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Abstract

The task of few-shot GAN adaptation aims to adapt a
pre-trained GAN model to a small dataset with very few
training images. While existing methods perform well when
the dataset for pre-training is structurally similar to the tar-
get dataset, the approaches suffer from training instabili-
ties or memorization issues when the objects in the two do-
mains have a very different structure. To mitigate this limi-
tation, we propose a new smoothness similarity regulariza-
tion that transfers the inherently learned smoothness of the
pre-trained GAN to the few-shot target domain even if the
two domains are very different. We evaluate our approach
by adapting an unconditional and a class-conditional GAN
to diverse few-shot target domains. Our proposed method
significantly outperforms prior few-shot GAN adaptation
methods in the challenging case of structurally dissimilar
source-target domains, while performing on par with the
state of the art for similar source-target domains.

1. Introduction
Generative adversarial networks (GANs) have been

shown to be powerful at various image synthesis tasks
[4, 28, 3, 13, 27, 26]. The success of these models is in large
part enabled by the availability of large datasets for train-
ing, typically consisting of thousands of images. However,
there are many applications and computer vision tasks such
as one-shot or few-shot learning [1, 33], out-of-distribution
detection [24], or long-tailed recognition tasks [8] where the
number of available training images is very low.

Since training a GAN from scratch on very few samples
does not perform well as shown in Fig. 1, a common strat-
egy is to fine-tune a pre-trained GAN model on the few-shot
dataset, typically employing additional regularization losses
to penalize the degradation of the diversity [23, 37]. This
approach, referred to as few-shot GAN adaptation, performs
well when the target domain is structurally very similar to
the dataset that has been used for pre-training, e.g., pho-
tographs vs. sketches of human faces. However, the perfor-
mance drastically degrades in case of large dissimilarities
between the source and target domain as shown in Fig. 1.
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Figure 1. Training a GAN model G on a few-shot dataset (row 1)
from scratch fails due to training instabilities (row 2). We thus aim
to adapt a GAN Gs that has been pre-trained on a large dataset like
LSUN-Church (row 3) to the target few-shot dataset (Gt). While
fine-tuning [23] does not perform well either if source and target
are dissimilar (row 4), our approach generates diverse and realistic
images (row 5) by transferring the smoothness properties of Gs.

Such dissimilarities are a major bottleneck of using GANs
in other disciplines like medicine, production, or crop sci-
ence, where there is a lack of large datasets due to privacy,
confidentiality, or simply lack of data. Motivated by this
fact, we extend the protocol for few-shot GAN adaptation
by investigating also pairs of datasets that are very different
like churches and shells as shown in Fig. 1.

To improve few-shot GAN adaptation in the case of
structurally dissimilar pairs, we propose a new GAN adap-
tation strategy. Firstly, we propose a new smoothness simi-
larity regularization for the generator. Our key observation
is that pre-trained GAN generators, regardless of the exact
structure of objects in the pre-training dataset, learn well-
structured and smooth latent spaces. For example, prior
works demonstrated that various local shifts in the latent
space can lead to interpretable and smooth transitions of



output images, such as translation of objects in the scene
or changing their size [34, 9, 30]. As we show in our ex-
periments, the proposed smoothness similarity regulariza-
tion enables the transfer of this desirable property to other
few-shot image domains without compromising the synthe-
sis quality. Secondly, to overcome overfitting issues, we
revisit the adversarial loss function of the discriminator and
propose a simple yet efficient modification by computing
the loss at different layers of the discriminator. This leads
to the mitigation of overfitting and a more stabilized adap-
tation of the model to diverse target domains.

We evaluate our approach by adapting an unconditional
[15] and a class-conditional GAN [2] to diverse few-shot
target domains. Our model significantly outperforms previ-
ous state-of-the-art methods in image quality and diversity
in the challenging case of dissimilar source and target do-
mains, while performing on par with the state of the art on
structurally similar dataset pairs. In summary, our contribu-
tions are as follows: (i) We extend the evaluation protocol
for few-shot GAN adaptation by including new dataset pairs
that are structurally much less similar than was considered
in prior work. (ii) We propose a new smoothness similarity
regularization, which enables diverse synthesis in the tar-
get domain by transferring the learned smoothness of a pre-
trained GAN. (iii) We revisit the adversarial loss function
of the discriminator to stabilize few-shot GAN adaptation
across diverse target domains. (iv) Our proposed model en-
ables high-quality synthesis in the challenging case of dis-
similar source and target domains, significantly outperform-
ing prior methods. In addition, we show that our method
can be applied to different classes of GAN architectures, in-
cluding unconditional and class-conditional GAN models.

2. Related Work
To address the image generation problem in the low data

regime, existing works mainly follow three research lines –
one-shot, low-shot, and few-shot learning. One-shot gen-
eration methods [29, 31] focus on leveraging the internal
patch distribution within a single image, however, their
extension to capture the distribution of a small collection
of images is non-trivial. In low-shot learning [41], sev-
eral works [41, 12] proposed to mitigate the limited-data-
induced overfitting issue by adapting data augmentations to
the generative networks. Others [18, 5] stabilized the train-
ing process and reduced overfitting by revising the network
design. Despite the promising performance in many low
data regimes (typically having 100+ images), these low-shot
methods fail in the extremely few-shot setting (e.g., 10 im-
ages). Our work lies in the scope of few-shot learning.

Few-shot image synthesis. Conventional few-shot
learning aims at learning a discriminative classifier under
limited data scenarios. In the context of image synthesis
with GANs, the goal instead is to produce diverse new im-

ages from the learned distribution while preventing overfit-
ting to the few training samples. A straightforward way is
to treat it as a domain adaptation problem and incorporate
the commonly used transfer learning technique, i.e., fine-
tuning, to ease the need for data. However, naive fine-tuning
(TGAN) [36] often suffers from overfitting and results in
poor performance. Researchers proposed remedies such as
mining suitable parts of the latent space before fine-tuning
[35] or restricting weight updates, for example, updating
only the BatchNorm parameters of the generator [22], pe-
nalizing drastic changes in important weights [17], or freez-
ing the earliest layers of the discriminator (FreezeD) [20].
More recent works focused on introducing different reg-
ularizations to preserve specific knowledge from the pre-
trained model and prevent diversity degradation [42]. For
example, CDC [23] proposed to preserve the pair-wise per-
ceptual similarity between samples from the source domain
and to transfer it to the target domain, while RSSA [37]
designed a novel consistency term to align the structural in-
formation between source and target domains. Although
the two aforementioned methods constitute the current state
of the art in few-shot generative learning, their assumptions
impose strong constraints on the structure of the few-shot
target domain. As we show in experiments, they fail in
the more challenging regime when the source and target
domains are not restrictively similar. Most recently, [39]
proposed to replace prior knowledge preservation criteria
with adaptation-aware kernel modulation (AdAM), which
relaxed the source-target proximity requirement of previ-
ous methods to some extent. In this work, we take a step
further and introduce a new regularization term to preserve
the generator’s smoothness properties that are not limited to
a specific domain, enabling successful adaptation between
image domains of unprecedented structural dissimilarity.

Smoothness of image generators. Smooth transitions
in the latent space are an important property for genera-
tive models, where it is believed to be a sign of a well-
conditioned generator. Models trained on large datasets nat-
urally possess this property with or without explicit regular-
ization [2, 15]. For example, StyleGANv2 [15] introduced a
regularization based on the perceptual path length measure
(PPL) [14], which encourages that a fixed-size step in the la-
tent space results in a fixed-magnitude change in the image
space. However, achieving a smooth mapping of the gen-
erator is difficult for few-shot image synthesis since there
are not enough training samples. Thus, MixDL [16] sought
to alleviate the “staircase” latent space interpolations, i.e.,
jumps between training samples, by introducing a continu-
ous coefficient vector and enforcing smooth interpolations
between training images. Although the two above regu-
larizers aim to encourage smoother interpolations between
training samples and thus mitigate mode collapse, they are
not designed to take advantage of the available pre-training
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Figure 2. Given a pre-trained generator Gs, the proposed smoothness similarity regularization preserves the learned smoothness of Gs

while adapting it to a target domain with very few images. To mitigate overfitting to the target domain, the discriminator loss utilizes
features at various layers and automatically adjusts the impact of different semantic scales to the similarity of the source and target domain.

knowledge. In contrast, in this work we develop a new
smoothness similarity regularization that leverages the well-
structured latent space of a pre-trained GAN generator. In
effect, our approach enables high-quality few-shot image
synthesis by transferring smooth and realistic image transi-
tions of pre-trained GANs to diverse few-shot domains.

3. Method
In the task of few-shot GAN adaptation, we are given a

small target dataset T and a pre-trained GAN model, con-
sisting of a discriminator D and a generator Gs, which pro-
duces an image x = Gs(z) from a continuous input variable
z, such as a random noise vector or a continuous class em-
bedding. The goal is to adapt the generator to the target
dataset such that it generates diverse and realistic images
in the domain of the target dataset as shown in Fig. 1. We
denote the adapted target generator by Gt.

To achieve few-shot synthesis with a high image quality
and diversity, our model should adhere to the following two
properties. Firstly, the generator Gt should not only memo-
rize and generate the target images, which will be addressed
by the smoothness similarity regularization (Sec. 3.1). Sec-
ondly, the discriminator D must avoid overfitting to the few
target images in order to provide useful supervision for Gt

(Sec. 3.2). The overview of our method is shown in Fig. 2.

3.1. Smoothness similarity regularization for Gt

In a low data regime like ours, Gt can easily overfit to
the target dataset T and collapse to reproducing only the
few modes represented in the training data. When walking
in the latent space of such a generator, one would observe
“staircase” patterns, where minor shifts in the latent space
cause discontinuous transitions in the output image space
(as shown in row 4 of Fig. 5). Naturally, to achieve a syn-
thesis of high diversity, it is desirable for Gt to avoid such
discontinuities, as having smoother image transitions allows
to generate intermediate samples that can exhibit novel fea-
tures. Therefore, in our model we aim to encourage Gt to
produce smooth latent space interpolations, in which all the
intermediate images are realistic.

Our approach is based on the observation that GANs
trained on large datasets tend to have a well-structured la-
tent space [34, 9, 30], in which different latent space direc-
tions can lead to smooth and interpretable image transitions.
For example, in a generator pre-trained on a large dataset
of churches, latent directions can emerge causing smooth
zooming or translation of churches (see Fig. 2). Our ob-
servation is that the nature of such image transitions (e.g.,
zooming or translation) is remarkably general. Thus, we
propose a regularizer that utilizes this smoothness property
of the source generator Gs as a cue while adapting it to
another image domain, which can be very different from
the domain that was used for pre-training. For example, as
shown in Fig. 2, the same latent directions of churches can
cause similar zooming or translation effects on shells.

Mathematically, the smoothness of the generator can be
represented via a Jacobian matrix JGl(z) = ||∂Gl(z)/∂z||,
quantifying how the generator’s intermediate features after
the l-th block change under local shifts in the latent space.
As we want the same latent shift to cause perceptually sim-
ilar image transitions in the source and target domains, we
design a regularization term that brings the Jacobian matri-
ces of Gl

s and Gl
t closer together. As the computation of full

Jacobian matrices is expensive, we use an unbiased estima-
tor of their products with a Gaussian vector [6, 15], which
can be computed with standard back-propagation:

JT
Gl(z) · y = E(y)∼N(0,1)∇z⟨Gl(z), y⟩, (1)

where y is a Gaussian tensor of the same shape as Gl. Our
smoothness similarity regularization is then expressed as:

LSS = λSS ·E(z,y)∼N(0,1)||∇z⟨Gl
s(z), y⟩ − ∇z⟨Gl

t(z), y⟩||2,
(2)

where λSS steers the impact of the regularizer. As shown
in Fig. 2, the smoothness similarity regularization depends
on both generators, but only Gt is updated. It is interest-
ing to note that the Jacobian matrix is also used for the
path length regularization [15], which forces JG(z) to be
orthogonal up to a global scale at any z. While this al-
ternative regularizer also induces some form of smooth-
ness, it does not transfer the inherently learned smoothness



of a pre-trained GAN. We show in Sec. 4.1 that it strug-
gles to enforce the realism of intermediate images. Fur-
thermore, our approach shares the motivation with some
prior regularization approaches that use noise perturbations
to enforce diversity [23, 37]. In contrast to Eq. 2, these
approaches incorporate non-gradient components, e.g., as-
suming similarity of images Gs(z)↔Gt(z) or distributions
d(Gt(z1), Gt(z2))↔d(Gs(z1), Gs(z2)). As such assump-
tions are violated when source and target domains are dis-
similar, they perform poorly compared to our smoothness
similarity regularization LSS as shown in the experiments.

3.2. Revisiting the D adversarial loss

To identify what kind of image transitions look realis-
tic for the target domain, Gt requires strong supervision
from the discriminator on image realism at different seman-
tic scales. This includes the colors and textures of objects,
as well as object shapes, especially if their distribution is
different from the shapes of objects in the source domain.
Learning the concept of image realism in low data regimes
is, however, challenging due to the problem of overfitting.

Typically, a GAN discriminator consists of several con-
secutive blocks {Di}Ni=1 and computes for each given im-
age x a real/fake logit after the last block l = sN ◦DN (x),
where sN is a final processing layer such as a convolu-
tion. When adapting such a discriminator to a very small
dataset, it is prone to memorizing the training set [32],
leading to mode collapse and poor diversity of synthe-
sized images [23]. A possible solution [23, 37] to over-
come memorization is to use variants of the PatchGAN dis-
criminator [11], discarding the latest discriminator layers:
l = sk ◦Dk(x), k < N . This solution allows to adapt col-
ors and textures of generated images to the target domain
while avoiding the memorization problem. However, it nat-
urally has a limited capacity to learn more high-level se-
mantic scene properties such as the shapes of objects, which
we show in the experiments.

In order to avoid memorization, and yet to balance the
adaptation of colors, textures, and shapes of generated ob-
jects to a new domain, we hypothesize that a more flexible
attention to different levels of image realism is required by
the discriminator. To this end, we perform a simple yet ef-
ficient modification to the loss function of the discrimina-
tor. Given a discriminator {Di}Ni=1 and its adversarial loss
function LD(l) used for pre-training (e.g., cross-entropy or
hinge loss), we design the discriminator to produce real/fake
logits after each discriminator’s block, and correspondingly
compute the loss as the average across all blocks:

Lall(x) =
1

N

N∑
i=1

LD[l
i(x)], li(x) = si ◦Di(x). (3)

With the new objective, D is given more freedom to uti-
lize the features extracted at different scales to compute the

loss. Our finding is that D dynamically adapts the magni-
tude of the loss at each scale to the target domain, without
explicit supervision (see Fig. 6). Consequently, we observe
a strong overall stabilization effect on the adaptation perfor-
mance across diverse source-target dataset pairs.

4. Experiments

To demonstrate that our approach for few-shot GAN
adaptation can be applied to unconditional and class-
conditional GANs, we selected for each category a popu-
lar GAN architecture: unconditional StyleGANv2 [15] and
class-conditional BigGAN [2]. For both models, we test our
approach on a variety of source-target domain pairs. We fo-
cus on 10-shot target adaptation in the main paper, but we
provide results for 1-shot and 5-shot adaptation in the sup-
plementary material. For fair comparisons with prior works,
most of our ablations and comparisons are conducted with
StyleGANv2.

4.1. Adaptation of unconditional GAN

Datasets. In contrast to previous works that mostly
considered pairs of similar datasets like Face→Sketch and
Face→Sunglasses, we extend the protocol by including
structurally dissimilar pairs of source and target domains,
which is a more challenging task and is our primary interest.
As source generators, we use StyleGANv2 checkpoints pre-
trained on FFHQ [14], LSUN-Church, and LSUN-Horse
[38]. For the target datasets, we selected 10-shot sub-
sets of various commonly used few-shot datasets, such as
Anime-Face, Shells, or Pokemons [41, 18]. Results on more
datasets are shown in the supplementary material.

Training details. We fine-tune StyleGANv2 using the
LSS and Lall loss terms as presented in Sec. 3. For the
smoothness similarity regularization, we use the intermedi-
ate features Gl at resolution (32×32) and set λSS = 5.0.
We follow [23] in choosing all the other hyperparameters,
such as image resolution (256×256), learning rates, and
batch size. Our experiments across all datasets use the same
model configuration and set of hyperparameters.

Baselines. We compare our method to most recent few-
shot GAN adaptation approaches: TGAN [36], FreezeD
[20], CDC [23], RSSA [37], and AdAM [39]. In addition,
we compare our proposed smoothness similarity regularizer
LSS to other regularization techniques: path length regular-
ization (PPL) [15] and MixDL [16].

Evaluation. In low data regimes, it is necessary to judge
results both in quality and diversity aspects, as there is a
trade-off between them [25, 32]. We measure the quality
with FID [10] between a held-out validation set and a gen-
erated set of the same size. Following [23], we evaluate
diversity with the intra-LPIPS, clustering generated images
according to their nearest training samples and computing
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Figure 3. Visual comparison to prior methods on Face→Anime and Church→Shells, the source-target dataset pairs with a dissimilar
structure (e.g., shapes of objects). In this challenging regime, we observe that prior methods suffer from training instabilities, memorization
issues, or inability to adapt the shapes of objects to the new domain. In contrast, our method generates images that look realistic, flexibly
combine features of different target images, and transfer the variation of images from the source domain to the target domain.

the average LPIPS [40] of all the clusters. We train all mod-
els for 30k epochs in case of dissimilar domain pairs and for
5k on closer domains, evaluating metrics every 1k epochs.
Final checkpoints in all experiments correspond to best FID.

Results with dissimilar source-target domains. We
first present our results on the source-target domain pairs
with dissimilar structure: Face→Anime, Church→Shells,

and Horse→Pokemon (see Fig. 3 and supplementary ma-
terial). Our general observation from Fig. 3 is that in this
challenging regime prior methods suffer either from train-
ing instabilities, memorization issues, or inability to adapt
the shape of objects to the new domain. For example,
for Face→Anime, despite an apparent correspondence be-
tween the two domains, none of the prior methods success-
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Figure 4. Visual comparison to most recent prior methods on Face→Sketch and Church→Sunglasses, the dataset pairs depicting similar
image domains. In this regime, our method performs on par with previous state of the art. See Table 2 for a quantitative comparison.

Method
Face→Anime Church→Shells Horse→Pokemons
FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑

TGAN [36] 153.2 0.29 205.3 0.22 115.0 0.52
FreezeD [20] 112.4 0.22 180.8 0.27 123.3 0.49
CDC [23] 140.2 0.50 187.9 0.48 109.5 0.55
RSSA [37] 133.2 0.37 182.4 0.44 117.3 0.54
AdAM [39] 116.4 0.42 152.4 0.28 106.5 0.55
Ours 97.3 0.57 140.5 0.53 84.1 0.61

Table 1. Comparison of the adaptation performance in case of dis-
similar source-target domains. Bold denotes best performance.

fully transfers the distribution of head poses to the anime
style, e.g., overfitting too strongly to the 10 provided sam-
ples (FreezeD), failing to adapt the shape of faces to the
style of anime (CDC), or not generating high-quality anime-
faces due to instabilities (TGAN, RSSA, AdAM). Similarly,
for Church→Shells, we observe that prior methods produce
only copies of the example shells (FreezeD, AdAM), gen-
erate shells of unrealistic church-like shapes (CDC, RSSA),
or suffer from instabilities (TGAN). In contrast, our method
achieves high-quality synthesis, in which the generated im-
ages (i) look like realistic anime-faces and shells; (ii) flex-
ibly combine features observed in different target images
(e.g., anime hair color can be combined with various eye
colors or background styles); and (iii) meaningfully transfer
the variation of images from the source domain (e.g., gener-
ated shells adjust to the positions and shapes of churches).

The quantitative comparison in Table 1 confirms our
analysis, where our method achieves the best quality and
diversity scores across all datasets. We note a high aver-
age relative improvement of more than 18% and 11% in
FID and LPIPS compared to the highest scores achieved
by prior methods. Overall, we conclude that our method
significantly improves over prior works on few-shot GAN

Method
Face→Sketch Face→Sunglasses
FID↓ LPIPS↑ FID↓ LPIPS↑

TGAN [36] 54.2 0.38 36.8 0.56
FreezeD [20] 48.8 0.32 32.0 0.59
CDC [23] 54.2 0.40 30.5 0.59
RSSA [37] 61.4 0.45 36.3 0.58
AdAM [39] 56.3 0.37 31.1 0.60
Ours 45.2 0.44 27.5 0.60

Table 2. Comparison in case of structurally close source-target do-
mains. Bold denotes best performance.

adaptation with dissimilar source and target domains.
Results with close source-target domains. Next, we

follow the evaluation of prior works and compare the mod-
els on similar source and target domains, such as adaptation
of human faces to a different style. The visual results for
Face→Sketch and Face→Sunglasses are shown in Fig. 4.
Our method successfully performs the few-shot adaptation
in this setting, adapting the colors and textures of faces to
the gray-scale sketch domain, or adding a novel attribute
(sunglasses). We note that our method is not explicitly de-
signed to transfer all the details of a face from the source
domain, thus changes in the generated images like facial
hair are expected. Yet, we observe that our method gener-
ally does not lose distinctive features of faces in source im-
ages, performing on par with previous state-of-the-art meth-
ods. The quantitative comparison is provided in Table 21:
on both datasets our method achieves the best FID scores
and performs on par with the best performer in LPIPS.

Ablations. We demonstrate the importance of our pro-
posed loss terms in Fig. 5, which shows latent space inter-
polations of trained models and their similarity to the pre-

1FID evaluation differs from prior works (discussed in suppl. material).
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Figure 5. Latent space interpolations of the source generator and
the ablation models from Tables 3-4. Leftmost and rightmost
columns show the used D loss and G smoothness regularization.

D loss
Smooth Face→Anime Church→Shells

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
StyleGANv2 - 178.0 0.21 243.8 0.17
StyleGANv2 SS (ours) 180.7 0.61 252.8 0.62

PatchGAN [23] - 145.2 0.37 183.1 0.31
PatchGAN [23] SS (ours) 132.2 0.55 184.2 0.56
Lall (ours) - 116.4 0.36 175.4 0.43
Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 3. Impact of Lall and LSS . Bold denotes best performance.

trained source model Gs (row 1). Firstly, we note that the
plain StyleGANv2 model (row 2) suffers from instabilities
in our low data regime, achieving poor image quality and
diversity and having “staircase”-like latent space interpola-
tions. Applying LSS without Lall (row 3) helps to achieve
diverse synthesis with smooth interpolations, but it is not
enough to achieve good image quality. On the other hand,
using Lall (row 4) helps to overcome instabilities and im-
prove image quality, but it cannot maintain smooth interpo-
lations and high diversity. Finally, our full model (row 5) al-
lows a higher-quality, diverse synthesis with smooth and re-
alistic latent space interpolations. Note how the image tran-
sitions mimic the behaviour of the source model (churches
and shells change shapes and positions similarly), allowing
to achieve diverse and realistic synthesis.

The effect of Lall is further demonstrated in Fig. 6,
where we show the contribution of different D blocks to
the adversarial loss at different epochs. We note the abil-
ity of the discriminator to identify correct loss contributions

Face→Anime Church→Shells

Figure 6. The contribution of features at different D blocks to
the adversarial loss function Lall. For two closer image domains
(the left plot), the network concentrates mostly on earlier layers to
compute the loss, while for less similar domains the network learns
to use the later layers representing more high-level D features.

D loss
Smooth Face→Anime Church→Shells

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
Lall (ours) - 116.4 0.36 175.4 0.43
Lall (ours) PPL [14] 107.8 0.46 179.4 0.44
Lall (ours) MixDL [16] 105.9 0.50 150.4 0.51
Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 4. Comparison of smoothness similarity regularization LSS

with other regularizers. Bold denotes best performance.

adaptively for different source-target domain pairs. For ex-
ample for Face→Anime, the network concentrates mostly
on the earliest D blocks to adapt the colors and textures
of faces to a new style. In contrast, for the more distant
domains Church→Shells, the network learns to attribute a
higher weight to the later blocks to also adapt higher-level
features, such as shapes of objects. In effect, we observe a
stabilized adaptation of colors, textures, and shapes of ob-
jects across diverse source-target pairs. Using PatchGAN
[23] as discriminator loss does not achieve such a balance as
it focuses mostly on lower-scale features (row 6 in Fig. 5).

Our observations are confirmed by the quantitative study
in Table 3: without LSS the model does not achieve high
diversity (high LPIPS), while Lall is necessary for high im-
age quality (low FID). We conclude that both our proposed
loss terms are important to achieve high-quality synthesis.
More ablations on LSS and Lall can be found in the sup-
plementary material.

Lastly, Table 4 provides a comparison of our proposed
LSS loss term to other regularizers: path length regulariza-
tion (PPL) [14] and MixDL [16]. While all regularizers help
to achieve smoother latent space interpolations and thus
improve the quality and diversity metrics, our smoothness
similarity regularization enables the highest performance
in both FID and LPIPS. While our approach transfers the
learned smoothness of the source generator to the target do-
main, PPL and MixDL resort to gradually interpolating be-
tween the provided training samples, which leads to latent
space interpolations that either look unrealistic or lack di-
versity (rows 7-8 in Fig. 5). This demonstrates that transfer-
ring smoothness from a pre-trained generator is beneficial to
enforce image transitions that are realistic and diverse.
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10-Shot adaptation results of our method on class-conditional BigGAN [2], pre-trained on ImageNet
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Figure 7. 10-shot adaptation results for the class-conditional BigGAN [2] pre-trained on ImageNet. While simple fine-tuning (FT) suffers
from training instabilities and mode collapse, our method helps to achieve much higher image quality and diversity, transferring smooth
and realistic image transitions from the source domain, e.g., objects smoothly changing their locations, size, and shape.

D loss
Smooth ImageNet→Flowers ImageNet→Pokemons

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
BigGAN - 213.3 0.29 226.8 0.15
BigGAN SS (ours) 225.6 0.47 208.3 0.47
Lall (ours) - 123.9 0.28 129.4 0.27
Lall (ours) SS (ours) 106.4 0.55 89.6 0.56

Table 5. Ablation on the performance when adapting the class-
conditional BigGAN model [2] pre-trained on ImageNet.

4.2. Adaptation of class-conditional GAN

Our approach is not limited to unconditional GANs, but
it can also be applied to a class-conditional GAN model.
We selected BigGAN [2] for our experiments as it is a pop-
ular backbone architecture for class-conditional image syn-
thesis on ImageNet [7]. We make two modifications to
enable the adaptation of the model to unconditional few-
shot datasets. Firstly, we remove the conditioning of the
discriminator via the projection layer [19]. Secondly, we
treat the generator’s learned continuous class embedding as
part of the latent space, thus sampling a Gaussian vector in
the joint noise-class space at each fine-tuning epoch. This
way, the generator produces an image based on a single in-
put vector in an unconditional fashion. We then fine-tune
the pre-trained model using our loss terms LSS and Lall as
presented in Sec. 3. We use image resolution 256×256 and
batch size of 32. The hyperparameters for LSS are the same
as for StyleGANv2: intermediate features Gl at resolution
(32×32) and λSS = 5.0. We train for 30k epochs and select
checkpoints by best FID.

Datasets. As the source generator, we use the Big-

GAN checkpoint pre-trained on class-conditional ImageNet
at resolution 256×256. We demonstrate 10-shot adapta-
tion results with two commonly used few-shot generation
datasets: Oxford-Flowers [21] and Pokemons [18]. We use
the same model configuration for both datasets.

Results. Fig. 7 demonstrates latent space interpolations
of the source and target generators. We note that a sim-
ple fine-tuning of BigGAN suffers from training instabili-
ties and mode collapse. In contrast, our method success-
fully adapts BigGAN to generate diverse images in the tar-
get domains. We highlight that our method transfers smooth
and realistic image transitions from the well-learned Big-
GAN’s noise-class space, despite significant dissimilarities
between ImageNet and the few-shot datasets, in particular
Pokemons. For example, it can be noticed how the latent
space interpolations in the target domains mimic the source
domain, e.g., the generated flowers and pokemons change
their position and size similarly to dogs and wolves (5th-
10th columns in Fig. 7) or stretch their shape to mimic the
proportions of busses (11th-14th columns).

Table 5 shows the importance of our proposed loss terms.
Our observations are consistent with the ablations with Styl-
GANv2: Lall is necessary to avoid instabilities and achieve
a good image quality (low FID), while LSS is required to
achieve smooth latent space interpolations and good diver-
sity (high LPIPS). We conclude that our method success-
fully extends to the adaptation of class-conditional models,
where target domains benefit from the rich noise-class space
learned on a multi-class dataset such as ImageNet. More de-
tails and results are provided in the supplementary material.



5. Conclusion
In this work, we presented a new method for few-shot

adaptation of GAN models. It transfers the smooth la-
tent space of a pre-trained GAN, which was trained on a
large dataset, to a new domain with very few images. We
addressed the case of few-shot GAN adaptation when the
source and target domains are structurally dissimilar, which
is a common issue in applications. Our extensive results
demonstrate that in this setting our approach outperforms
previous works in terms of image quality and diversity.
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