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Abstract

We propose a direct shot method for the task of correspondence matching. Instead
of minimizing a loss based on positive and negative pairs, which requires hard-negative
mining step for training and nearest neighbor search step for inference, we propose a
novel similarity heatmap generator that makes these additional steps obsolete. The simi-
larity heatmap generator efficiently generates peaked similarity heatmaps over the target
image for all the query keypoints in a single pass. The matching network can be ap-
pended to any standard deep network architecture to make it end-to-end trainable with
N-pairs based metric learning and achieves superior performance. We evaluate the pro-
posed method on various correspondence matching datasets and achieve state-of-the-art
performance.

1 Introduction
Correspondence search is a fundamental problem in computer vision and has applications
for many vision tasks such as stereo reconstruction, optical flow estimation, image retrieval,
object tracking, and articulated tracking. Variants of the task can range from finding ex-
act matches, e.g., in stereo matching, to finding semantic correspondences, e.g., matching
corresponding body parts of different species of birds.

Earlier work on correspondence search relied on hand-crafted features such as SIFT [17]
or SURF [1]. Recently, convolutional neural networks (CNNs) have replaced hand-crafted
features. In the context of correspondence search, Siamese networks have been proposed
which achieve impressive results [5, 5, 10, 13, 21, 28]. Recent approaches for image-to-
image semantic keypoint matching use pre-trained VGGNet [22] or GoogleNet [24] for each
Siamese branch to learn deep feature descriptors and then apply matching on the top. The
common strategies are to either apply a matching framework [9, 15] over the descriptors
[13], or search nearest neighbor in the descriptors space learned by the deep network [5].
However, those strategies have the downside that the underlying networks are not trained for
the end goal of precise localization of correspondences.

In order to enable end-to-end learning, we instead propose a novel matching network
that efficiently generates a similarity heatmaps for every semantic query point in the source
image over the target image in a single forward pass. Our proposed matching network can
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Figure 1: Our end-to-end learning framework consists of two parts: (i) a feature generator
and (ii) a matching network. The feature generator takes the source image, the query points,
and the target image and generates dense D dimensional features F1 and F2. The matching
network takes features F1 and F2 as inputs and generates a peaked similarity map for each
query point.

be appended to any standard deep network architecture to make it end-to-end trainable for
the task of precise correspondence matching. The peaks in the heatmaps then define the
locations of the correspondences in the target image. The heatmaps based representation
enables N-pairs based metric learning [23] and achieves superior performance than triplets
or contrastive divergence based metric learning. In addition to that, N-pairs based metric
learning eliminates the need of hard-negative sampling.

Our framework can be used to predict both sparse and dense visual correspondences. We
train the network with the multi-class classification loss. In contrast to [5], we use a simpler
network architecture that does not include any spatial transformer layers. Compared to [10],
our method operates on raw images and does not require region proposals. We evaluate the
proposed framework on the PF-Pascal [9], PF-Willow [9], Pascal-Parts [30], the KITTI-Flow
2015 [19] and MPI Sintel [4] datasets respectively. We achieve state-of-the-art performance
even when the network is trained from scratch.

To summarize, we make the following contributions : (i) We propose an end-to-end
learning method for the task of correspondence search with a novel matching network. (ii)
The proposed matching network can be appended to any standard deep network architecture
to make it end-to-end trainable for the task of precise correspondence matching.. (iii) The
heatmap representation enables N-pairs based metric learning and eliminates the need of
hard negative sampling required in triplet or contrastive divergence based metric learning.

2 Related Work

Correspondence search is one of the fundamental problems in computer vision and has gen-
erated a lot of literature. Early work on correspondence search focused on using hand-crafted
features such as SIFT [17], SURF [1], or DAISY [25].

In recent years Siamese based CNNs have been used extensively for similarity related
tasks. They were first used by Bromley et al. [3] for signature verification. In [28] a Siamese
network is used to measure patch similarity. Other Siamese networks have been used in
[21] to learn face embeddings for super-human face identification performance. Zbontar
et al. [29] used them for stereo matching. Long et al. [16] analyzed a CNN pre-trained
on ImageNet for the task of semantic correspondence search. In [26] a CNN is trained with
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Figure 2: Matching Network. It takes F1, F2 and N query points as inputs and outputs N
similarity maps for N query-points in image I1.

triplet loss for fine-grained image ranking. [18] trained a Siamese network with a dot product
layer and multi-class classification loss for efficient disparity estimation.

Despite impressive performance, all of the above-mentioned approaches estimate patch-
patch or patch-image similarity and require multiple forward passes during training and in-
ference for matching similarity of multiple key-points.

Recently approaches that perform image-image semantic keypoints matching have been
proposed . Choy et al. [5] introduced a “Universal Correspondence Network” with spatial
transformer layers [11]. Their network is trained efficiently using metric learning and re-
quires a single forward pass at inference time for matching multiple key points. However,
due to metric learning it requires an extra hard negative mining step that introduces the extra
distance measure and k-nearest neighbor hyper-parameters. In contrast, we present an end-
end learning framework that does not require the extra hard negative mining step. Kim et
al. [13] proposed a fully convolutional self-simalrity descriptor for dense semantic keypoints
matching. However, their approach still requires a matching framework e.g [9] on the top to
establish correspondences. In contrast, our system is self contained and predicts the corre-
spondences directly. [10] recently proposed a system that matches region proposals across a
pair of images using appearances and geometry. Our system uses appearances only and does
not require region proposals.

Our approach takes inspiration from [23], where N-pairs loss has been proposed and
achieves superior performance then contrastive divergence and triplets loss. However, their
approach is formulated for patch based matching, while our approach uses N-pairs loss in
the context of key points matching.

3 Correspondence Search
In correspondence search between a source image I1 with query points pn and a target image
I2, the goal is to precisely localize the matching point qn for every query point in the target
image I2. Our framework for correspondence search is shown in Figure 1. It consists of a
feature generator and a matching network.

The feature generator takes the source image I1 and the target image I2 as inputs and
generates features F1 and F2. The matching network takes the features F1 and F2 as inputs
and generates N similarity heatmaps for N query points.
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This section is organised as follows: In Section 3.1 we describe the feature generator.
Section 3.2 explains the matching network. Training and Inference are described in Sections
3.3 and 3.4, respectively.

3.1 Feature Generator
We refer both the Siamese branches as feature generator as shown in Figure 1. The feature
generator consists of two copies of the batch-normalized Google-Net [24] up to layer 17
with shared parameters. Channel wise L2-normalization is applied to the output of each
network. The feature generator takes source and target image, I1 and I2, as input, passes them
through a series of convolution, max-pooling and inception layers, and generates features F1,
F2 ∈ RC×W/P×H/P, where W and H are the widths and heights of the input images and C is
the dimensionality of the features, and P is the overall pooling.

3.2 Matching Network
We propose a matching network that efficiently generates a peaked similarity heat map for
every query point over the target image. The heatmap representation enables N-pairs based
metric learning [23] and eliminates the need of hard-negative sampling required with con-
trastive divergence or triplet based metric learning. In addition to that, with triplets or con-
trastive loss the network is not trained for the end goal of precise localization of the correct
correspondence as during training pixels within a radius r of the ground-truth correspon-
dence are taken as positives. Although this provides more positive pairs, it may negatively
effect the precise localization for small semantic objects like hands of a person or beak of a
bird.

During training, the network is trained to minimize the difference between the ground
truth and the predicted similarity map. This eliminates the need for hard negative mining, as
the network learns as part of its training procedure to generate dissimilar features for all the
negatives of any query point.

The matching network is shown in Figure 2 and consists of a series of simple layers
with no trainable parameters. It takes features F1, F2 and N query points as input, passes
them through a series of simple layers, and generates N peaked similarity heatmaps for each
query-point pn in image I1, as shown in Figure 2. In the following, we explain the operations
performed by each layer in detail.

Crop layer. The crop layer takes features F1, query points pn and their lower resolution scal-
ings p′n =

pn
P as inputs and generates a set of cropped features, { fn} ∈ RD×1×1, by cropping

F1 around each p′n.

Reshape R1. The Reshape R1 layer receives the set of cropped features { fn}. It reshapes
each fn ∈ RD×1×1 into a row vector f ′n ∈ R1×D and generates a set of reshaped cropped
features { f ′n}.
Copy. The copy layer generates the set {Fn

2 } consisting of N shallow copies of the 3D
tensor F2.

Reshape R2. The Reshape R2 layer receives the set of 3D tensors {Fn
2 } as inputs and

reshapes each F2 into a 2D matrix F̂2 ∈ RD×WH .

Dot Product. The Dot product layer receives the set of reshaped cropped features { f ′n}
and N reshaped 2D matrices {F̂n

2 } as inputs and generates a set of 1D similarity vectors
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{Ŝn ∈ R1×WH}. Each Ŝn is computed as

Ŝn = f ′n� F̂2 , (1)

where � is the dot product operation. The dot product layer efficiently computes the simi-
larity of every cropped feature fn with every feature in F2.

Soft-Max. The soft-max layer normalizes the similarity score for every element sk ∈ Ŝn,
where k = {1, ...,WH}, as follows:

ŝk =
exp(sk)

∑i=k exp(si)
. (2)

Reshape R3. The Reshape R3 layer reshapes each 1D similarity vector in {Ŝn} into a 2D
similarity map Ŝn

x,y ∈ RW×H and generates a set of 2D similarity maps {Ŝn
x,y}.

All the above operations in combination with the feature generation are carried out in a
single forward pass during training and inference.

3.3 Training
We denote training examples as (I1, I2,{pn},{qn}). We generate a ground truth similarity
map Sn

x,y ∈ RW/P×H/P, with x = {1, ...,W/P} and y = {1, ...,H/P}, for every query point
pn = (xn,yn) with ground truth correspondence qn = (xq,yq) as

Sn
x,y =

{
1, if x = xqn ,y = yqn

0, otherwise
. (3)

During training, given training examples {(I1, I2,{pn},{qn},{Sn
x,y)}, we minimize the binary

cross-entropy error between every predicted Ŝn
x,y and ground-truth similarity map Sn

x,y in an
image pair as:

min
w
−∑

x,y
Sn

x,y log(Ŝn
x,y)+(1−Sn

x,y)(1− log(Ŝn
x,y)) , (4)

where w are weights of the network. The weights are learned using back-propagation with
the Adam optimizer.

3.4 Inference
During inference we our method predicts a matching correspondence qn for every query
point pn as follows:

qn = argmax
x,y

Ŝn
x,y (5)

where qn is the position of the peak in the predicted similarity map. We up-sample the
generated similarity-map Ŝn

x,y using bilinear-sampling before localizing the peak.

4 Experiments
We evaluate the proposed method on the tasks of semantic keypoints matching and dense
matching.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
NAMHOG [9] 72.9 73.6 31.5 52.2 37.9 71.7 71.6 34.7 26.7 48.7 28.3 34.0 50.5 61.9 26.7 51.7 66.9 48.2 47.8 59.0 52.5
PHMHOG [9] 78.3 76.8 48.5 46.7 45.9 72.5 72.1 47.9 49.0 84.0 37.2 46.5 51.3 72.7 38.4 53.6 67.2 50.9 60.0 63.4 60.3
LOMHOG [9] 73.3 74.4 54.4 50.9 49.6 73.8 72.9 63.6 46.1 79.8 42.5 48.0 68.3 66.3 42.1 62.1 65.2 57.1 64.4 58.0 62.5

UCN [5] 64.8 58.7 42.8 59.6 47.0 42.2 61.0 45.6 49.9 52.0 48.5 49.5 53.2 72.7 53.0 41.4 83.3 49.0 73.0 66.0 55.6
SCNet-A [10] 67.6 72.9 69.3 59.7 74.5 72.7 73.2 59.5 51.4 78.2 39.4 50.1 67.0 62.1 69.3 68.5 78.2 63.3 57.7 59.8 66.3

SCNet-AG [10] 83.9 81.4 70.6 62.5 60.6 81.3 81.2 59.5 53.1 81.2 62.0 58.7 65.5 73.3 51.2 58.3 60.0 69.3 61.5 80.0 69.7
SCNet-AG+ [10] 85.5 84.4 66.3 70.8 57.4 82.7 82.3 71.6 54.3 95.8 55.2 59.5 68.6 75.0 56.3 60.4 60.0 73.7 66.5 76.7 72.2

Ours 88.9 94.5 81.2 56.2 65.7 91.0 83.2 76.1 68.6 97.9 56.8 75.5 91.1 88.7 72.4 68.1 85.7 55.7 81.0 62.3 81

Table 1: PCK comparison with state-of-the-art on the 300 test pairs of the PF-Pascal dataset
[9] across 20 object categories at fixed threshold T = 0.1. Our method outperform state-of-
the-art significantly with a mean PCK of 81 .

Experiment Protocol. We use the Torch7 [6] framework for training and inference. Our
experimental settings are as follows: We train the network from scratch without any pre-
training with a learning rate of .00092 using a stair case decay of .95 applied every 73 epochs.
We use the Adam optimizer [14] with β1 = 0.9 and ε = 0.1. We train the network for 160
epochs for each dataset. During each training epoch we augment each pair with random
scaling s ∈ [0.5,1.5] and rotation r ∈ [−20,20] to handle scale and rotation variations across
pairs. Horizontal flipping is applied with probability .5.

4.1 Semantic Matching
We report results on PF-PASCAL [9], PF-Willow [9] and Pascal-Parts [30] datasets and
following recent work [10] we train our method on the PF-PASCAL dataset only.

Evaluation Metric. Following recent work on semantic correspondence matching [5, 10],
we use PCK as the evaluation metric. According to the metric, a predicted correspondence
is correct if its euclidean distance in pixels to the ground-truth lies with in a threshold T .
Different image resolutions are taken into account by normalizing the euclidean distance
with the diagonal of the target image [5, 10]. We use PCK @ T for all experiments unless
stated otherwise.

PF-Pascal dataset. The PF-Pascal dataset [9] consists of 1300 image pairs. The annotations
are used from the PASCAL-Berkeley dataset [2, 8]. For fair comparison with recent work,
we use 700 training pairs, 300 validation pairs and 300 test pairs from [10] respectively. We
compare the PCK achieved by our method at fixed threshold T = 0.1 to recent work in Table
1 on the 300 PF-Pascal [9] test pairs. The comparison is done across 20 object categories.
Our method outperforms the state-of-the-art significantly with a mean PCK of 81.

PF-Willow dataset. We evaluate the transferability of the features learned by our method
on the PF-Willow dataset [9]. The PF-Willow dataset consists of 10 objects sub-classes with
10 keypoint annotations for each image. We evaluate the performance using the PCK at
thresholds of 0.05, 0.1 and 0.15 respectively and comapare it with recent state-of-the-art.
The comparison is shown in Table 2 . The PCK is averaged over the 10 object sub-classes.
Our method outperforms SCNet for PCK@.05 and PCK@0.1 and achieves competitive per-
formance for PCK@.15 based on raw point correspondences computed using appearance
only.

Pascal Parts Dataset. We also evaluate transferability on the sampled Pascal-Parts dataset
[30] using PCK at a fixed threshold of 0.05 and compare against recent state-of-the-art.
The PCK is averaged over all the classes. The results are shown in Table 3. Our method
outperforms with a PCK of .33
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Method PCK @ 0.05 PCK @ 0.1 PCK @ 0.15
SIFTFlow [15] 0.247 0.380 0.504

DAISY w/SF [27] 0.324 0.456 0.555
FCSS w/SF [13] 0.354 0.532 0.681
FCSS w/PF [13] 0.295 0.584 0.715
LOMHOG [9] 0.284 0.568 0.682

UCN [5] 0.291 0.417 0.513
SCNet-A [10] 0.390 0.725 0.873

SCNet-AG [10] 0.394 0.721 0.871
SCNet-AG+ [10] 0.386 0.704 0.853

Ours 0.520 0.780 0.833

Table 2: PCK comparison with state-of-the-art on the PF-Willow [9] dataset @ thresholds
of 0.05, 0.1 and 0.15 respectively. The PCK is averaged over the 10 sub-classes from the
dataset.

Method PCK @ 0.05
NAMHOG [9] 0.13
PHMHOG [9] 0.17
LOMHOG [9] 0.17

FCSS w/SF [13] 0.28
FCSS w/PF [13] 0.29
SCNet-A [10] 0.17

SCNet-AG [10] 0.17
SCNet-AG+ [10] 0.18

Ours 0.33

Table 3: PCK comparison with state-of-the-art on the sampled Pascal-Parts [30] dataset at
a fixed threshold of 0.05.

Figure 3: Qualitative results for keypoints transfer on the PF-Pascal ([9]) dataset. (Left)
Source image with query points. (Middle) Target image with keypoint transfers through
correspondence matching. (Right) Target image with ground truth correspondences.
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Figure 4: Qualitative results on the PF-Willow [9] dataset with similarity heatmaps. Each
row shows two examples. Left image is the source image with query points shown by green
rectangles. Predicted similarity heatmaps are shown in the middle images. On the right
target image is shown with overlaid heatmaps.

Qualitative Results PF-Pascal. We show qualitative results for keypoints transfer on the
PF-Pascal dataset in Figure 3 (a). Left image is the source image with query points. Middle
image is the target image with keypoint transfers through correspondence matching. Right
image is the target image with ground truth correspondences.

We show qualitative results with similarity heatmaps generated by the matching network
on the PF-Willow [9] dataset in Figure 4. Results show that the matching network generates
peaky similarity heatmaps that are used to precisely localize the correspondence. Results
from rows 1 and 2 show that our method handles rotation, scale variations and parts symme-
try like wheels of the car and bikes very well without using any spatial transformer layers or
explicit geometry.

4.2 Dense Matching

For dense correspondences, we evaluate on the KITTI-Flow 2015 [19] and MPI Sintel [4]
benchmarks. For a fair comparison with [5] we use the train/test split of the training set
employed in [5] for both KITTI-Flow and MPI-Sintel. We follow the performance measure
of PCK @ 10px from deep matching that is used in [5] for evaluation. Here, a predicted
correspondence is considered as correctly matched if it lies within 10 pixels of the ground-
truth.

We use image resolutions of 1242×375 and 1024×436 for KITTI-Flow and MPI-Sintel
during training and inference, respectively. We randomly sample 1000 query-match points
for each image pair during each training epoch.

The results for dense correspondences are shown in Table 4. Our approach significantly
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Method Kitti-Flow MPI-Sintel
SIFT-NN[17] 48.9 68.4
HOG-NN[7] 53.7 71.2

SIFT-flow[17] 67.3 89.0
DaisyFF[27] 79.6 87.3

DSP[12] 58.0 85.3
DM[20] 85.6 89.2

UCN-HN[5] 86.5 91.5
UCN-HN-S[5] 83.4 90.7

Ours 91.8 92.0

Table 4: Dense Correspondence matching performance for PCK@10 on the Kitti-Flow and
MPI-Sintel test sets. Our raw-correspondences outperform all previous state-of-the-art.

outperforms all previous state-of-the-art methods using just raw correspondences from our
framework without any post-processing steps. In particular, our approach also achieves better
performance than DAISY [27], DSP [12], and DM [20], which apply global optimization
as a post-processing step to achieve more precise correspondences. We also do not use
spatial transformer layers [11] and therefore do not experience overfitting with less training
examples for the KITTI-Flow [19] dataset, as reported in [5].

5 Conclusion
In this work, we have proposed a novel matching network that efficiently generates peaked
similarity heatmaps for every query point over the target image. The matching network can
be appended to any base network e,g VGG or GoogleNet to make it end-to-end trainable
for precise location of keypoints. The heatmap representation enables N-pairs based metric
learning and achieves superior performance on the PF-Pascal [9], PF-Willow [9], Pascal-
Parts [30], the KITTI-Flow 2015 [19] and MPI Sintel [4] datasets.
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