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Abstract

Recently, a few works have been proposed to model the
uncertainty of the future human motion. These works do
not forecast a single sequence but multiple sequences for
the same observation. While these works focused on in-
creasing the diversity, this work focuses on keeping a high
quality of the forecast sequences even for very long time
horizons of up to 30 seconds. In order to achieve this goal,
we propose to forecast the intention of the person ahead of
time. This has the advantage that the generated human mo-
tion remains goal oriented and that the motion transitions
between two actions are smooth and highly realistic. We
furthermore propose a new quality score for evaluation that
correlates better with human perception than other metrics.
The results and a user study show that our approach fore-
casts multiple sequences that are more plausible compared
to the state-of-the-art.

1. Introduction
Anticipating human motion is highly relevant for many

interactive activities such as sports, manufacturing, or navi-
gation [25] and significant progress has been made in fore-
casting human motion [8, 9, 10, 11, 15, 17, 23, 26, 35].
Most progress has been made in anticipating motion over a
short time horizon of around half a second. However, these
methods fail when anticipating longer time horizons as they
either produce unrealistic poses or the motion freezes. An-
other issue that occurs when the time horizon gets larger is
the fact that there are more than one future sequence that are
plausible for a single observed sequence of human motion
as it is shown in Figure 2. Going from a short time horizon
of less than one second to a larger time horizon of a few sec-
onds therefore imposes the following challenges: (a) How
can we model the uncertainty of the future? (b) How can
we ensure that the motion remains plausible? (c) How can
we measure the quality of methods that generate more than
one sequence?

Handling the uncertainty of the future has been so far
only addressed in very few recent works [4, 28, 37] for hu-
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man motion anticipation. These approaches are able to fore-
cast diverse sequences from the same observation, but the
quality of the sequences decreases for longer time horizons
beyond 1 second. In this work, we also propose a network
that generates multiple sequences as shown in Figure 2, but
our goal is to generate more plausible sequences for time
horizons of multiple seconds. In order to achieve this goal,
we not only model the human motion but also the inten-
tion of the person as illustrated in Figure 1. In fact, human
motion anticipation depends on two factors, namely the past
motion and the intention. The latter, which is ignored by ex-
isting works, is very important for longer sequences since a
motion without a goal is perceived as random and unreal-
istic. We therefore model the intention as discrete actions
and propose to forecast the intention as well as the human
motion. The key aspect is that our model forecasts the in-
tention ahead of time and that the forecast human motion is
conditioned on the past motion and on the forecast intention
as shown in Figure 1.

It, however, remains an open issue how methods that
generate multiple sequences are best compared. Recent
works suggest to evaluate both the quality of the generated
motion as well as the sample diversity. While diversity is
commonly measured by using the average pairwise distance
between multiple generated predictions [4, 37], measuring
the quality is still an open problem. In [37], for instance,
multiple sequences are forecast but only the error of the se-
quence with the lowest error is reported. Such measures are
misleading since they evaluate only one forecast sequence
while the other sequences can be implausible. In fact, we
show in the supplementary material that this measure can be
easily fooled by a simple but unrealistic baseline approach,
yielding competitive results on clearly unrealistic motion.
In [4], pre-trained skeleton-based action classifiers are used
to compute the inception score and a quality score over all
generated sequences. While the inception score is an indica-
tor for plausibility it is highly depended on the model. The
authors did not make the models publicly available, making
an evaluation very difficult. Normalized Power Spectrum
Similarity [10] (NPSS) evaluates sequences in the power
spectrum to account for frequency shifts that cannot be cap-



Figure 1: Intention-based human motion anticipation. Given a human motion input sequence (red-blue skeletons), our method
forecasts the intention of the person ahead of time (top row) and the human motion (green-yellow skeletons) conditioned on
the previous motion and the future intention. This allows not only long-term forecasting but also realistic transitions between
different actions. For example, the blue and orange boxes show how the motion already prepares for the next action leaning
down or standing, respectively.

Figure 2: Our approach forecasts multiple sequences of
plausible future human motion for long time horizons. Each
row shows a different prediction of three seconds made
by our model, given the same input sequence (Discussion
from Human3.6M [14]). The red-blue skeletons represent
the ground-truth input while the green-yellow skeletons are
model predictions. During the first second, the model gen-
erates fairly consistent human poses but it starts to generate
diverse but realistic human motion after 1 second. The qual-
itative results are best viewed in the supplementary video.

tured by MSE. However, NPSS is uni-modal as it compares
the motion to a single ground-truth sequence. We therefore
propose a new complementary similarity score that mea-
sures the normalized directional motion similarity between
motion snippets of forecast and real motions that have the
same semantic meaning. The measure has the advantage
that it takes the multi-modality of human motion into ac-
count and that it correlates much better with human percep-
tion than NPSS.

Our contribution is therefore two-fold:

• We propose a novel quality score for long-term human
motion anticipation that measures the plausibility of
multiple generated sequences and that correlates better
with human perception than other metrics.

• We propose a novel approach for human motion fore-
casting that forecasts the intention of a person ahead of
time and that is capable of generating multiple plausi-
ble future sequences for long time horizons.

2. Related Work
Human Motion Anticipation: In recent years, deep neural
networks [12, 6, 9] have been used to synthesize and antic-

ipate human motion. Auto-regressive methods [9, 23, 38]
model first-order motion derivatives using the sequence-to-
sequence model [32] popularized in machine translation.
QuaterNet [27] replaces the exponential map representa-
tion with quaternions, which do not suffer from common
3D rotational problems such as gimbal locks. Further-
more, the authors show that the model can generate cyclic
motion for very long time horizons when frame-wise user
control is provided, similar to [16, 18, 19, 31]. A simi-
lar approach is utilized in Hierarchical Motion Recurrent
networks [20] and Structured Prediction [2] where novel
RNN structures are proposed which better represent skeletal
structures. Graph-convolutional neural networks [22] can
be utilized to learn human motion in trajectory space, us-
ing Discrete Cosine Transform, rather than in pose space.
Highly competitive results are achieved by recent attention-
based models [21]. The idea of utilizing discrete represen-
tations for human poses was first proposed in [33] where a
conditional restricted Boltzmann machine (RBM) is used
as a generative model for synthesizing or filling missing
pose data. While RBMs or Deep Belief Networks learn a
binary representation of the data, they are nowadays out-
performed by other approaches that learn continuous hid-
den states such as RNNs. Recently, an adversarial genera-
tive grammar model was proposed in [28] for future predic-
tion where stochastic production rules are learned jointly
with its latent non-terminal representations. By select-
ing various production rules during inference, many dif-
ferent forecast outputs can be generated. However, our
experiments show that the model does not forecast long
term natural human motion. Recently, models based on
adversarial training gained some attention: Convolutional
sequence-to-sequence models [17] utilize a convolutional
encoder-decoder structure with the adversarial loss to pre-
vent overfitting. The adversarial geometry-aware encoder-
decoder [11] utilizes two adversarial losses: one to tackle
motion discontinuity, which is a common problem in previ-
ous models, and one to ensure that realistic motion is gen-
erated. On top of that, the geodesic instead of the Euclidean
distance is used as reconstruction loss. MotionGAN [29]
frames human motion anticipation as an inpainting prob-
lem. Wang et al. [35] combine an adversarial loss with rein-



forcement learning to forecast realistic poses. Early works
on multi-modal human motion anticipation utilize stochas-
tic conditional variational autoencoders [30, 7]. Recently,
novel sampling methods [4, 37] for conditional variational
autoencoders were proposed for multi-modal human motion
anticipation. While Mix-and-Match [4] randomly perturbs
the hidden state to increase stochasticity, DLow [37] maps
a random variable to a latent code. It employs a two-stage
approach by first learning a conditional variational autoen-
coder and then the mapping.
Human Motion Evaluation: Evaluating complex multi-
variate time series with a high degree of stochasticity, such
as human motion, remains a challenging research prob-
lem. The simplest approaches calculate the Euclidean
distance [12, 15, 23] to a target sequence independently
for each time step, which works well for very short time
horizons (< 0.5s). However, frame-wise distances com-
pletely ignore motion dynamics and forecasting only the
last pose results in competitive results [23]. To address
these challenges, frequency-based metrics have been pro-
posed. Frequency-based methods such as NPSS [10] incor-
porate motion information, but they accumulate it over the
entire sequence. On top of that, distances in the frequency
domain are difficult to interpret and make it hard to pinpoint
when a motion can still be considered as realistic or not. In
[4] the inception score [13] is adapted by training a model
on skeleton data to evaluate the quality of the generated se-
quences. Complementary, a binary classifier is trained for
quality assessment. However, both models are not publicly
available, making comparisons difficult. While the work
[37] uses the average pairwise distance to measure diversity
as [4], it only evaluates the best generated sequence using
the quality metrics from [12, 15, 23].

3. Stochastic Human Motion Anticipation
from Intention

In this work, we address the task of forecasting human
motion. This means that we observe 3d human skeletons
for t frames, which are denoted by xt1 = (x1, . . . , xt) ∈
Rt×d and where d is the feature dimension that represents
the human pose, and our goal is to forecast plausible fu-
ture pose sequences x̂Tt+1 ∼ p(xTt+1|xt1) where x̂Tt+1 =

(x̂t+1, . . . , x̂T ) ∈ R(T−t)×d and p(xTt+1|xt1) is the distri-
bution of all plausible future sequences given the observed
human motion.

As it is illustrated in Figure 2, our approach does not
predict a single sequence but aims to learn the distribution
p(xTt+1|xt1) such that we can generate multiple plausible fu-
ture sequences

X̂ Tt+1 = {x̂Tt+1 : x̂Tt+1 ∼ p(xTt+1|xt1)}. (1)

While we introduce in Section 4 a new quality score that
evaluates the plausibility of the set X̂ Tt+1 and that correlates

Figure 3: Overview of our method. The blue-red skeletons
are the observed human poses while the yellow-green skele-
tons are forecast future human poses. The network forecasts
the human poses at two levels: at the pose level (yellow) and
at an intention level (green). During inference, the network
forecasts the intention labels ahead in time which guide then
the generation of the future poses. By conditioning the pose
decoder dp in addition on z, multiple plausible sequences
can be generated for a single sequence of observed human
poses.

very well with human perception, we first discuss the novel
approach that forecasts (1).

Although the recent works [4, 28, 37] are able to forecast
diverse sequences, the quality of the sequences decreases
for longer time horizons beyond 1 second as we show in
the user study reported in Table 4. This is expected since
the methods model human motion but not the intention of
the person. The latter, however, is very important for longer
sequences since a motion without a goal is perceived as ran-
dom and unrealistic.

We therefore propose an approach that generates multi-
ple future sequences that remain plausible even for longer
time horizons of 4 seconds. In order to achieve this goal,
our network not only forecasts human poses, but also the
intention as shown in Figure 1 and 3. An important aspect
of our network is that it forecasts the intention ĉTt+1 ahead
in time, which then guides the generated poses

x̂Tt+1 ∼ p(xTt+1|xt1, ĉ
T
t+1) (2)

and ensures plausible motion transitions when the intention
changes. We describe the module of the network that fore-
casts the intention in Section 3.1 and the module that fore-
casts the human motion conditioned on the intention in Sec-
tion 3.2.

3.1. Intention Anticipation

We model the intention by a categorical representation
ct ∈ C where C is set of possible intention classes. While
we forecast the intention ahead in time as shown in Figure 1,
we estimate it for each future frame ĉTt+1. In Section 3.3, we
describe how C can be obtained in an unsupervised way.

To anticipate future intent, we use a recurrent encoder-
decoder where the recurrent encoder el takes as input a se-



quence of observed human motion xt1 and the recurrent de-
coder dl forecasts the future intentions ĉTt+1:

ĉTt+1 = dl(el(xt1)). (3)

With decoder dl being auto-regressive, we are not con-
strained to a fixed time horizon and as such T can be as
large as needed. We represent both el and dl with single
layer GRUs.

For training, we utilize the categorical cross-entropy as
loss function:

Lsym =
1

T − t

T∑
τ=t+1

|C|∑
j=1

cτ log(ĉτj) (4)

where |C| is the total number of discrete intention labels, cτ
denotes the reference label at time step τ , and ĉτj denotes
the predicted probability of the j-th class at time step τ . We
will discuss in Section 3.3 how the reference labels cτ are
computed for the training set.

In order to generate plausible sequences of future inten-
tions, we furthermore add an adversarial loss:

Ladv
sym = min

dl
max
Dlabel

Ec

[
logDlabel(c)

]
+ Ex

[
1− logDlabel(dl(x))

] (5)

where Dlabel is a one-hidden-layer feed forward network.

3.2. Human Motion Anticipation

In order to sample sequences of future human poses from
p(xTt+1|xt1, ĉ

T
t+1), we utilize a conditional GAN [24] with

normal distributed noise vector z ∼ N (0, 1) as shown in
Figure 3. It is conditioned on the past human motion se-
quence xt1 and the forecast intent ĉTt+1.

Specifically, we first encode xt1 into the vector hp using
the recurrent pose encoder ep, i.e., hp = ep(xt1). We then
concatenate hp and z and auto-regressively generate future
poses for t < τ ≤ T using the pose decoder dp:

(x̂τ , hτ ) = dp(x̂τ−1 ⊕ f(ĉτ−1+γτ ) | hτ−1) (6)

where ht = hp ⊕ z, x̂t = xt, and ⊕ denotes the concate-
nation of two vectors. The pose encoder ep consists of a
single layer GRU while the pose decoder dp consists of a
three layer GRU.

The pose decoder dp, however, not only depends for each
frame τ on the previous generated pose x̂τ−1 and the pre-
vious hidden state hτ−1, but also on f(ĉτ−1+γτ ), i.e., on
the intention which is forecast already γ frames ahead. If
γ = 1, the decoder does not look ahead and it takes only
the estimated intention labels until the current frame into
account. We will show in the experiments that this results
in less plausible sequences since the decoder cannot prepare

the transition between two types of motions if they change,
e.g., between leaning down and standing as shown in Fig-
ure 1. If we allow the decoder to look ahead, the transi-
tions are more smooth and plausible. We found that γ = 10
(0.4s) is sufficient to obtain good results. Before adding the
probabilities ĉτ−1+γτ to the decoder, we aggregate them by
f , which is a temporal convolutional layer with kernel size
γ.

During training, we optimize the adversarial loss

Ladv = min
dp

max
Dpose

Ex
[

logDpose(x)
]

+ Ex|c|z
[
1− logDpose(dp(x, c, z)

] (7)

where Dpose is a two-hidden-layer feed forward network.
While there is usually not a high variability of the plausi-
ble human motion directly after the last observed frame but
the diversity increases the longer the time horizon gets as
shown in Figure 2, we additionally utilize a reconstruction
loss with decreasing impact as τ increases:

Lrec =
1

J · (T − t)

T∑
τ=t+1

J∑
j=1

λ(τ)||xτj − x̂τj ||2 (8)

where J is the number of joints in the pose, and xτj and
x̂τj denote the ground truth and model prediction of joint
j at time frame τ , respectively. The weight λ(τ) decreases
linearly over time with λ(t) = 1 and λ(t+τrec) = 0. In our
experiments, we show that τrec = 15 (0.6s) is sufficient.

For training the network, we use all four loss terms
where the loss terms Lsym (4) and Ladv

sym (5) supervise the
intention forecasting (green) and the loss termsLadv (7) and
Lrec (8) supervise the human motion forecasting (yellow) as
shown in Figure 3.

3.3. Intention Labels

In order to obtain the intention labels ct ∈ C for train-
ing, we cluster the training sequences. We first cluster the
poses of all training sequences using k-means and assign
each frame to a cluster. Since these clusters only consider
poses but not motion, we sequentially generate intention
labels by detecting cycles of cluster ids in the training se-
quences. For all datasets, we use 8 intention labels. More
details are provided in the supplementary material where we
also evaluate the impact of the size of C.

4. Long-term Human Motion Quality Score
As discussed in Section 3, we need for evaluation a score

that measures the plausibility of forecast human motion for
longer time horizons beyond one second. Furthermore, the
measure needs to measure the quality of a set of forecast
sequences X̂ Tt+1 instead of a single sequence.

We therefore propose a novel quality measure that cor-
relates better with human perception. The main idea is that



Long-Term
method walking eating smoking discussion average

[23] 0.549 0.754 1.403 1.245 0.987
[10] 0.359 0.288 0.577 1.001 0.556
[22] 0.841 0.909 0.824 1.733 1.077
[21] 0.590 0.821 0.491 1.616 0.879
[28] 0.467 0.301 0.751 0.945 0.616
Ours 0.367 0.621 0.363 0.795. 0.536

Table 1: NPSS measure from [10] for long-term motion an-
ticipation.

a plausible sequence of poses should be close to a real se-
quence. For long-time horizons, however, the sequences
are too long to compare them directly. Instead, we divide
all sequences that have the same semantic meaning but that
are not part of the training data into overlapping short mo-
tion sequences of fixed length κ. We call the short motion
sequences motion words and we use κ = 8 for sequences
with 25Hz. This results in a very large motion database D.

When evaluating a sequence x̂Tt+1 ∈ X̂ Tt+1 for obser-
vation xt1, we split the sequence into overlapping motion
words as well, where we include the last κ−1 observed
frames, i.e., x̂t+1

t+2−κ, x̂
t+2
t+3−κ, . . . , x̂

T
T+1−κ. We include the

last observed frames such that the transition between ob-
served and forecast motion is also taken into account. This
is important since discontinuities between observed and
forecast frames are perceived by humans as highly unre-
alistic. Using the motion words of all sequences of X̂ Tt+1,
we can then compute the plausibility score by measuring
the similarity of the motion words of X̂ Tt+1 with the motion
words in D:

fsim

(
X̂ Tt+1

)
=

1

Z

∑
x̂T
t+1∈X̂T

t+1

T+1−κ∑
τ=t+2−κ

g
(
x̂τ+κτ ,D

)
, (9)

where Z = (T − t)|X̂ Tt+1| is the normalization factor.
For computing the plausibility of a motion word, we find

the closest motion word in D using nearest neighbor search
(NN) and compute the normalized directional motion simi-
larity (NDMS), which is discussed in Section 4.1:

g
(
x̂τ+κτ ,D

)
= NDMS(x̂τ+κτ ,NN

(
x̂τ+κτ ,D)

)
. (10)

The function g (x̂τ+κτ ,D) is 1 when D contains the exact
motion word x̂τ+κτ and it is 0 ≤ g (x̂τ+κτ ,D) < 1 other-
wise. Using motion words and not single poses ensures that
the score evaluates motion quality and consistency and not
just pose quality while the nearest neighbor approach en-
sures that the multi-modality of human motion is addressed.
Due to the normalization factor Z, fsim (9) provides a plau-
sibility score between 0 and 1 for a set of forecast human
motions.

4.1. Normalized Directional Motion Similarity

In order to compare two motion words x and y, we need
to define a similarity measure. The Euclidean distance of

the poses is insufficient as this favours sequences that re-
main close to the mean pose. Similarly, using the mean
square error of the velocities favours small motion over
larger motion, as we discuss in the supplementary material.
Instead, we measure the similarity of the motion direction
and the ratio of motion magnitudes.

Specifically, the proposed Normalized Directional Mo-
tion Similarity (NDMS) compares two motion words x,y
of length κ by

NDMS(x,y) =

∑κ−1
t=1

1
J

∑J
j=1 Ψj

t (x,y)

κ− 1
(11)

Ψj
t (x,y) =

1

2

(
1 +

ẋt,jẏ
T
t,j

||ẋt,j || · ||ẏt,j ||+ ε

)

· min (||ẋt,j ||, ||ẏt,j ||)
max(||ẋt,j ||, ||ẏt,j ||) + ε

(12)

where J represents the numbers of joints of the human pose
and ẋt,j is the 3D velocity of joint j at time t. The first
part in (12) yields large values when the j-th joint of x and
y move in the same direction while the second part yields
large values when the magnitudes of the vectors are similar.
To prevent division by zero, we add a small ε > 0. This
way, Ψj

t (x,y) produces values close to 1 when the motions
of x and y are similar and values close to 0 when they are
very dissimilar.

It is important to note that the proposed quality measure
(10) has several advantages compared to existing measures:
a) the measure penalizes discontinuities in motion; b) it pe-
nalizes unrealistic motion at a fine-grained level; c) it can
be used to measure the quality of deterministic as well as
stochastic approaches; d) it measures the plausibility of all
forecast sequences even if they deviate from the observed
future sequence; e) it correlates better than other measures
with human perception.

4.2. Implementation Details

For the nearest neighbor search, we use the joint po-
sitions of wrists, elbows, shoulders, hips, knees, and an-
kles. For evaluation, we populate D with all relevant test
sequences, e.g., all basketball test sequences for evaluating
basketball. This way, models have to produce sequences
that have the same semantic meaning as the current test set
(e.g. walking, eating) and not just produce common motion
patterns observed in all sequences.

5. Experiments
We evaluate our method on the two standard large scale

motion capture datasets: Human3.6M [14] and CMU Mo-
cap [1]. We first analyze the quality of the forecast se-
quences using different measures including a user study for
long-term forecasting. In the supplementary material, we



seconds: 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
walking eating

Seq2Seq [23] 0.891 0.660 0.673 0.670 0.647 0.617 0.562 0.537 0.515 0.418 0.794 0.517 0.504 0.514 0.483 0.493 0.428 0.428 0.395 0.409
Trajectory [22] 0.899 0.657 0.605 0.597 0.580 0.463 0.494 0.519 0.461 0.453 0.877 0.622 0.567 0.560 0.549 0.543 0.505 0.565 0.555 0.530

History [21] 0.929 0.694 0.647 0.668 0.641 0.657 0.638 0.646 0.646 0.630 0.884 0.460 0.418 0.426 0.405 0.406 0.392 0.415 0.394 0.395
Grammer [28] 0.839 0.429 0.413 0.415 0.315 0.291 0.268 0.186 0.172 0.131 0.826 0.421 0.347 0.315 0.227 0.210 0.192 0.167 0.166 0.171

Mix&Match [4] 0.847 0.645 0.607 0.625 0.573 0.564 0.541 - - - 0.830 0.534 0.524 0.534 0.506 0.494 0.474 - - -
Ours 0.902 0.647 0.619 0.630 0.586 0.592 0.574 0.604 0.577 0.603 0.878 0.625 0.530 0.560 0.520 0.521 0.531 0.525 0.546 0.534

smoking discussion
Seq2Seq [23] 0.685 0.491 0.446 0.422 0.426 0.432 0.420 0.380 0.365 0.367 0.833 0.503 0.484 0.472 0.404 0.415 0.430 0.399 0.340 0.300

Trajectory [22] 0.824 0.476 0.468 0.411 0.406 0.381 0.415 0.402 0.390 0.390 0.852 0.417 0.361 0.314 0.302 0.293 0.272 0.290 0.267 0.273
History [21] 0.874 0.455 0.389 0.404 0.404 0.394 0.388 0.399 0.397 0.367 0.893 0.418 0.318 0.317 0.289 0.290 0.267 0.279 0.262 0.276

Grammer [28] 0.659 0.229 0.221 0.201 0.182 0.179 0.171 0.179 0.183 0.185 0.758 0.187 0.162 0.155 0.162 0.198 0.171 0.191 0.189 0.164
Mix&Match [4] 0.646 0.420 0.429 0.419 0.408 0.404 0.411 - - - 0.799 0.481 0.449 0.428 0.411 0.395 0.380 - - -

Ours 0.800 0.474 0.456 0.412 0.446 0.477 0.452 0.433 0.445 0.417 0.838 0.503 0.497 0.466 0.474 0.467 0.492 0.498 0.463 0.449
posing average

Seq2Seq [23] 0.819 0.497 0.443 0.403 0.381 0.367 0.335 0.313 0.296 0.285 0.806 0.530 0.508 0.478 0.445 0.438 0.414 0.383 0.361 0.339
Trajectory [22] 0.827 0.476 0.454 0.374 0.406 0.328 0.303 0.317 0.281 0.307 0.840 0.485 0.452 0.391 0.389 0.364 0.344 0.367 0.334 0.338

History [21] 0.896 0.419 0.343 0.317 0.246 0.224 0.218 0.211 0.204 0.198 0.884 0.434 0.359 0.350 0.337 0.326 0.320 0.318 0.315 0.309
Grammer [28] 0.782 0.267 0.246 0.213 0.224 0.220 0.208 0.202 0.209 0.160 0.746 0.262 0.245 0.236 0.212 0.205 0.202 0.190 0.191 0.181

Mix&Match [4] 0.777 0.528 0.486 0.453 0.421 0.402 0.378 - - - 0.770 0.500 0.480 0.465 0.444 0.430 0.419 - - -
Ours 0.726 0.509 0.539 0.471 0.478 0.430 0.421 0.439 0.407 0.393 0.826 0.531 0.507 0.491 0.484 0.478 0.474 0.477 0.467 0.465

Table 2: NDMS scores on Human3.6M [14] for actions walking, eating, smoking, discussion and posing as well as averaged
over all 15 actions. For Mix-and-Match and our approaches we report the mean score over 50 samples for a given input
sequence.

seconds: 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
walking eating

VAE [37] 0.589 0.413 0.354 0.329 0.322 0.321 0.320 0.320 0.313 0.299 0.521 0.302 0.322 0.326 0.314 0.310 0.310 0.308 0.298 0.291
DLow [37] 0.586 0.422 0.376 0.345 0.346 0.344 0.331 0.325 0.312 0.296 0.519 0.288 0.315 0.318 0.320 0.320 0.320 0.320 0.305 0.292

Ours 0.906 0.653 0.636 0.584 0.608 0.577 0.558 0.570 0.556 0.553 0.818 0.536 0.457 0.454 0.406 0.388 0.356 0.376 0.368 0.352
smoking discussion

VAE [37] 0.455 0.295 0.324 0.334 0.330 0.321 0.310 0.303 0.295 0.288 0.536 0.334 0.333 0.306 0.288 0.281 0.274 0.276 0.264 0.245
DLow [37] 0.454 0.280 0.324 0.322 0.315 0.308 0.297 0.294 0.288 0.280 0.536 0.331 0.345 0.334 0.315 0.307 0.291 0.270 0.257 0.241

Ours 0.754 0.348 0.356 0.319 0.327 0.345 0.310 0.294 0.286 0.322 0.859 0.470 0.340 0.331 0.336 0.320 0.283 0.293 0.262 0.274
posing average

VAE [37] 0.519 0.355 0.334 0.280 0.260 0.264 0.265 0.261 0.246 0.234 0.542 0.342 0.331 0.309 0.294 0.290 0.288 0.286 0.277 0.265
DLow [37] 0.521 0.367 0.360 0.332 0.315 0.291 0.271 0.261 0.260 0.241 0.541 0.342 0.341 0.325 0.311 0.298 0.290 0.282 0.274 0.263

Ours 0.724 0.398 0.301 0.353 0.366 0.320 0.324 0.312 0.309 0.297 0.818 0.444 0.379 0.380 0.366 0.349 0.330 0.328 0.320 0.320

Table 3: NDMS scores on Human3.6 [14] using the 17 3D joint representation from DLow [37]. We report the mean score
over 50 samples for a given input sequence.

walking eating smoking discussion
Seq2Seq [23] 0.750 0.353 0.312 0.188

Trajectory [22] 0.903 0.625 0.114 0.227
History [21] 0.902 0.221 0.356 0.279

Grammer [28] 0.161 0.324 0.167 0.171
Mix&Match [4]? 0.875 0.617 0.445 0.523

DLow [37] 0.190 0.578 0.449 0.428
Ours 0.938 0.792 0.633 0.714

Table 4: User study for the results on Human3.6M [14]. 28
users were randomly asked to judge 4 seconds of forecast
human motion. The users could only choose between real-
istic or not realistic where we count realistic as 1 and not
realistic as 0. In the table we report the mean values and
sequences valued close to 1 are deemed highly realistic. ?
indicates sequence length of 3.2 seconds.

provide additional results for short-term forecasting and an
additional analysis of the quality measure.

5.1. Comparison to State-of-the-Art

Long-Term Forecasting: For evaluating long-term human
motion forecasting, we first report NPSS as described in
[10], utilizing the publicly available implementation. The

Diversity (Human3.6M)
[36] [34] [5] Mix&Match [4] DLow [37] Ours
0.26 1.70 0.48 3.52 4.71 3.07

Diversity (CMU)
0.41 3.00 0.43 2.63 2.90 2.40

Table 5: Average pairwise distance (APD) of recent state-
of-the-art methods on Human3.6M [14] and CMU [1]. Re-
sults for DLow [37] are taken from [3].

results of the long-term time scale of 2 − 4 seconds can
be seen in Table 1 where our method slightly outperforms
current state-of-the art methods. Grammar [28] achieves
competitive results. We will, however, later show that the
sequences that are generated by Grammar are less realistic
than the sequences of other state-of-the-art methods. This
indicates that NPSS is not a very reliable measure for the
plausibility of the forecast human motion.

We therefore compare the methods using the proposed
NDMS metric (see Section 4) with motion word size κ = 8
on Human3.6M. For each of the 15 actions in Human3.6M,
we calculate the scores independently where we populate
the database D with the test sequences of the given action



only - to ensure that the forecast sequences are semantically
meaningful and consistent with the action. The results for
up to 4 seconds are reported in Tables 2 and 3.

The results in Table 2 show that our approach outper-
forms stochastic and deterministic methods in terms of
quality. On cyclic motion such as walking, [21] produces
very strong results over long time periods. However, the
motion freezes on non-periodic motion such as discussion
and posing. As expected, other approaches including deter-
ministic approaches [23, 22] perform fairly well for short
sequences up to 1.2 seconds. For such short time horizon,
the results are quite similar to our approach. However, for
longer time horizons the benefit of forecasting the intention
becomes evident and our approach outperforms the other
methods by a large margin. Since DLow [37] uses a dif-
ferent skeleton representation than the other methods, we
also report the NDMS score for the skeleton from [37] in
Table 3. On average, our approach outperforms DLow and
a variational autoencoder (VAE). It needs to be noted that
both DLow and VAE suffer from a motion discontinuity be-
tween the observed frames and the forecast frames. The
NDMS score is therefore relatively low for the shortest time
horizon (0.4s).

To validate our results, we conducted a user study with
28 individuals who were given random sequences of length
of 4 seconds. The users had then to rate each sequence
whether it was realistic or not. Our results can be seen in
Table 4. When we compare, for instance, the results for
walking to the results reported in Tables 2 and 3, we ob-
serve a high similarity between the human perception and
the NDMS metric. For a cyclic motion like walking, our ap-
proach performs best followed by [22] and [21]. The gener-
ative grammars [28] start showing unrealistic artifacts after
around 2 seconds of walking, which is captured both by our
user study as well as by our evaluation score. DLow [37]
performs better than generative grammars, but by far worse
than the other methods. This is due to the discontinuity at
the beginning, which is more prominent for walking than
for the other activities where the person often stands at the
beginning, but also due to the very high diversity of the gen-
erated sequences. The forecast sequences quickly generate
motions that are very unlikely to occur after a walking mo-
tion. Indeed, Table 5 shows that [4, 37] have a higher di-
versity among the forecast sequences, but more of the gen-
erated sequences are perceived as unrealistic as shown in
Table 4. The results in Tables 2, 3, and 4 show that our
approach achieves a higher forecast quality than the state-
of-the-art for long time horizons, both for cyclic as well as
non-cyclic motions.

As already mentioned, the generative grammars [28]
achieve competitive NPSS scores, as can be seen in Ta-
ble 1. This, however, is not supported by our user study and
the qualitative results. This shows the weakness of NPSS,

which does not occur for the proposed NDMS score. The
Pearson Correlation Coefficient of NPSS to the ground truth
is −0.238 while our motion similarity scores a correlation
of 0.901.

5.2. Ablation Study

Impact of Loss Functions: In Figure 4, we show the im-
pact of the loss functions. While the blue curve corresponds
to the proposed method, the red curve (Ladv + Lrec) is a
special case in which we do not forecast the intention. The
plots show that the NDMS scores are much lower when we
do not forecast the intent. This is in particular visible for
walking and eating. Without intent the model always con-
verges to a mean motion, which, in Human3.6M, is standing
and gesticulating with hands. Because of this, using no in-
tent performs competitively only on Discussion, which is
mostly made up of a person standing and gesticulating.

If we remove only one of the loss terms Lsym (orange),
Ladv
sym (green), or Ladv (purple), the NDMS score decreases.

Without Ladv (purple), our method furthermore loses the
ability to generate multiple samples for a given input se-
quence. Removing Lrec (not plotted) results in unrealistic
motion and poses. Without Ladv

sym we observed that the net-
work sometimes predicts the same intention label for an un-
realistic long time.
Impact of λ(τ): For the reconstruction lossLrec (8), we use
the weighting function λ(τ) which linearly decreases from
1 to 0 until τrec. In Figure 5a, we compare three settings:
τrec=15, τrec=30, and no weighting at all. In the latter case,
λ(τ)=1. We observe that all settings produce similar early
results but that decaying the reconstruction loss to 0 yields
the best results over long time horizons. The reason for this
is that the adversarial learning scheme has a greater influ-
ence with a more aggressive reconstruction decay, which al-
lows more realistic motion over longer time horizons. How-
ever, early motion smoothness is not impeded by this. For
this reason we set τrec=15.
Effect of Clustering: In Section 3.3, we describe our
method to obtain frame-wise symbolic labels in an unsu-
pervised way. For clustering, we merge cycles to avoid
high frequent changes of labels. In Figure 5b, we compare
our clustering approach with a naive clustering where we
only apply k-means to the training data. We observe that
the naive clustering results in more volatile predictions as
the human motion generator tries to catch up to the fast-
changing symbolic labels. When using our clustering, on
the other hand, we observe more stable predictions with
higher quality results.
Impact of γ: The parameter γ in (6) defines for how many
frames ahead the intention is forecast. If γ = 1, the decoder
dp does not look ahead and takes only the estimated inten-
tion labels until the current frame into account. In Figure
5c, we evaluate four different values for γ: no look-ahead,



Figure 4: Impact of loss functions. The NDMS score is averaged over 50 samples per input sequence. average: NDMS
scores averaged over all actions of Human3.6M [14]. walking, eating, discussion: Comparison of motion forecasting without
(red) and with (blue) intention forecasting for the corresponding action.

(a) Comparing various values of τrec
for the reconstruction loss. In case of
λ(τ)=1, we use always 1 as weight.

(b) Comparing naive clustering with more
elaborate clustering that merges cyclic
patterns into cohesive clusters.

(c) Comparing various γ look-ahead val-
ues for human motion anticipation.

Figure 5: NDMS scores averaged over all actions of Human3.6M [14] using 50 samples per input sequence.

5 frames look-ahead, 10 frames look-ahead, and 20 frames
look-ahead. We observe that small values of γ substantially
decrease the NDMS score. This shows that it is very impor-
tant to forecast the intention ahead of time. However, when
γ is too large, it also reduces the quality since only the next
upcoming action is relevant for a smooth motion transition
and longer look-ahead times distract the pose decoder. As a
default parameter, we thus set γ = 10.

5.3. Very long motion forecasting

For state-of-the-art method evaluation we obtained se-
quences of up to 4 seconds. Our method, however, is ca-
pable of generating much longer sequences, even for non-
cyclic motion. Figure 6 shows that our method produces
consistent results over very long time horizons of 30 sec-
onds. This is consistent with our observation that the mo-
tion, even for non-cyclic motion such as Eating, remains
realistic for very long time horizons.

6. Conclusion
In this work, we presented an approach that forecasts

multiple plausible sequences of human motion for a single
observation1. In this way, the model can deal with the un-
certainty of the future. In order to ensure that the forecast
sequences remain plausible even for longer time horizons,

1Source code is available at https://github.com/jutanke/
human_motion_ndms

Figure 6: Average NDMS score for very long forecasting of
30 seconds on Human3.6M [14].

we proposed a novel network that not only forecasts the hu-
man motion but also the intention. By forecasting the in-
tention ahead of time, the network generates plausible tran-
sitions between actions. Furthermore, we presented a new
quality score that allows to compare methods that generate
multiple sequences even for long time horizons. We demon-
strated that the new similarity score correlates better with
human judgement than NPSS and that the method produces
superior results for long-term human motion anticipation.
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