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Abstract. In this paper we present an approach to use prior knowledge
in the particle filter framework for 3D tracking, i.e. estimating the state
parameters such as joint angles of a 3D object. The probability of the
object’s states, including correlations between the state parameters, is
learned a priori from training samples. We introduce a framework that
integrates this knowledge into the family of particle filters and partic-
ularly into the annealed particle filter scheme. Furthermore, we show
that the annealed particle filter also works with a variational model for
level set based image segmentation that does not rely on background
subtraction and, hence, does not depend on a static background. In our
experiments, we use a four camera set-up for tracking the lower part of
a human body by a kinematic model with 18 degrees of freedom. We
demonstrate the increased accuracy due to the prior knowledge and the
robustness of our approach to image distortions. Finally, we compare the
results of our multi-view tracking system quantitatively to the outcome
of an industrial marker based tracking system.

1 Introduction

Model-based 3D tracking means to estimate the pose of a 3D object where the
pose is determined by a value in a state space E. In the case of an articulated
model of a human body, the pose is completely described by a 3D rigid body
motion that has 6 degrees of freedom and the joint angles, which are 12 in
this paper. This yields a high-dimensional state space that makes the tracking
process difficult. Particle filters [1], however, can deal with high dimensions. A
basic particle filter termed condensation has been used for contour tracking [2].
However, this algorithm lacks performance for 3D tracking. A heuristic that is
based on these filters and that was successfully used for multi-view 3D tracking is
the annealed particle filter (APF) [3]. In contrast to conventional particle filters,
this method does not estimate the posterior distribution. Instead it performs
a stochastic search for the global maximum of a weighting function. The two
main drawbacks of the APF as applied in [3] are the simplified, unconstrained
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kinematic model that results in a large number of particles needed for tracking
and the assumption of a static background. The present paper addresses the first
one by considering correlations between the state parameters as a soft constraint
where the correlations are learned a priori. Using a level set based segmentation
instead of background subtraction lifts the second assumption.

The idea to improve the model for 3D tracking by integrating prior knowledge
is not new. In [4], training data acquired with a commercial motion capture sys-
tem was used to learn a dynamical motion model (e.g. walking). This stabilizes
the tracking as long as the assumptions are valid, but otherwise it is mislead-
ing and results in tracking failures. Hence, a large motion database is needed
to learn more complicated motion models [5]. Hard constraints were also intro-
duced for the 3D model such as anatomical joint angle limits and prevention of
self-intersections [6]. This reduces the state space, but it does not consider the
probability of different poses. In [7], it was suggested to learn a Gaussian mix-
ture in a state space with reduced dimension, whereas the work in [8] captures
the training data by a nonparametric Parzen density estimator. Our approach
embarks on this latter strategy.

In previous works, a variational model for level set based image segmentation
incorporating color and texture [9] has already been successfully used for pose
estimation [10]. It is not based on background subtraction and, thus, does not
necessarily need a static background. We combine this method with the APF to
make the algorithm more flexible for applications.

The paper is organized as follows. We begin with a brief outline of the fun-
damental techniques, namely the APF and the variational model for image seg-
mentation. Afterwards, in Section 3, we present the probabilistic model and
motivate its choice. Furthermore, a full integration into a Bayesian framework
is derived. Section 4 combines the prior knowledge with the methods from Sec-
tion 2 and applies it to multi-view 3D tracking. The effect of the learned prior
is demonstrated in Section 4. For our experiments we use a four camera set-up
for tracking the lower part of a human body. Our articulated model consists of
18 degrees of freedom, and we will report on the robustness in the presence of
occlusions and noise. Finally, we compare the results of our multi-view tracking
system with a marker based tracking system. This provides a quantitative error
measure. The paper ends with a brief summary.

2 Previous Work

2.1 Annealed Particle Filter

The APF does not approximate a distribution, usually the posterior distribution,
like other particle filters [11]. Instead it performs a stochastic search for the global
minimum of an “energy” function V ≥ 0 by using n particles that are random
variables in the state space. In accordance with simulated annealing [12], the
weighting function is a Boltzmann-Gibbs measure that is defined in terms of V
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and an inverse “temperature” β > 0 by

g(x)β λ(dx) :=
1

Z
exp (−βV (x)) λ(dx), (1)

where λ is the Lebesgue measure and Z :=
∫

exp(−βV ) dλ. These measures have
the property that the probability mass concentrates at the global minimum of
V as β → ∞. For avoiding that the particles are misguided by a local minimum,
an annealing scheme 0 < βM < . . . < β0 is used. It provokes that the particles
are weighted by smoothed versions of the weighting function with β0 where the
influence of the local minima is first reduced but then increases gradually as
depicted in Figure 1. After the particles are initialized in accordance with an

Fig. 1. Left: Illustration of the annealing effect with three runs. After weighting the
particles (black circles), the particles are resampled and diffused (gray circles). Due
to annealing, the particles migrate towards the global maximum without getting stuck
in the local maximum. Right: The pose estimate (right) is obtained by weighting the
particles according to the segmentation result (left). In return the pose result is used
as shape prior for the segmentation of the next frame.

initial distribution, the APF with M annealing runs consists of a prediction step
and an update step:

Prediction: Sample x̃
(i)
t+1,M from p(xt+1|x

(i)
t,0) λ(dxt+1)

Update: For m from M to 0:

– Calculate weight π(i) = g(x̃
(i)
t+1,m)βm and normalize weights to

∑
i π(i) = 1.

– Generate x
(i)
t+1,m by resampling with replacement, where x̃

(j)
t+1,m is selected

with probability π(j).
– Diffuse particles.

In the last run m = 0, the pose at time t+1 is estimated by x̂t+1 =
∑

i πi x̃
(i)
t+1,0,

and the particles are not diffused.

2.2 Variational Model for Segmentation

Level set based segmentation for r views splits the image domain Ωi of each
view into two regions Ωi

1 and Ωi
2 by level set functions Φi : Ωi → R, such
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that Φi(x) > 0 if x ∈ Ωi
1 and Φi(x) < 0 if x ∈ Ωi

2. The contour of an object
is thus represented by the zero-level line. The approach described in [13] uses a
variational model that integrates the contour of a prior pose Φi

0(x̂ ) for each view
i. It minimizes the energy functional E(x̂, Φ1, . . . , Φr) =

∑r
i=1 E(x̂, Φi) where

E(x̂, Φi) = −

∫

Ωi

H(Φi) ln pi
1 + (1 − H(Φi)) ln pi

2 dx

+ ν

∫

Ωi

∣∣∇H(Φi)
∣∣ dx + λ

∫

Ωi

(
Φi − Φi

0(x̂ )
)2

dx (2)

and H is a regularized version of the step function.

Minimizing the first term corresponds to maximizing the a-posteriori prob-
ability of all pixel assignments given the probability densities pi

1 and pi
2 of Ωi

1

and Ωi
2, respectively. These densities are modeled by local Gaussian densities.

The second term minimizes the length of the contour and smoothes the resulting
contour. The last one penalizes the discrepancy to the shape prior. The relative
influence of the three terms is controlled by the constant weighting parameters
ν ≥ 0 and λ ≥ 0. The interaction between segmentation with shape prior and the
APF is illustrated in Figure 1. It has been shown that this method is robust in
the case of a non-static background and that it is also able to deal with clutter,
shadows, reflections, and noise [13].

3 Prior Knowledge in the Bayesian Framework

In the Bayesian framework, the particles are first predicted according to the
transition density p(xt+1|xt) and then updated by the likelihood p(yt+1|xt+1),
where yt is the observation at time t. The transition density, denoted by ppred, is
often modeled as zero-mean Gaussian since an accurate model is not available.
This weak model does not include prior knowledge in an appropriate way. Since a
precise model of the dynamics is not available for many applications, we combine
the simple dynamical model ppred with the probability density of the resulting
pose ppose that leads to a new transition density

p(xt+1|xt) :=
1

Z(xt)
ppred(xt+1|xt) ppose(xt+1), (3)

where Z(xt) :=
∫

ppred(xt+1|xt) ppose(xt+1) dxt+1. As it is often expensive to
sample from the corresponding distribution, we show that it is possible to in-
tegrate ppose in the update step. Following the basic notations of [1, p. 6], we
obtain

p?(xt+1|y0, . . . , yt) :=

∫
1

Z(xt)
ppred(xt+1|xt) p(xt|y0, . . . , yt) dxt, (4)

p(xt+1|y0, . . . , yt+1) =
p(yt+1|xt+1) ppose(xt+1) p?(xt+1|y0, . . . , yt)∫

p(yt+1|xt+1) ppose(xt+1) p?(xt+1|y0, . . . , yt) dxt+1
,(5)
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where Equation (4) describes the prediction step and Equation (5) the update
step. It is obvious that p? is a density function, but not a probability den-
sity function, satisfying p(xt+1|y0, . . . , yt) = ppose(xt+1) p?(xt+1|y0, . . . , yt). Note
that sampling from the distribution ppred(xt+1|xt)/Z(xt) λ(dxt+1) is equivalent
to sample from ppred(xt+1|xt) λ(dxt+1) for a given xt. Hence, the prediction step
of the particle filter remains unchanged, while the particles are weighted by the
product p(yt+1|xt+1) ppose(xt+1) instead of the likelihood during updating.

Only in rare cases we are able to give an analytical expression for ppose.
Instead, we suggest to learn the probability of the various poses from a finite
set of training samples. For a nonparametric estimate of the density we use a
Parzen-Rosenblatt estimator [14]

ppose(x) =
1

(2 π σ2)d/2 N

N∑

i=1

exp

(
−

d(x, xi)
2

2 σ2

)
(6)

to deal with the complexity and the non-Gaussian behavior of the distribution,
where N denotes the number of training samples and the function d is a distance
measure in E. This estimate depends on the window size σ that is necessary to be
chosen in an appropriate way. While a small value of σ forces the particles to stick
to the training data, a greater value of σ approximates the density smoother.
In order to cope with this, we chose σ as the maximum second nearest neighbor
distance between all training samples, i.e. the two neighbors of a sample are at
least within a standard deviation. Other values for the window size are discussed
in detail in [15].

Fig. 2. The Parzen estimate subject to the angles of the knee joints. Left: Using the
Euclidean distance leads to a domination of the knee joints. The density rapidly declines
to zero as the values differ from the data. Right: The influence of the knees is reduced
by the weighted Euclidean distance.

We have not yet specified the norm for evaluating the distance between a
training sample xi and a value x in the d-dimensional state space E for Equa-
tion (6). The commonly used Euclidean distance weights all dimensions of the
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state space uniformly. This means in the context of human motion estimation
that a discrepancy of the knee contributes to the measured distance in the same
matter as a discrepancy of the ankle. As illustrated in Figure 2, this involves a
dominated measure by joints with a relatively large anatomical range as the knee
in comparison to joints with a small range as the ankle. Therefore, we propose
using a weighted Euclidean distance measure that incorporates the variance of
the various joints, i.e.

d(x, xi) :=

√√√√
d∑

k=1

((x)k − (xi)k)
2

ρk
, ρk :=

∑N
i=1

(
(xi)k − (x)k

)2

N − 1
(7)

where (x)k denotes the arithmetic mean of the samples in the kth dimension.
This distance is generally applied in image analysis [16] and is equivalent to a
Mahalanobis distance in the case that the covariance matrix is diagonal. A full
covariance matrix significantly increases the computation in high dimensional
spaces.

Additionally, the prior knowledge is suitable for setting the covariance ma-
trix of the zero-mean Gaussian density ppred. One approach is to estimate the
variance of the differences between succeeding samples. However, this has the
drawback that training data from a quite large range of dynamics are needed a
priori. In the case where the sample data only include walking sequences, the
prediction is not accurate for tracking a running person. Thus setting the vari-
ances proportional to ρk is generally applicable and better than adjusting the
parameters manually. We remark finally that not all parameters of a pose can be
learned. For example, it does not make sense to learn the position of an object.
Therefore, the density is usually estimated in a slightly lower dimensional space
than the state space.

Fig. 3. Feature extraction by level set segmentation. From left to right: (a) Original
image. (b) Extracted silhouette. (c) The smoothed contour is slightly deformed by the
markers needed for the marker based system. (d) 3D model with 18 DOF used for
tracking.



Lecture Notes in Computer Science 7

4 Application to Multi-View 3D Tracking

4.1 Feature extraction

For weighting the particles during the update step of the APF, features from
an image yt have to be extracted. In previous works, only low-level features
assuming a static background as foreground silhouette, edges, or motion bound-
aries [3, 6] were considered. In our work, the level set based image segmentation
from Section 2.2 with the experimentally determined parameter ν = 4 is applied
using the estimated pose x̂t−1 from the previous time step. The resulting level
set describes the silhouette and the contour of the observed object. We remark
that the extraction of this image feature is not independent of the estimate any-
more. This yields a weighting function that depends not only on the current
image and the particle itself, but also on the whole set of particles defining the
estimate. Even though particle filters already provide an interaction between
the particles due to the normalization of the weights, it holds the danger that
a segmentation error leads to an estimate error and vice-versa. However, the
influence of the estimate on the segmentation can be regulated by the parameter
λ. Our experiments, where we set λ = 0.04, show indeed that a proper value for
this parameter avoids this problem.

4.2 Weighting Function

The error between a particle and the observed image y is calculated pixel-wise
similar to [3]. Each particle x ∈ E determines a pose of our 3D model. The
projected surface of the model into the image plane gives a set of silhouette
points SS

i (x) and a set of contour points SC
i (x) for each view i = 1, . . . , r, where

a set contains all pixels p ∈ R
2 of the silhouette and the contour, respectively.

The silhouette Sy
i of the observed object is obtained from the level set function

Φi, where Sy
i (p) = 1 if Φi(p) > 0 and Sy

i (p) = 0, otherwise. The contour Cy
i is

just the boundary of the silhouette smoothed by a Gaussian filter and normalized
between 0 and 1, cf. Figure 3. Then the error functions are defined by

errL(x, y, i) :=
1∣∣SL

i (x)
∣∣

∑

p∈SL

i
(x)

(1 − Ly
i (p))2. (8)

for L ∈ {S, C}. Following Section 3, we integrate the learned prior knowledge
in form of the probability density ppose. Altogether the energy function of the
weighting function (1) can be written as

V (x, y) :=
r∑

i=1

(errS(x, y, i) + errC(x, y, i)) − η ln(ppose(x)), (9)

where the parameter η ≥ 0 controls the influence of the prior knowledge. It is
obvious that V ≥ 0 and g(x, y)βmλ(dx) is thus a Boltzmann-Gibbs measure.
Furthermore, the constant term (2 π σ2)d/2 of ppose can be omitted since it is
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canceled out when normalizing the weights. Note that the prior knowledge is
embedded in accordance with the Bayesian framework by multiplying the old
weighting function with (ppose)

η. Our method performs well with η ∈ [0.06, 0.1]
as we demonstrate below.
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Fig. 4. Left: Results for a walking sequence captured by four cameras. Right: The
joint angles of the right and left knee. Solid (thin): Marker based system. Solid (thick):
Prior with weighted distance. Dashed: Without prior (Tracking fails).

5 Experiments

In our experiments we track the lower part of a human body using four cali-
brated and synchronized cameras. The sequences are simultaneously captured
by a commercial marker based system3 allowing a quantitative error analysis.
The black leg suit and the attached retroflective markers are required by the
marker based system, see Figure 3.

The training data used for learning ppose consists of 480 samples obtained
from walking sequences of the same person. The data was captured by the com-
mercial system before recording the test sequences. The parameters of the APF
are set during the experiments as follows: 10 annealing runs are applied with
βm = 8 (1−1.6m−11) and 250 particles. The resampling step includes a crossover
operator [3], and the particles are diffused according to a zero-mean Gaussian
distribution with covariance matrix determined by 0.1 ρk, see (7). The initial
distribution is the Dirac measure of the initial pose. Our implementation took
several minutes for processing 4 images of one frame.

Figure 4 visualizes results of a walking sequence that is not contained in the
training data. For the sake of comparison, the results of the APF without using
prior knowledge at all are also visualized in Figure 5. The estimated angles of
the left and the right knee are shown in the diagram in Figure 4 where the
values acquired from the marker based system provide a ground truth with an

3 We used the Motion Analysis system with 8 Falcon cameras
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Fig. 5. Visual comparison of results. From left to right: (a) Without prior. (b) With-
out weighted distance. (c) With weighted distance.

accuracy of about 3 degrees. It allows to analyze the quantitative error of our
method in contrast to previous works, e.g. [3], where visual comparisons indicate
roughly the accuracy of the pose estimates. The root mean square (RMS) error
for both knees is 6.2 degrees (red line). While tracking with 100 particles failed,
our method also succeeded using 150 and 200 particles with RMS errors 15.3
and 8.8 degrees, respectively.

Fig. 6. Results for distorted sequences (4 of 181 frames). Only one camera view is
shown. Top: Occlusions by 30 random rectangles. Bottom: 25% pixel noise.

Figure 6 shows the robustness in the presence of noise and occlusions. Each
frame has been independently distorted by 25% pixel noise and by occluding
rectangles of random size, position and gray value. The legs are tracked over
the whole sequence with RMS errors 8.2 and 9.0 degrees, respectively. Finally,
we applied the method to a sequence with scissor jumps, see Figure 7. This
demonstrates that our approach is not restricted to the motion patterns that
were used for training as it is when learning the patterns instead of the poses.
However, the 7th image also highlights the limitations of the prior. Since our
training data are walking sequences, the probability that both knees are bended
is almost zero, cf. Figure 2. Therefore a more probable pose is selected with less
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bended knees. It yields a higher hip of the 3D model than in the image. Overall,
the RMS error is 8.4 degrees. A similar error can be observed for the feet since
they are more bended for jumping as for walking. Nevertheless, the result is
much better than without using any prior.

Fig. 7. Rows 1-2: Results for a sequence with scissor jumps (8 of 141 frames). Row 3:
The 3D models for the 4 poses on the left hand side of rows 1 and 2 are shown from a
different viewpoint.

6 Summary

We have presented a method that integrates a-priori knowledge about the dis-
tribution of pose configurations into the general model of particle filters as well
as into the special APF scheme. Thereby, the prior ensures that particles rep-
resenting a familiar pose are favored. Since only single pose configurations and
not whole motion patterns are learned, a relatively small set of training samples
is sufficient for capturing a variety of movements. Our experiments provide a
quantitative error analysis that clearly demonstrates the increased accuracy of
the APF due to the incorporated prior knowledge. Moreover, we have shown
that our approach combined with a variational model for level set based image
segmentation is able to deal with distorted images, a case where common tech-
niques that rely on background substraction fail. Since we were restricted to use
artificial distortions by the marker-based system, further work will be done to
evaluate the system in real examples like crowded and outdoor scenes. Work
on acquiring training data from motion databases and handling occlusions by
clothes is also in progress.
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