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Abstract. In this paper we present an approach to useprior knowledge
in the particle �lter framework for 3D tracking, i.e. estimating the state
parameters such as joint angles of a 3D object. The probabilit y of the
object's states, including correlations between the state parameters, is
learned a priori from training samples. We intro duce a framework that
integrates this knowledge into the family of particle �lters and partic-
ularly into the annealed particle �lter scheme. Furthermore, we show
that the annealed particle �lter also works with a variational model for
level set based image segmentation that does not rely on background
subtraction and, hence,does not depend on a static background. In our
experiments, we use a four camera set-up for tracking the lower part of
a human body by a kinematic model with 18 degreesof freedom. We
demonstrate the increasedaccuracy due to the prior knowledge and the
robustnessof our approach to image distortions. Finally , we compare the
results of our multi-view tracking system quantitativ ely to the outcome
of an industrial marker based tracking system.

1 In tro duction

Model-based3D tracking meansto estimate the poseof a 3D object where the
poseis determined by a value in a state spaceE. In the caseof an articulated
model of a human body, the pose is completely described by a 3D rigid body
motion that has 6 degreesof freedom and the joint angles, which are 12 in
this paper. This yields a high-dimensional state spacethat makes the tracking
processdi�cult. Particle �lters [1], however, can deal with high dimensions.A
basic particle �lter termed condensationhas beenusedfor contour tracking [2].
However, this algorithm lacks performancefor 3D tracking. A heuristic that is
basedon these�lters and that wassuccessfullyusedfor multi-view 3D tracking is
the annealedparticle �lter (APF) [3]. In contrast to conventional particle �lters,
this method does not estimate the posterior distribution. Instead it performs
a stochastic search for the global maximum of a weighting function. The two
main drawbacks of the APF as applied in [3] are the simpli�ed, unconstrained
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kinematic model that results in a large number of particles neededfor tracking
and the assumptionof a static background. The present paper addressesthe �rst
oneby consideringcorrelations betweenthe state parametersasa soft constraint
where the correlations are learneda priori. Using a level set basedsegmentation
instead of background subtraction lifts the secondassumption.

The idea to improvethe model for 3D tracking by integrating prior knowledge
is not new. In [4], training data acquired with a commercialmotion capture sys-
tem was usedto learn a dynamical motion model (e.g. walking). This stabilizes
the tracking as long as the assumptionsare valid, but otherwise it is mislead-
ing and results in tracking failures. Hence, a large motion database is needed
to learn more complicated motion models [5]. Hard constraints were also intro-
duced for the 3D model such as anatomical joint angle limits and prevention of
self-intersections [6]. This reducesthe state space,but it does not consider the
probabilit y of di�eren t poses.In [7], it was suggestedto learn a Gaussianmix-
ture in a state spacewith reduceddimension, whereasthe work in [8] captures
the training data by a nonparametric Parzen density estimator. Our approach
embarks on this latter strategy.

In previousworks, a variational model for level set basedimagesegmentation
incorporating color and texture [9] has already been successfullyused for pose
estimation [10]. It is not basedon background subtraction and, thus, does not
necessarilyneeda static background. We combine this method with the APF to
make the algorithm more 
exible for applications.

The paper is organizedas follows. We begin with a brief outline of the fun-
damental techniques,namely the APF and the variational model for image seg-
mentation. Afterwards, in Section 3, we present the probabilistic model and
motivate its choice. Furthermore, a full integration into a Bayesian framework
is derived. Section 4 combines the prior knowledgewith the methods from Sec-
tion 2 and applies it to multi-view 3D tracking. The e�ect of the learned prior
is demonstrated in Section 4. For our experiments we usea four cameraset-up
for tracking the lower part of a human body. Our articulated model consistsof
18 degreesof freedom, and we will report on the robustnessin the presenceof
occlusionsand noise.Finally, we comparethe results of our multi-view tracking
systemwith a marker basedtracking system.This provides a quantitativ e error
measure.The paper endswith a brief summary.

2 Previous Work

2.1 Annealed Particle Filter

The APF doesnot approximate a distribution, usually the posterior distribution,
likeother particle �lters [11]. Instead it performsa stochastic search for the global
minimum of an \energy" function V � 0 by using n particles that are random
variables in the state space.In accordancewith simulated annealing [12], the
weighting function is a Boltzmann-Gibbs measurethat is de�ned in terms of V



Lecture Notes in Computer Science 3

and an inverse\temp erature" � > 0 by

g(x) � � (dx) :=
1
Z

exp(� � V (x)) � (dx), (1)

where� is the Lebesguemeasureand Z :=
R

exp(� � V ) d� . Thesemeasureshave
the property that the probabilit y massconcentrates at the global minimum of
V as � ! 1 . For avoiding that the particles are misguidedby a local minimum,
an annealing scheme0 < � M < : : : < � 0 is used. It provokes that the particles
are weighted by smoothed versionsof the weighting function with � 0 where the
in
uence of the local minima is �rst reduced but then increasesgradually as
depicted in Figure 1. After the particles are initialized in accordancewith an

Fig. 1. Left: Illustration of the annealing e�ect with three runs. After weighting the
particles (black circles), the particles are resampled and di�used (gray circles). Due
to annealing, the particles migrate towards the global maximum without getting stuck
in the local maximum. Righ t: The poseestimate (right ) is obtained by weighting the
particles according to the segmentation result (left ). In return the poseresult is used
as shape prior for the segmentation of the next frame.

initial distribution, the APF with M annealingruns consistsof a prediction step
and an update step:

Prediction: Sample ~x ( i )
t +1 ;M from p(x t +1 jx( i )

t; 0) � (dxt +1 )
Update: For m from M to 0:

{ Calculate weight � ( i ) = g(~x( i )
t +1 ;m )� m and normalize weights to

P
i � ( i ) = 1.

{ Generate x ( i )
t +1 ;m by resampling with replacement, where ~x ( j )

t +1 ;m is selected
with probabilit y � ( j ) .

{ Di�use particles.

In the last run m = 0, the poseat time t + 1 is estimated by bx t +1 =
P

i � i ~x( i )
t +1 ;0,

and the particles are not di�used.

2.2 Variational Mo del for Segmentation

Level set based segmentation for r views splits the image domain 
 i of each
view into two regions 
 i

1 and 
 i
2 by level set functions � i : 
 i ! R, such
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that � i (x) > 0 if x 2 
 i
1 and � i (x) < 0 if x 2 
 i

2. The contour of an object
is thus represented by the zero-level line. The approach described in [13] usesa
variational model that integrates the contour of a prior pose� i

0(bx ) for each view
i . It minimizes the energy functional E(bx; � 1; : : : ; � r ) =

P r
i =1 E(bx; � i ) where

E(bx; � i ) = �
Z


 i
H (� i ) ln pi

1 + (1 � H (� i )) ln pi
2 dx

+ �
Z


 i

�
�r H (� i )

�
� dx + �

Z


 i

�
� i � � i

0(bx )
� 2

dx (2)

and H is a regularized version of the step function.
Minimizing the �rst term corresponds to maximizing the a-posteriori prob-

abilit y of all pixel assignments given the probabilit y densities pi
1 and pi

2 of 
 i
1

and 
 i
2, respectively. These densities are modeled by local Gaussiandensities.

The secondterm minimizes the length of the contour and smoothesthe resulting
contour. The last one penalizesthe discrepancyto the shape prior. The relative
in
uence of the three terms is controlled by the constant weighting parameters
� � 0 and � � 0. The interaction betweensegmentation with shapeprior and the
APF is illustrated in Figure 1. It has beenshown that this method is robust in
the caseof a non-static background and that it is also able to deal with clutter,
shadows, re
ections, and noise[13].

3 Prior Kno wledge in the Bayesian Framew ork

In the Bayesian framework, the particles are �rst predicted according to the
transition density p(x t +1 jx t ) and then updated by the likelihood p(yt +1 jx t +1 ),
whereyt is the observation at time t. The transition density, denotedby ppr ed, is
often modeled as zero-meanGaussiansincean accurate model is not available.
This weakmodel doesnot include prior knowledgein an appropriate way. Sincea
precisemodel of the dynamics is not available for many applications, we combine
the simple dynamical model ppr ed with the probabilit y density of the resulting
poseppose that leadsto a new transition density

p(x t +1 jx t ) :=
1

Z (x t )
ppr ed(x t +1 jx t ) ppose(x t +1 ), (3)

where Z (x t ) :=
R

ppr ed(x t +1 jx t ) ppose(x t +1 ) dxt +1 . As it is often expensive to
sample from the corresponding distribution, we show that it is possible to in-
tegrate ppose in the update step. Following the basic notations of [1, p. 6], we
obtain

p?(x t +1 jy0; : : : ; yt ) :=
Z

1
Z (x t )

ppr ed(x t +1 jx t ) p(x t jy0; : : : ; yt ) dxt , (4)

p(x t +1 jy0; : : : ; yt +1 ) =
p(yt +1 jx t +1 ) ppose(x t +1 ) p?(x t +1 jy0; : : : ; yt )R

p(yt +1 jx t +1 ) ppose(x t +1 ) p?(x t +1 jy0; : : : ; yt ) dxt +1
,(5)
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where Equation (4) describes the prediction step and Equation (5) the update
step. It is obvious that p? is a density function, but not a probabilit y den-
sity function, satisfying p(x t +1 jy0; : : : ; yt ) = ppose(x t +1 ) p?(x t +1 jy0; : : : ; yt ). Note
that sampling from the distribution ppr ed(x t +1 jx t )=Z (x t ) � (dxt +1 ) is equivalent
to samplefrom ppr ed(x t +1 jx t ) � (dxt +1 ) for a given x t . Hence,the prediction step
of the particle �lter remains unchanged,while the particles are weighted by the
product p(yt +1 jx t +1 ) ppose(x t +1 ) instead of the likelihood during updating.

Only in rare caseswe are able to give an analytical expressionfor ppose .
Instead, we suggestto learn the probabilit y of the various posesfrom a �nite
set of training samples.For a nonparametric estimate of the density we use a
Parzen-Rosenblatt estimator [14]

ppose(x) =
1

(2 � � 2)d=2 N

NX

i =1

exp
�

�
d(x; x i )2

2� 2

�
(6)

to deal with the complexity and the non-Gaussianbehavior of the distribution,
whereN denotesthe number of training samplesand the function d is a distance
measurein E . This estimatedependson the window size� that is necessaryto be
chosenin an appropriate way. While a small valueof � forcesthe particles to stick
to the training data, a greater value of � approximates the density smoother.
In order to cope with this, we chose� as the maximum secondnearestneighbor
distance betweenall training samples,i.e. the two neighbors of a sampleare at
least within a standard deviation. Other valuesfor the window sizeare discussed
in detail in [15].

Fig. 2. The Parzen estimate subject to the angles of the knee joints. Left: Using the
Euclidean distance leadsto a domination of the kneejoints. The density rapidly declines
to zero as the valuesdi�er from the data. Righ t: The in
uence of the kneesis reduced
by the weighted Euclidean distance.

We have not yet speci�ed the norm for evaluating the distance between a
training sample x i and a value x in the d-dimensional state spaceE for Equa-
tion (6). The commonly used Euclidean distance weights all dimensionsof the
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state spaceuniformly. This means in the context of human motion estimation
that a discrepancyof the kneecontributes to the measureddistance in the same
matter as a discrepancyof the ankle. As illustrated in Figure 2, this involvesa
dominated measureby joints with a relatively largeanatomical rangeasthe knee
in comparison to joints with a small range as the ankle. Therefore, we propose
using a weighted Euclidean distance measurethat incorporates the variance of
the various joints, i.e.

d(x; x i ) :=

vu
u
t

dX

k=1

((x)k � (x i )k )2

� k
, � k :=

P N
i =1

�
(x i )k � (x)k

� 2

N � 1
(7)

where (x)k denotes the arithmetic mean of the samplesin the kth dimension.
This distance is generally applied in image analysis [16] and is equivalent to a
Mahalanobis distance in the casethat the covariance matrix is diagonal. A full
covariance matrix signi�can tly increasesthe computation in high dimensional
spaces.

Additionally , the prior knowledge is suitable for setting the covariance ma-
trix of the zero-meanGaussiandensity ppr ed. One approach is to estimate the
variance of the di�erences between succeedingsamples.However, this has the
drawback that training data from a quite large range of dynamics are neededa
priori. In the casewhere the sample data only include walking sequences,the
prediction is not accurate for tracking a running person.Thus setting the vari-
ancesproportional to � k is generally applicable and better than adjusting the
parametersmanually. We remark �nally that not all parametersof a posecan be
learned. For example, it doesnot make senseto learn the position of an object.
Therefore, the density is usually estimated in a slightly lower dimensional space
than the state space.

Fig. 3. Feature extraction by level set segmentation. From left to righ t: (a) Original
image. (b) Extracted silhouette. (c) The smoothed contour is slightly deformed by the
markers needed for the marker based system. (d) 3D model with 18 DOF used for
tracking.
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4 Application to Multi-View 3D Tracking

4.1 Feature extraction

For weighting the particles during the update step of the APF, features from
an image yt have to be extracted. In previous works, only low-level features
assuminga static background as foreground silhouette, edges,or motion bound-
aries [3,6] were considered.In our work, the level set basedimage segmentation
from Section2.2 with the experimentally determined parameter � = 4 is applied
using the estimated posebx t � 1 from the previous time step. The resulting level
set describes the silhouette and the contour of the observed object. We remark
that the extraction of this image feature is not independent of the estimate any-
more. This yields a weighting function that depends not only on the current
image and the particle itself, but also on the whole set of particles de�ning the
estimate. Even though particle �lters already provide an interaction between
the particles due to the normalization of the weights, it holds the danger that
a segmentation error leads to an estimate error and vice-versa. However, the
in
uence of the estimate on the segmentation can be regulated by the parameter
� . Our experiments, where we set � = 0:04, show indeed that a proper value for
this parameter avoids this problem.

4.2 W eigh ting Function

The error betweena particle and the observed image y is calculated pixel-wise
similar to [3]. Each particle x 2 E determines a pose of our 3D model. The
projected surface of the model into the image plane gives a set of silhouette
points SS

i (x) and a set of contour points SC
i (x) for each view i = 1; : : : ; r , where

a set contains all pixels p 2 R2 of the silhouette and the contour, respectively.
The silhouette Sy

i of the observed object is obtained from the level set function
� i , where Sy

i (p) = 1 if � i (p) > 0 and Sy
i (p) = 0, otherwise. The contour Cy

i is
just the boundary of the silhouette smoothed by a Gaussian�lter and normalized
between0 and 1, cf. Figure 3. Then the error functions are de�ned by

errL (x; y; i ) :=
1�

�SL
i (x)

�
�

X

p2 SL
i (x )

(1 � L y
i (p))2. (8)

for L 2 f S;Cg. Following Section 3, we integrate the learned prior knowledge
in form of the probabilit y density ppose . Altogether the energy function of the
weighting function (1) can be written as

V (x; y) :=
rX

i =1

(errS (x; y; i ) + errC (x; y; i )) � � ln(ppose(x)), (9)

where the parameter � � 0 controls the in
uence of the prior knowledge. It is
obvious that V � 0 and g(x; y) � m � (dx) is thus a Boltzmann-Gibbs measure.
Furthermore, the constant term (2 � � 2)d=2 of ppose can be omitted since it is
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canceledout when normalizing the weights. Note that the prior knowledge is
embedded in accordancewith the Bayesian framework by multiplying the old
weighting function with (ppose)� . Our method performs well with � 2 [0:06; 0:1]
as we demonstrate below.
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Fig. 4. Left: Results for a walking sequencecaptured by four cameras. Righ t: The
joint anglesof the right and left knee. Solid (thin): Mark er basedsystem. Solid (thick):
Prior with weighted distance. Dashed: Without prior (Tracking fails).

5 Exp erimen ts

In our experiments we track the lower part of a human body using four cali-
brated and synchronized cameras.The sequencesare simultaneously captured
by a commercial marker basedsystem3 allowing a quantitativ e error analysis.
The black leg suit and the attached retro
ectiv e markers are required by the
marker basedsystem, seeFigure 3.

The training data used for learning ppose consists of 480 samplesobtained
from walking sequencesof the sameperson.The data wascaptured by the com-
mercial systembefore recording the test sequences.The parametersof the APF
are set during the experiments as follows: 10 annealing runs are applied with
� m = 8(1� 1:6m � 11) and 250particles. The resamplingstep includesa crossover
operator [3], and the particles are di�used according to a zero-meanGaussian
distribution with covariance matrix determined by 0:1 � k , see(7). The initial
distribution is the Dirac measureof the initial pose.Our implementation took
several minutes for processing4 imagesof one frame.

Figure 4 visualizesresults of a walking sequencethat is not contained in the
training data. For the sake of comparison, the results of the APF without using
prior knowledge at all are also visualized in Figure 5. The estimated anglesof
the left and the right knee are shown in the diagram in Figure 4 where the
values acquired from the marker basedsystem provide a ground truth with an

3 We used the Motion Analysis system with 8 Falcon cameras
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Fig. 5. Visual comparison of results. From left to righ t: (a) Without prior. (b) With-
out weighted distance. (c) With weighted distance.

accuracy of about 3 degrees.It allows to analyze the quantitativ e error of our
method in contrast to previousworks, e.g. [3], wherevisual comparisonsindicate
roughly the accuracyof the poseestimates.The root mean square(RMS) error
for both kneesis 6:2 degrees(red line). While tracking with 100 particles failed,
our method also succeededusing 150 and 200 particles with RMS errors 15:3
and 8:8 degrees,respectively.

Fig. 6. Results for distorted sequences(4 of 181 frames). Only one camera view is
shown. Top: Occlusions by 30 random rectangles. Bottom: 25% pixel noise.

Figure 6 shows the robustnessin the presenceof noiseand occlusions.Each
frame has been independently distorted by 25% pixel noise and by occluding
rectangles of random size, position and gray value. The legs are tracked over
the whole sequencewith RMS errors 8:2 and 9:0 degrees,respectively. Finally,
we applied the method to a sequencewith scissor jumps, seeFigure 7. This
demonstrates that our approach is not restricted to the motion patterns that
were used for training as it is when learning the patterns instead of the poses.
However, the 7th image also highlights the limitations of the prior. Since our
training data are walking sequences,the probabilit y that both kneesare bended
is almost zero, cf. Figure 2. Therefore a more probable poseis selectedwith less
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bendedknees.It yields a higher hip of the 3D model than in the image.Overall,
the RMS error is 8:4 degrees.A similar error can be observed for the feet since
they are more bended for jumping as for walking. Nevertheless, the result is
much better than without using any prior.

Fig. 7. Ro ws 1-2: Results for a sequencewith scissorjumps (8 of 141 frames). Ro w 3:
The 3D models for the 4 poseson the left hand side of rows 1 and 2 are shown from a
di�eren t viewpoint.

6 Summary

We have presented a method that integrates a-priori knowledgeabout the dis-
tribution of posecon�gurations into the generalmodel of particle �lters as well
as into the special APF scheme. Thereby, the prior ensuresthat particles rep-
resenting a familiar poseare favored. Since only single posecon�gurations and
not whole motion patterns are learned,a relatively small set of training samples
is su�cien t for capturing a variety of movements. Our experiments provide a
quantitativ e error analysis that clearly demonstratesthe increasedaccuracy of
the APF due to the incorporated prior knowledge. Moreover, we have shown
that our approach combined with a variational model for level set basedimage
segmentation is able to deal with distorted images,a casewhere common tech-
niquesthat rely on background substraction fail. Sincewe were restricted to use
arti�cial distortions by the marker-basedsystem, further work will be done to
evaluate the system in real examples like crowded and outdoor scenes.Work
on acquiring training data from motion databasesand handling occlusionsby
clothes is also in progress.
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