
Clustered Stochastic Optimization for Object
Recognition and Pose Estimation ?

Juergen Gall, Bodo Rosenhahn, and Hans-Peter Seidel

Max-Planck-Institute for Computer Science,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany
{jgall, rosenhahn, hpseidel}@mpi-inf.mpg.de

Abstract. We present an approach for estimating the 3D position and
in case of articulated objects also the joint configuration from segmented
2D images. The pose estimation without initial information is a challeng-
ing optimization problem in a high dimensional space and is essential for
texture acquisition and initialization of model-based tracking algorithms.
Our method is able to recognize the correct object in the case of multiple
objects and estimates its pose with a high accuracy. The key component
is a particle-based global optimization method that converges to the
global minimum similar to simulated annealing. After detecting poten-
tial bounded subsets of the search space, the particles are divided into
clusters and migrate to the most attractive cluster as the time increases.
The performance of our approach is verified by means of real scenes and a
quantative error analysis for image distortions. Our experiments include
rigid bodies and full human bodies.

1 Introduction

Finding the 3D position and rotation of a rigid object in a set of images from
calibrated cameras without any initial information is a difficult optimization
problem in a 6-dimensional space. The task becomes even more challenging for
articulated objects where the dimensionality of the search space is much higher,
e.g., a coarse model of a human skeleton has already 24 degrees of freedom
(DoF) yielding a 30-dimensional space. Although the initial pose is essential
for many state-of-the-art model-based tracking algorithm, e.g. [1–3], relatively
little attention was paid to the initialization of rigid and articulated models. A
manual initialization is usually required, which is time demanding and assumes
some expertise on the model and on the world coordinate system.

Depending on the image features, there are several techniques for pose esti-
mation in the literature. Edge-based approaches, e.g. [4–6], align curves or lines of
the model to detected edges. They work best for homogeneous objects, however,
textured objects and cluttered background typically involve many edges that are
not related to the model. Texture-based approaches [7, 8] use correspondences
between the textured model and an image for pose estimation. Separate from the
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Fig. 1. From left to right: a) 3D model of object. b) Potential bounded subsets of
the search space. c) Projection of the mesh. The pose is correctly estimated.

fact that they require textured surfaces for self-initialization, the texture needs
to be registered to the model beforehand, i.e., a manual initialization is done for
the texture acquisition during preprocessing.

Our approach for solving the initialization problem estimates the pose of rigid
and articulated objects by minimizing an energy function based only on the sil-
houette information. Although we are not restricted to silhouettes, the object
region has the advantage that it is an appearance independent feature that can
be easily extracted from a single frame, e.g. by background subtraction. Since
an initial guess is not available, local optimization algorithm like iterative clos-
est point (ICP) [9, 10] are not suitable for this task. For finding the exact pose,
we use a novel particle-based global optimization, called interacting simulated
annealing [11], that converges to the global optimum similar to simulated an-
nealing [12]. In order to deal with multiple objects, we extend the work in [11]
by clustering the particles with respect to previously detected bounded subsets
of the search space.

After a brief introduction to interacting simulated annealing in Section 2,
we give details of our method in Section 3. In Section 4, some extensions for
human bodies are explained. The experimental results are discussed in Section 5
followed by a brief conclusion.

2 Interacting Simulated Annealing

Interacting particle systems are well-known as particle filter [13] and approximate
a distribution of interest ηt by ηn

t :=
∑n

i=1 π(i)δX(i) , where δ is the Dirac measure
and X(i) are n random variables, termed particles, weighted by π(i). In the case
of interacting simulated annealing (ISA), the distribution is proportional to a
Boltzmann-Gibbs measure

gt(dx) = exp (−βt V (x)) λ(dx), (1)

where V ≥ 0 is the energy function to minimize, βt is an annealing parameter
that increases with t, and λ is the Lebesgue measure.
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Algorithm 1 Interacting Simulated Annealing Algorithm
1. Initialization

– Sample x
(i)
0 from η0 for all i

2. Selection
– Set π(i) ← exp(−βt V (x

(i)
t )) for all i

– For i from 1 to n:
Sample κ from U [0, 1]
If κ ≤ εtπ

(i) then
? Set x̌

(i)
t ← x

(i)
t

Else
? Set x̌

(i)
t ← x

(j)
t with probability π(j)Pn

k=1 π(k)

3. Mutation
– Sample x

(i)
t+1 from Kt(x̌

(i)
t , ·) for all i and go to step 2

In contrast to particle filter that estimate the posterior distribution for a se-
quence of images, we apply ISA for estimating the global optimum in still images
where no initial information is available. For this purpose, the steps Selection
and Mutation of Algorithm 1 are iterated until the global minimum of V is well
approximated. During the selection, the particles are weighted according to a
given energy function V where greater weight is given to particles with a lower
energy. The weights associated to the particles refer to the probability that a
particle is selected for the next step. We used the parameter εt = 1/

∑n
k=1 π(k)

for selection since it has slightly better convergence properties than εt = 0, see
for instance [14, 11]. If a particle is not accepted with probability εtπ

(i), a new
particle is selected from all particles, e.g. by multinomial sampling. The selec-
tion process removes particles with a high energy while particles with a low
energy are reproduced each time they are selected. An overview of various re-
sampling schemes can be found in [15]. In the second step, the selected particles
are distributed according to Markov kernels Kt specified by a modified dynamic
variance scheme, which we propose in Section 3.4.

Fig. 2. Particles at t = 0, 5, 10, 15 and 19 for ISA. Particles with a higher weight are
brighter, particles with a lower weight are darker. The particles converge to the pose
with the lowest energy as t increases. Most left: Equally weighted particles after
initialization. Most right: Estimate after 20 iterations.
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While the annealing scheme prevents the particles from getting stuck in lo-
cal minima, the dynamic variance scheme focuses the search around selected
particles. When t increases only particles with low energy are selected and the
search is concentrated on a small region, see also Figure 2. Indeed, it has been
shown that ISA approximates a distribution ηt that becomes concentrated in the
region of global minima of V as t tends to infinity provided that the annealing
scheme βt increases slow enough and the search space is bounded [16]. In [11],
the authors evaluated several annealing schemes and parameter settings. In our
experiments, a polynomial scheme, i.e.

βt = (t + 1)b for some b ∈ (0, 1), (2)

performed well with b = 0.7.

3 Clustered Optimization

3.1 Initial Subsets

Having a binary image for each camera view, where pixels that belong to the
foreground are set to 1 else to 0, the pixels are first clustered with repsect to
the 8-neighbor connectivity. In order to make the system more robust to noise,
clusters covering only a very small area are discarded. In the next step, the 4
corners of the bounding box of each cluster are determined and the projection
ray for each corner is calculated. The projection rays are represented as Plücker
lines [17], i.e., the 3D line is determined by a normalized vector d and a moment
m such that x × n = m for all x on the line. Provided that two projection rays
from different views are not parallel, the midpoint p of the shortest line segment
between the two rays l1 and l2 is unique and can be easily calculated. If the
minimum distance between l1 and l2 is below a threshold, p is regarded as a
corner of a convex polyhedron. After 8 corners of the polyhedron are detected
for two clusters from two different views, the bounding cube is calculated as
shown in Figure 1 b). In the case of more than two available camera views, each
pair of images – starting with the views containing the most clusters – is checked
until a polyhedron is found. The corners are similarly refined by calculating the
midpoint of the shortest line segment between a ray from another view and a
corner of a polyhedron. The resulting bounding cubes provide the initial bounded
subsets of the search space. We remark that the algorithm is not very sensitive
to the thresholds as long as the searched object is inside a bounding cube. This
can be achieved by using very conservative thresholds.

3.2 Particles

Since we know the 3D model, the pose is determined by a vector in R6+m, i.e.,
each particle is a 6 + m-dimensional random vector where m is the number of
joints. The rigid body motion M is represented by the axis-angle representation
given by the 6D vector (θω, t) with ω = (ω1, ω2, ω3) and ‖ω‖2 = 1. The mappings
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from θω to a rotation matrix R and vice versa can be efficiently computed by
the Rodriguez formula [18] and are denoted by exp(θω) and log(R), respectively.

Since ISA approximates a distribution by finite particles, we take the first
moment of the distribution as estimate of the pose, i.e., the mean of a set of
rotations r(i) weighted by π(i) is required.1 This can be done by finding a geodesic
on the Riemannian manifold determined by the set of 3D rotations. When the
geodesic starting from the mean rotation in the manifold is mapped by the
logarithm onto the tangent space at the mean, it is a straight line starting at
the origin, see [19]. The tangent space is called exponential chart. Hence, the
weighted mean rotation r̄ satisfies∑

i

π(i)
(
r̄−1 ? r(i)

)
= 0, (3)

where r(j) ? r(i) := log
(
exp(r(j)) · exp(r(i))

)
and r−1 := log

(
exp(r)T

)
. The

weighted mean can thus be estimated by

r̂t+1 = r̂t ?

(∑
i π(i)

(
r̂−1
t ? r(i)

)∑
i π(i)

)
. (4)

3.3 Initialization

Due to multiple objects as shown in Figure 1, each particle belongs to a certain
cluster C given by the bounding cubes and denoted by x(i,C). At the beginning,
a small number of particles is generated with different orientations located in
the center of the cube for each cluster. The complete set of particles is initialized
by randomly assigning each particle the values of one of the generated particles.
Afterwards, each particle is independently diffused by a normal distribution with
mean x(i,C) and a diagonal covariance matrix with fixed entries except for the
translation vector t where the standard deviations are given by the edge lengths
of the cube divided by 6 such that over 99.5% of the particles are inside the
cube.

3.4 Mutation

The dynamic variance scheme for the mutation step is implemented by cluster
dependent Gaussian kernels K

(C)
t with covariance matrices Σ

(C)
t proportional

to the sampling covariance matrix of each cluster:2

Σ
(C)
t :=

d

|C| − 1

n∑
i=1
i∈C

(x(i,C)
t − µt)ρ (x(i,C)

t − µt)T
ρ , µt :=

1
|C|

n∑
i=1
i∈C

x
(i,C)
t , (5)

1 The density could also be estimated by kernel smoothing from the particles in order
to take the peak of the density function as estimate. However, kernel smoothing is
more expansive than calculating the first moment of a density and it also needs to
be performed in the space of 3D rotations.

2 Samples from a multivariate normal distribution N (µ, Σ) can be drawn via a
Cholesky decomposition Σ = AAT : x = µ + Az where z is drawn from N (0, I).
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where |C| is the number of particles in cluster C and ((x)ρ)k = max(xk, ρ) for
the kth dimension. The value ρ > 0 ensures that the variance does not become
zero for any dimension. In practice, we set d = 0.4 and compute only a sparse
covariance matrix, see also Section 4.

3.5 Selection

Since each particle defines the pose of the model, the fitness of a particle x ∈ R6+m

can be evaluated by the difference between the original image and the tem-
plate image that is the projected surface of the model. For this purpose, we
apply a signed Euclidean distance transformation [20] on the silhouette image
Iv and on the template Tv(x) for each view v. The energy function is defined by
V (x) := α

r

∑r
v=1 Vv(x) with

Vv(x) :=
1

2|T+
v (x)|

∑
p∈T+

v (x)

|Tv(x, p)− Iv(p)|+ 1
2|I+

v |
∑

p∈I+
v

|Tv(x, p)− Iv(p)|, (6)

where I+ denotes the set of strictly positive pixels of an image I. The normal-
ization constant α = 0.1 ensures that V is approximately in the range between
0 and 10, which is suitable for the selected annealing scheme.

The resampling step is cluster independent, i.e., the particles migrate to the
most attractive cluster where the particles have more weight and give more
offspring. At the end, there are no particles left where the silhouettes do not fit
the model, see Figure 1 c).

Fig. 3. From left to right: a) Estimated pose without noise. The error is less than
1mm (median). b) Silhouettes are randomly distorted by 500 white and 500 black
circles. c) Median estimate with error less than 4cm.

4 Human Bodies

While for rigid bodies the correlation between the parameters is neglected due
to computational efficiency, correlation between connected joints in the human
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skeleton are incorporated. That is, the correlation of the joints that belong to
the same skeleton branch, e.g. the left leg, are calculated in the dynamic variance
scheme (5) while correlations with joints to other branches are set to zero.

In order to focus the search on poses with higher probabilities, prior knowl-
edge is incorporated into the energy function as soft constraint. The probability
of a pose ppose is estimated by a Parzen-Rosenblatt estimator with Gaussian
kernels [21, 22] over a set of subsamples from different motions from the CMU
motion database [23]. Since the dependency between the joints of the upper body
and the joints of the lower body is low, the sample size can be reduced by split-
ting ppose up into two independent probabilities pu

pose and pl
pose, respectively.

Hence, the energy function is extended by

V (x) :=
α

r

r∑
v=1

Vv(x)− η

2
ln
(
pu

pose(x)pl
pose(x)

)
, (7)

where η = 2.0 regulates the influence of the prior. Moreover, the mean and the
variance of the joints in the training data is used to initialize the particles. To
get rid of a biased error from the prior, the final pose is refined by ICP [9, 10]
that is initialized by the estimate of ISA.

5 Results

For the error analysis, synthetic images with silhouettes of the bear were gener-
ated by projecting the model for 3 different views. The error was measured by
the Euclidean distance between the estimated 3D position and the exact posi-
tion. Each simulation was repeated 25 times and the average errors for different
numbers of particles and iterations are plotted in Figure 5. The estimates for
200 particles and 30 iterations are very accurate with a median error less than
1mm, see Figure 3 a). The influence of distorted silhouettes is simulated by ran-
domly drawing first a fixed number of white circles and then black circles. Holes,
dilatation and erosion are typically for background subtraction and change the
outcome of the Euclidean distance transform. The diagrams in Figure 5 show
that our method performs also well for distorted silhouettes. In the case of 500
white and 500 black circles, the error of the median estimate shown in Figure 3
is still less than 4cm. The performance for a human body with 30 DoF was
tested by generating synthetic images with silhouettes for 12 single poses from
a sequence of the CMU database that was not used for the prior. The estimates
are given in Figure 6. The average error of the joints for 400 particles and 40
iterations was 1.05◦. Results for a real scene with background subtraction are
shown in Figure 4. For images of size 1004 × 1004 pixels, the computation cost
is given by number of views × number of iterations × number of particles ×
0.0346 seconds.
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Fig. 4. Estimates for a real scene. 3 views were segmented for the bear and 4 views for
the human (Only one is shown). Most left: Silhouettes from background subtraction.

6 Discussion

We proposed an accurate and robust approach, which relies on a global opti-
mization method with clustered particles, for estimating the 3D pose of rigid
and articulated objects with up to 30 DoF. It does not require any initial infor-
mation about position or orientation of the object and solves the initial problem
as it occurs for tracking and texture acquisition. Our experiments demonstrate
that the correct pose is estimated when multiple objects appear. It could also
be extended to the case when the object is not visible by rejecting estimates
with an high energy. In general, our method can be easily modified for certain
applications, e.g., by including prior as we did for humans. Other possibilities
are multi-cue integration and exploitation of an hierarchical structure, however,
these features are object specific and not suitable for a general solution.
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