 29]. For example, [15] uses
the known position of an object a human actor is interacting
with and [1, 18] use hand detectors to constrain the pose hy-
pothesis. To integrate such constraints into a particle-based
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framework, several solutions are possible. Firstly, the cost
function that weights the particles can be augmented by ad-
ditional terms that account for the constraints. Although
robustness is added, no benefits in efficiency are achieved,
since the dimensionality of the search space is not reduced.
Secondly, rejection sampling, as used in [15], discards in-
valid particles that do not fulfill the constraints. Unfortu-
nately, random sampling can be very inefficient and does
not scale well with the number of constraints as we will
show. Thirdly, approaches such as [8, 11, 17, 29] suggest
to explicitly generate valid particles by solving an IK prob-
lem on detected body parts. While the proposals in [17, 29]
are tailored to deal with depth ambiguities in monocular im-
agery, [11] relies on local optimization which is not suited
for outdoor scenes as we will show. In the context of parti-
cle filters, the von Mises-Fisher distribution has been used
as prior distribution for extracting white matter fiber path-
ways from MRI data [35].

In contrast to previous work, our method can be used to
sample particles that fulfill arbitrary kinematic constraints
by reducing the dimension of the state space. Furthermore,
none of the existing approaches perform a probabilistic op-
timization in a constrained low-dimensional manifold. To
the best of our knowledge, this is the first work in HMC
to use IK based on the Paden-Kahan subproblems and to
model rotation noise with the von Mises-Fisher distribution.

3. Global Optimization with Sensors

To temporally align and calibrate the input data obtained
from a set of uncalibrated and unsynchronized cameras and
from a set of orientation sensors, we apply preprocessing
steps as explained in Sect. 3.1. Then, we define orientation
data within a human motion model (Sect. 3.2) and explain
the probabilistic integration of image and orientation cues
into a particle-based optimization framework (Sect. 3.3).



3.1. Calibration and Synchronization

We recorded several motion sequences of subjects wear-
ing 10 inertial sensors (we used XSens [31]) which we split
in two groups of 5: the tracking sensors which we use for
tracking and the validation sensors which we use for eval-
uation. The tracking sensors are placed in the back and the
lower limbs and the validation sensors are placed on the
chest and the upper limbs. An inertial sensor smeasures the
orientation of its local coordinate system FS

s w.r.t. a fixed
global frame of reference FT . In this paper, we refer to the
sensor orientations by RTS and, where appropriate, by us-
ing the corresponding quaternion representation qTS . The
video sequences recorded with four off-the-shelf consumer
cameras are synchronized by cross correlating the audio sig-
nals as proposed in [13]. Finally, we synchronize the IMU’s
with the cameras using a clapping motion, which can be de-
tected in the audio data as well as in the acceleration data
measured by IMU’s.

3.2. Human Motion Model

We model the motion of a human by a skeletal kine-
matic chain containing N = 25 joints that are connected
by rigid bones. The global position and orientation of the
kinematic chain are parameterized by a twist ξ0 ∈ R6 [20].
Together with the joint angles Θ := (θ1 . . . θN ), the config-
uration of the kinematic chain is fully defined by aD=6+N -
dimensional vector of pose parameters x = (ξ0,Θ). We
now describe the relative rigid motion matrix Gi that ex-
presses the relative transformation introduced by the rota-
tion in the ith joint. A joint in the chain is modeled by a
location mi and a rotation axis ωi. The exponential map of
the corresponding twist ξi = (−ωi ×mi, ωi) yields Gi by

Gi = exp(θiξ̂i). (1)

Let Ji ⊆ {1, . . . , n} be the ordered set of parent joint in-
dices of the ith bone. The total rigid motion GTB

i of the
bone is given by concatenating the global transformation
matrix G0 = exp(ξ̂0) and the relative rigid motions matri-
ces Gi along the chain by

GTB
i = G0

∏
j∈Ji

exp(θj ξ̂j). (2)

The rotation part of GTB
i is referred to as tracking bone

orientation of the ith bone. In the standard configuration of
the kinematic chain, i.e., the zero pose, we choose the local
frames of each bone to be coincident with the global frame
of reference FT . Thus, GTB

i also determines the orienta-
tion of the bone relative to FT . A surface mesh of the actor
is attached to the kinematic chain by assigning every vertex
of the mesh to one of the bones. Let p̄ be the homogeneous
coordinate of a mesh vertex p in the zero pose associated to
the ith bone. For a configuration x of the kinematic chain,
the vertex is transformed to p̄′ using p̄′ = GTB

i p̄.

3.3. Optimization Procedure

If several cues are available, e.g. image silhouettes and
sensor orientation z = (zim, zsens), the human pose x can
be found by minimizing a weighted combination of cost
functions for both terms as in [22]. Since in outdoor scenar-
ios the sensors are not perfectly calibrated and the obser-
vations are noisy, fine tuning of the weighting parameters
would be necessary to achieve good performance. Further-
more, the orientation information is not used to reduce the
state space, and thus the optimization cost. Hence, we pro-
pose a probabilistic formulation of the optimization prob-
lem that can be solved globally and efficiently:

arg max
x

p(x|zim, zsens). (3)

Assuming independence between sensors and a uniform
prior p(x), the posterior can be factored into

p(x|zim, zsens) ∝ p(zim|x)p(x|zsens). (4)

The weighting function p(zim|x) can be modeled by any
image-based likelihood function. Our proposed model of
p(x|zsens), as introduced in Sect. 4, integrates uncertainties
in the sensor data and constrains the poses to be evaluated
to a lower dimensional manifold. For optimization, we use
the method proposed in [9]; the implementation details are
given in Sect. 4.3.

4. Manifold Sampling
Assuming that the orientation data zsens of the Ns ori-

entation sensors is accurate and that each sensor has 3 DoF
that are not redundant, the D dimensional pose x can be
reconstructed from a lower dimensional vector xa ∈ Rd

where d = D − 3Ns. In our experiments, a 31 DoF model
can be represented by a 16 dimensional manifold using 5
inertial sensors as shown in Fig. 2 (a). The mapping is de-
noted by x = g−1(xa, z

sens) and is described in Sect. 4.1.
In this setting, Eq. (3) can be rewritten as

arg max
xa

p
(
zim|g−1(xa, z

sens)
)
. (5)

Since the orientation data zsens is not always accurate due
to sensor noise and calibration errors, we introduce a term
p(zsensgt |zsens) that models the sensor certainty, i.e., the
probability of the true orientation zsensgt given the sensor
data zsens. The probability is described in Sect. 4.2. Hence,
we get the final objective function:

arg max
xa

∫
p
(
zim|g−1(xa, z

sens
gt )

)
p
(
zsensgt |zsens

)
dzsensgt .

(6)

The integral can be approximated by importance sampling,
i.e., drawing particles from p(zsensgt |zsens) and weighting
them by p(zim|x).
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Figure 2: Inverse Kinematics: (a) decomposition into active
(yellow) and passive (green) parameters. Paden-Kahan sub-
problem 2 (b) and sub-problem 1 (c).

4.1. Inverse Kinematics using Inertial Sensors

For solving Eq. (6), we derive an analytical solution for
the map g : RD 7→ RD−3Ns and its inverse g−1. Here,
g projects x ∈ RD to a lower dimensional space and its
inverse function g−1 uses the sensor orientations and the
coordinates in the lower dimensional space xa ∈ RD−3Ns

to reconstruct the parameters of the full pose, i.e.,

g(x) = xa g−1(xa, z
sens) = x. (7)

To derive a set of minimal coordinates, we observe that
given the full set of parameters x and the kinematic con-
straints placed by the sensor orientations, a subset of these
parameters can be written as a function of the others.
Specifically, the full set of parameters is decomposed into
a set of active parameters xa which we want to optimize
according to Eq. (6) and a set of passive parameters xp that
can be derived from the constraint equations and the active
set. In this way, the state can be written as x = (xa,xp)
with xa ∈ Rd and xp ∈ RD−d. Thereby, the direct map-
ping g is trivial since from the full set only the active param-
eters are retained. The inverse mapping g−1 can be found
by solving inverse kinematics (IK) sub-problems.

Several choices for the decomposition into active and
passive set are possible. To guarantee the existence of solu-
tion for all cases, we choose the passive parameters to be the
set of 3 DoF joints that lie on the kinematic branches where
a sensor is placed. In our experiments using 5 sensors, we
choose the passive parameters to be the two shoulder joints,
the two hips and the root joint adding up to a total of 15
parameters which corresponds to 3Ns constraint equations,
see Fig. 2 (a). Since each sensor s ∈ {1 . . . 5} is rigidly
attached to a bone, there exists a constant rotational offset
RSB

s between the i-th bone and the local coordinate system
FS
s of the sensor attached to it. This offset can be computed

from the tracking bone orientation RTB
i,0 in the first frame

and the sensor orientation RTS
s,0

RSB
s = (RTS

s,0 )TRTB
i,0 . (8)

At each frame t, we obtain sensor bone orientations

(a) (b) (c)

Figure 3: Manifold Sampling: (a) Original image. (b) Full
space sampling. (c) Manifold sampling.

RTS
s,t R

SB
s by applying the rotational offset. In the absence

of sensor noise, it is desired to enforce that the tracking bone
orientation and the sensor bone orientation are equal:

RTB
i,t = RTS

s,t R
SB
s (9)

In Sect. 4.2 we show how to deal with noise in the mea-
surements. Let Rj be the relative rotation of the j-th joint
given by the rotational part of Eq. (1). The relative rotation
Rj associated with the passive parameters can be isolated
from Eq. (9). To this end, we expand the tracking bone ori-
entation RTB

i,t to the product of 3 relative rotations2 Rp
j , the

total rotation motion of parent joints in the chain, Rj , the
unknown rotation of the joint associated with the passive
parameters, and Rc

j , the relative motion between the j-th
joint and the i-th joint where the sensor is placed:

Rp
jRjR

c
j = RTS

s RSB
s (10)

Note that Rp
j and Rc

j are constructed from the active set
of parameters xa using the product of exponentials formula
(2). From Eq. (10), we obtain the relative rotation matrix

Rj = (Rp
j )TRTS

s RSB
s (Rc

j)
T . (11)

Having Rj and the known fixed rotation axes ω1, ω2, ω3 of
the j-th joint, the rotation angles θ1, θ2, θ3, i.e., the passive
parameters, must be determined such that

exp(θ1ω̂1) exp(θ2ω̂2) exp(θ3ω̂3) = Rj . (12)

This problem can be solved by decomposing it into sub-
problems [21]. The basic technique for simplification is to
apply the kinematic equations to specific points. By using
the property that the rotation of a point on the rotation axis
is the point itself, we can pick a point p on the third axis ω3

and apply it to both sides of Eq. (12) to obtain

exp(θ1ω̂1) exp(θ2ω̂2)p = Rjp = q (13)

which is known as the Paden-Kahan sub-problem 2.

2The temporal index t is omitted for the sake of clarity
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Figure 4: Sensor noise model. (a) Points disturbed with
rotations sampled from a von Mises-Fisher distribution. (b)
The orientation of the particles can deviate from the sensor
measurements. Tracking without (c) and with (d) sensor
noise model.

Eq. (13) is further decomposed into two problems

exp(θ2ω̂2)p = c and exp(−θ1ω̂1)q = c, (14)

where c is the intersection point between the circles created
by the rotating point p around axis ω2 and the point q ro-
tating around axis ω1 as shown in Fig. 2 (b). Once the inter-
section point c has been calculated, the problem simplifies
to finding the rotation angle about a fixed axis that brings a
point p to a second one c, which is known as Paden-Kahan
sub-problem 1. Hence, the angles θ1 and θ2 can be easily
computed from Eq. (14) using Paden-Kahan sub-problem
1, see Fig. 2 (c). Finally, θ3 is obtained from Eq. (12) af-
ter substituting θ1 and θ2. By solving these sub-problems
for every sensor, we are able to reconstruct the full state
x using only a subset of the parameters xa and the sen-
sor measurements zsens.3 In this way, the inverse mapping
g−1(xa, zsens) = x is fully defined and we can sample
from the manifold, see Fig. 3.

4.2. Sensor Noise Model

In practice, perfect alignment and synchronization of in-
ertial and video data is not possible. In fact, there are at
least four sources of uncertainty in the inertial sensor mea-
surements, namely inherent sensor noise from the device,
temporal unsynchronization with the images, small align-
ment errors between the tracking coordinate frame FT and
the inertial frame F I , and errors in the estimation of RSB

s .
Hence, we introduce a noise model p(zsensgt |zsens) in our
objective function (6). Rotation errors are typically mod-
eled by assuming that the measured rotations are distributed
according to a Gaussian in the tangent spaces which is im-
plemented by adding Gaussian noise vi on the parameter
components, i.e., x̃j = xj + vi. The topological structure
of the elements, a 3-sphere S3 in case of quaternions, is
therefore ignored. The von Mises-Fisher distribution mod-
els errors of elements that lie on a unit sphere Sp−1 [7] and

3For more details on the computation of the inverse kinematics, we
refer the reader to the appendix included as supplemental material
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Figure 5: Sensor noise model. 500 samples of the IK el-
bow location are shown as points using: (a) added Gaussian
noise and (b) noise from the von Mises-Fisher distribution.

is defined as

fp(x;µ, κ) =
κp/2−1

(2π)p/2Id/2−1(κ)
exp(κµTx) (15)

where Iv denotes the modified Bessel function of the first
kind, µ is the mean direction, and κ is a concentration pa-
rameter that determines the dispersion form the true po-
sition. The distribution is illustrated in Fig. 4. In order
to approximate the integral in Eq. (6) by importance sam-
pling, we use the method proposed in [34] to draw sam-
ples qw from the von Mises-Fisher distribution with p = 4
and µ = (1, 0, 0, 0)T , which is the quaternion representa-
tion of the identity. We use a fixed dispersion parameter of
κ = 1000. The sensor quaternions are then rotated by the
random samples qw:

q̃TS
s = qTS

s ◦ qw (16)

where ◦ dennotes quaternion multiplication. In this way, for
every particle, samples q̃TS

s are drawn from p(zsensgt |zsens)
using Eq. (16) obtaining a set of distributed measurements
z̃sens =

(
q̃TS
1 . . . q̃TS

Ns

)
. Thereafter, the full pose is re-

constructed from the newly computed orientations with
g−1(xa, z̃

sens) as explained in Sect. 4.1 and weighted by
p(zim|x).

In Fig. 5, we compare the inverse kinematic solutions of
500 samples i ∈ {1 . . . 500} by simply adding Gaussian
noise only on the passive parameters {g−1(xa, z

sens)+vi}i
and by modeling sensor noise with the von Mises-Fisher
distribution {g−1(xa, z̃

sens,i)}i. For the generated sam-
ples, we fixed the vector of manifold coordinates xa and
we used equivalent dispersion parameters for both meth-
ods. To visualize the reconstructed poses we only show, for
each sample, the elbow location represented as a point in
the sphere. This example shows that simply adding Gaus-
sian noise on the parameters is biased towards one direction
that depends on the current pose x. By contrast, the samples
using von Mises-Fisher are uniformly distributed in all di-
rections and the concentration decays with the angular error
from the mean. Note, however, that Fig. 5 is a 3D visual-
ization, in reality the bone orientations of the reconstructed
poses should be visualized as points in a 3-sphere S3.



Figure 6: Tracking with background clutter.

4.3. Implementation Details

To optimize Eq. (6), we have implemented the global op-
timization approach that has been proposed in [9] and use
only the first layer of the algorithm. As cost function, we
use the silhouette and color terms

V (x) = λ1Vsilh(x) + λ2Vapp(x) (17)

with the setting λ1 = 2 and λ2 = 40. During tracking,
the initial particles {xi

a}i are predicted from the particles
in the previous frame using a 3rd order autoregression and
projected to the low-dimensional manifold using the map-
ping g; see Sect. 4.1. The optimization is performed only
over the active parameters xa ∈ RD−3Ns , i.e., the mu-
tation step is performed in RD−3Ns . For the weighting
step, we use the approach described in Sect. 4.2 to gen-
erate a sample z̃sens,i from p(zsensgt |zsens) for each parti-
cle xi

a. Consequently, we can map each particle back to
the full space using xi = g−1(xi

a, z̃
sens,i) and weight it by

πi
k = exp(−βkV (xi)), where βk is the inverse temperature

of the annealing scheme at iteration k. In our experiments,
we used 15 iterations for optimization. Finally, the pose es-
timate is obtained from the remaining particle set at the last
iteration as

x̂t =
∑
i

π
(i)
k g−1(x

(i)
a,k, z̃

sens,i). (18)

5. Experiments
The standard benchmark for human motion capture is

HumanEva that consists of indoor sequences. However, no
outdoor benchmark data comprising video as well as inertial
data exists for free use yet. Therefore, we recorded eight se-
quences of two subjects performing four different activities,
namely walking, karate, basketball and soccer. Multiview
image sequences are recorded using four unsynchronized
off-the-shelf video cameras. To record orientation data, we
used an Xsens Xbus Kit [31] with 10 sensors. Five of the

Figure 7: Tracking with strong illumination

sensors, placed at the lower limbs and the back, were used
for tracking, and five of the sensors, placed at the upper
limbs and at the chest, were used for validation. As for any
comparison measurements taken from sensors or marker-
based systems, the accuracy of the validation data is not
perfect but good enough to evaluate the performance of a
given approach. The eight sequences in the data set com-
prise over 3 minutes of footage sampled at 25 Hz. Note
that the sequences are significantly more difficult than the
sequences of HumanEva since they include fast motions, il-
lumination changes, shadows, reflections and background
clutter. For the validation of the proposed method, we ad-
ditionally implemented five baseline trackers: two video-
based trackers based on local (L) and global optimization
(G) respectively and three hybrid trackers that also integrate
orientation data: local optimization (LS), global optimiza-
tion (GS) and rejection sampling (RS), see [24] for more
details. Let the validation set be the set of quaternions rep-
resenting the sensor bone orientations not used for tracking
as vsens = {qval

1 , . . . ,qval
5 }. Let is, s ∈ {1 . . . t} be the

corresponding bone index, and qTB
is

the quaternions of the
tracking bone orientation (Sect. 3.2). We define the error
measure as the average geodesic angle between the sensor
bone orientation and the tracking orientation for a sequence
of T frames as

dquat =
1

5 T

5∑
s=1

T∑
t=1

180◦

π
2 arccos

∣∣〈qval
s (t),qTB

is (t)
〉∣∣ .
(19)

We compare the performance of four different tracking al-
gorithms using the distance measure, namely (L), (G), (LS)
and our proposed approach (P). We show dquat for the eight
sequences and each of the four trackers in Fig. 8. For (G)
and (P) we used the same number of particles N = 200. As
it is apparent from the results, local optimization is not suit-
able for outdoor scenes as it gets trapped in local minima
almost immediately. Our experiments show that LS as pro-
posed in [22] works well until there is a tracking failure in
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Figure 8: Mean orientation error of our 8 sequences (2 sub-
jects) for methods (bars left to right) L (local optimization),
LS (local+sensors), GL (global optimization), and ours P.

25 75 125 200
0

5

10

15

20

3 6 9 12 15
0

20

40

60

80

100
(a) (b)

Number of particles Number of constraints (RS)

d
q
u
a
t

[d
eg

]

Ti
m

e
[m

in
]

Figure 9: (a): Orientation error with respect to number of
particles with (red) the GS method and (black) our algo-
rithm. (b): Running time of rejection sampling (RS) with
respect to number of constraints. By contrast our proposed
method takes 0.016 seconds for 15 DoF constraints. The
time to evaluate the image likelihood is excluded as it is
independent of the algorithm.

which case the tracker recovers only by chance. Even using
(G), the results are unstable since the video-based cues are
too ambiguous and the motions too fast to obtain reliable
pose estimates. By contrast, our proposed tracker achieves
an average error of 10.78 ◦ ± 8.5◦ and clearly outperforms
the pure video-based trackers and (LS).

In Fig. 9 (a), we show dquat for a varying number of par-
ticles using the (GS) and our proposed algorithm (P) for
a walking sequence. For (GS) we optimize a cost func-
tion V (x) = µ1V

im(x) + µ2V
sens(x) where the image

term V im(x) is the one defined in Eq. (17) and V sens(x)
is chosen to be to be an increasing linear function of the
angular error between the tracking and the sensor bone ori-
entations. We hand tuned the influence weights µ1, µ2 to
obtain the best possible performance. The error values show
that optimizing a combined cost function leads to bigger er-
rors for the same number of particles when compared to our
method. This was an expected result since we reduce the
dimension of the search space by sampling from the man-
ifold and consequently less particles are needed for equal
accuracy. Most importantly, the visual quality of the 3D
animation deteriorates more rapidly with (GS) as the num-
ber of particles are reduced4. This is partly due to the fact
that the constraints are not always satisfied when additional
error terms guide the optimization. Another option for

4see the video for a comparison of the estimated motions
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Figure 10: Angular error for the left hip of a walking mo-
tion with (red) no sensor noise model (NN), (blue) Gaussian
noise model (GN) and (black) our proposed (MFN).

Figure 11: Tracking results of a soccer sequence

combining inertial data with video images is to draw parti-
cles directly from p(xt|zsens) using a simple rejection sam-
pling scheme. In our implementation of (RS), we reject a
particle when the angular error is bigger than 10 degrees.
Unfortunately, this approach can be very inefficient espe-
cially if the manifold of poses that fulfill the constraints lies
in a narrow region of the parameter space. This is illus-
trated in Fig. 9 (b) where we show the processing time per
frame (excluding image likelihood evaluation) using 200
particles as a function of the number of constraints. Unsur-
prisingly, rejection sampling does not scale well with the
number of constraints taking as much as 100 minutes for 15
DoF constraints imposed by the 5 sensors. By contrast, our
proposed sampling method takes in the worst case (using
5 sensors) 0.016 seconds per frame. These findings show
that sampling directly from the manifold of valid poses is
a much more efficient alternative. To evaluate the influ-
ence of the sensor noise model, we tracked one of the walk-
ing sequences in our dataset using no noise (NN), additive
Gaussian noise (GN) in the passive parameters and noise
from the von Mises-Fisher (MFN) distribution as proposed
in Sect. 4.2. In Fig. 10 we show the angular error of the
left hip using each of the three methods. With (NN) error
peaks occur when the left leg is matched with the right leg
during walking, see Fig. 4. This typical example shows that
slight missalignments (as little as 5◦ − 10◦) between video
and sensor data can miss-guide the tracker if no noise model



is used. The error measure was 26.8◦ with no noise model,
13◦ using Gaussian noise and 7.3◦ with the proposed model.
The error is reduced by 43% with (MFN) compared to (GN)
which shows that the von Mises-Fisher is a more suited dis-
tribution to explore orientation spaces than the commonly
used Gaussian. This last result might be of relevance not
only to model sensor noise but to any particle-based HMC
approach. Finally, pose estimation results for typical se-
quences of our dataset are shown in Fig. 6, 7 and 11.

6. Conclusions
By combining video with IMU input, we introduced

a novel particle-based hybrid tracker that enables robust
3D pose estimation of arbitrary human motions in outdoor
scenarios. As the two main contributions, we first pre-
sented an analytic procedure based on inverse kinematics
for efficiently sampling from the manifold of poses that
fulfill orientation constraints. Secondly, robustness to
uncertainties in the orientation data was achieved by
introducing a sensor noise model based on the von Mises-
Fisher distribution instead of the commonly used Gaussian
distribution. Our experiments on diverse complex outdoor
video sequences reveal major improvements in the stability
and time performance compared to other state-of-the
art trackers. Although in this work we focused on the
integration of constraints derived from IMU, the proposed
sampling scheme can be used to integrate general kinematic
constraints. In future work, we plan to extend our algorithm
to integrate additional constraints derived directly from the
the video data such as body part detections, scene geometry
or object interaction.
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