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Abstract

Bag-of-words (BoW) models are widely used in the field of computer vision. A BoW
model consists of a visual vocabulary that is generated by unsupervised clustering the
features of the training data, e.g., by using kMeans. The clustering methods, however,
struggle with large amounts of data, in particular, in the context of action recognition.
In this paper, we propose a transformation of the standard BoW model into a neural
network, enabling discriminative training of the visual vocabulary on large action recog-
nition datasets. We show that our model is equivalent to the original BoW model but
allows for the application of supervised neural network training. Our model outperforms
the conventional BoW model and sparse coding methods on recent action recognition
benchmarks.

1 Introduction
Bag-of-words (BoW) or bag-of-features representations for images or videos have been
widely used in computer vision applications like texture classification [40], object classi-
fication [5], object discovery [28], or object retrieval [27]. Although other representations
like improved Fisher vectors [23] usually lead to better classification results, BoW models
are still very popular since they can be efficiently computed and have a low memory foot-
print in comparison to more advanced representations [23]. This is in particular relevant for
videos. BoW models are therefore widely used for action recognition [11, 24, 32, 36].

Usually, kMeans or a Gaussian mixture model (GMM) is used to generate a visual vo-
cabulary based on which histograms of visual words are computed in order to quantize and
represent the input data. However, generating the visual vocabulary with kMeans or GMMs
has several drawbacks. State-of-the-art feature extraction algorithms, such as dense trajecto-
ries (DT) [36] for action recognition, generate a huge amount of data. It is usually infeasible
to cluster the complete data, which thus needs to be sparsely sampled. For instance in [36],
several visual vocabularies are created by kMeans and based on a heuristic the best one is se-
lected. Furthermore, the visual vocabulary is created without supervision and not optimized
for the task to solve. This results in a loss of discriminative power as we will show in our
experiments.

In this work, we propose a method to generate visual words using discriminative training
by converting the kMeans-based BoW model into an equivalent recurrent neural network.
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In this way, we can learn a visual vocabulary by maximizing the class posterior probability
instead of minimizing the sum of squared distances of the training data to their nearest visual
words. This results in a more discriminative visual vocabulary. Our approach is the first that
allows for codebook training directly on video level rather than on descriptor level only.

For evaluation, we use the state-of-the-art action recognition framework proposed in [34,
36] and replace the kMeans-based BoW model by our recurrent neural network. We validate
on four recent action recognition datasets that our model outperforms the kMeans baseline by
two to five percent points and allows for a considerable reduction in the amount of extracted
features. We further compare our method to state-of-the-art feature encodings that are widely
used in action recognition and image classification.

2 Related work

There have been several approaches to improve the standard BoW model. Perronnin et
al. [22] propose to extend the global vocabularies with class-specific vocabularies and repre-
sent an image by multiple histograms. Cai et al. [3] apply metric learning to learn a weighted
codebook. In [16], a dictionary is learned by combining a Gaussian mixture model with a
logistic regression model. In the context of sparse coding, LLC [37] and ScSPM [38] have
shown good results in image classification. Boureau et al. [1] show that sparse coding meth-
ods can be improved by supervised dictionary learning. In the work of Goh et al. [9], a
restricted Boltzman machine is used to learn a sparse coding which can be refined with su-
pervised fine-tuning. Their approach, however, only allows for training on descriptor level,
but not for training on video level directly. Yet, neither of the approaches has been applied
to action recognition.

In parallel, neural networks are of increasing interest for action recognition. Karpathy et
al. trained a convolutional neural network (CNN) on one million weakly annotated Youtube
videos [12]. In [25], a two-stream CNN processing single frames as well as optical flow
is successfully applied to two action recognition benchmarks. The authors of [6] and [30]
use a CNN to extract features on each video frame and train an LSTM network to explore
temporal information. Still, these approaches do not yet outperform hand-crafted features
such as the dense trajectories of [36].

In the context of action recognition, improved Fisher vectors [23] recently became a
topic of interest [20, 21, 34]. Although they usually lead to better classification results, the
computation and memory requirements are higher than for a BoW model. Sydorov et al. [31]
investigate similarities in the structure of Fisher vectors and neural networks and propose a
method to optimize Fisher vectors and a classifier jointly. In [26], an architecture of several
stacked Fisher layers is proposed and a dimension reduction is learned discriminatively in
each layer.

3 Bag-of-Words Model as Neural Network

In this section, we first define the standard BoW model and propose a neural network repre-
sentation. We then discuss the equivalence of both models.
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3.1 Bag-of-Words Model
Let x = (x1, . . . ,xT ) be a sequence of D-dimensional feature vectors xi ∈RD extracted from a
video, C = {1, . . . ,C} the set of classes, and {(x1,c1), . . . ,(xN ,cN)} the training data. In the
case of action recognition, for example, each observation xi is a sequence of feature vectors
extracted from a video and ci is the action class of the video. Note that the sequences usually
have different lengths, i.e. for two different observations xi and x j, usually Ti 6= Tj.

The objective of a BoW model is to quantize each observation x using a fixed vocabulary
V = {v1, . . . ,vK} ⊂ RD of K visual words. To this end, each sequence is represented as a
histogram of posterior probabilities p(v|x),

H(x) = 1
T

T

∑
t=1

h(xt), h(xt) =

 p(v1|xt)
...

p(vK |xt)

 . (1)

Frequently, kMeans is used to generate the visual vocabulary. In this case, h(xt) is a unit
vector, i.e. the closest visual word has probability one and all other visual words have prob-
ability zero. Based on the histograms, a probability distribution p(c|H(x)) can be modeled.
Typically, a support vector machine (SVM) in combination with a non-linear kernel is used
for classification.

3.2 Conversion into a Neural Network
The result of kMeans can be seen as a mixture distribution describing the structure of the
input space. Such distributions can also be modeled with neural networks. In the following,
we propose a transformation of the BoW model into a neural network.

The nearest visual word v̂ = argmink ‖x− vk‖2 for a feature vector x can be seen as the
maximizing argument of the posterior form of a Gaussian distribution,

pKM(vk|x) =
p(vk)p(x|vk)

∑k̃ p(vk̃)p(x|vk̃)
=

exp
(
− 1

2 (x− vk)
ᵀ(x− vk)

)
∑k̃ exp

(
− 1

2 (x− vk̃)
ᵀ(x− vk̃)

) , (2)

assuming a uniform prior p(vk) and a normal distribution p(x|vk) =N (x|vk,I) with mean vk
and unit variance. Using maximum approximation, i.e. shifting all probability mass to the
most likely visual word, a probabilistic interpretation for kMeans can be obtained:

p̂KM(vk|x) =
{

1, if vk = argmaxk̃ pKM(vk̃|x),
0, otherwise. (3)

Inserting p̂KM(vk|x) into the histogram equation (1) is equivalent to counting how often each
visual word vk is the nearest for the feature vectors x1, . . . ,xT of a sequence x.

Now, consider a single-layer neural network with input x∈RD and K-dimensional softmax
output that defines the posterior distribution

pNN(vk|x) := softmaxk(Wᵀx+b) =
exp
(

∑d wd,kxd +bk
)

∑k̃ exp
(

∑d wd,k̃xd +bk̃

) , (4)

where W ∈ RD×K is a weight matrix and b ∈ RK the bias. With the definition

W = (v1 . . .vK), (5)

b =−1
2
(vᵀ1 v1 . . .v

ᵀ
KvK)

ᵀ, (6)
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an expansion of the right hand side of Equation (2) reveals that

pNN(vk|x) =
exp
(
− 1

2 vᵀk vk + vᵀk x
)

∑k̃ exp
(
− 1

2 vᵀ
k̃

vk̃ + vᵀ
k̃

x
) = pKM(vk|x). (7)

A recurrent layer without bias and with unit matrix as weights for both the incoming and
recurrent connection is added to realize the summation over the posteriors pNN(vk|x) for the
histogram computation, c.f . Equation (1). The histogram normalization is achieved using
the activation function

σt(z) =
{

z if t < T,
1
T z if t = T.

(8)

Given an input sequence x of length T , the output of the recurrent layer is

σT

(
h(xT )+σT−1

(
h(xT−1)+σT−2(h(xT−2)+ . . .)

))
=

1
T

T

∑
t=1

h(xt) =H(x). (9)

So far, the neural network computes the histogramsH(x) for given visual words v1, . . . ,vK .
In order to train the visual words discriminatively and from scratch, an additional softmax
layer with C output units is added to model the class posterior distribution

p(c|H(x)) = softmaxc(W̃ᵀH(x)+ b̃). (10)

It acts as a linear classifier on the histograms and allows for the application of standard neu-
ral network optimization methods for the joint estimation of the visual words and classifier
weights. Once the network is trained, the softmax output layer can be discarded and the out-
put of the recurrent layer is used as histogram representation. The complete neural network
is depicted in Figure 1.

Note the difference of our method to other supervised learning methods like the restricted
Boltzman machine of [9]. Usually, each feature vector xt extracted from a video gets as-
signed the class of the respective video. Then, the codebook is optimized to distinguish the
classes based on the representations h(xt). For the actual classification, however, a global
video representation H(x) is used. In our approach, on the contrary, the codebook is opti-
mized to distinguish the classes based on the final representation H(x) directly rather than
on an intermediate quantity h(xt).

3.3 Equivalence Results
There is a close relation between single-layer neural networks and Gaussian models [10, 18].
We consider the special case of kMeans here. Following the derivation in the previous sec-
tion, the kMeans model can be transformed into a single-layer neural network. For the other
direction, however, the constraint that the bias components are inner products of the weight
matrix rows (see Equations (5) and (6)) is not met when optimizing the neural network pa-
rameters. In fact, the single-layer neural network is equivalent to a kMeans model with
non-uniform visual word priors p(vk). The visual words and their priors can be obtained
from the weight matrix W and the bias b,

vk = (W1,k . . .WD,k)
ᵀ, (11)

pNN(vk) =
exp(bk +

1
2 vᵀk vk)

∑k̃ exp(bk̃ +
1
2 vᵀ

k̃
vk̃)

. (12)
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input sequence

x = x1, . . . ,xT

softmax 1

h(xt)

σt

H(x)

softmax 1

p(c|H(x))

W

b

I

I

W̃
b̃

Figure 1: Neural network encoding the BoW model. The output layer is discarded after
training and the histograms from the recurrent layer are used for classification in combination
with an SVM.

4 Experimental Setup
We extract improved dense trajectories as described in [34], resulting in five descriptors with
an overall number of 426 features per trajectory, and apply a z-score normalization to the
data. A visual vocabulary and histograms of visual words are computed for each video. An
SVM with RBF-χ2 kernel is then applied to the histograms. We use LIBSVM [4] with a
one-against-rest approach to address the multiclass problem.

For the baseline, we follow the approach of [34]: kMeans is run eight times on a ran-
domly sampled subset of 100,000 trajectories. The result with lowest sum of squared dis-
tances is used as visual vocabulary.

If the histograms are computed with a neural network, the trajectories of each video are
uniformly subsampled to reduce the total amount of trajectories that are used for training.
The network is trained according to the cross-entropy criterion, which maximizes the likeli-
hood of the posterior probabilities. We use RProp as optimization algorithm and iterate until
the objective function does not improve further. Since the network output is not used di-
rectly for classification, overfitting is not a critical issue. Thus, strategies like regularization
or dropout do not need to be applied. Furthermore, we could not observe any advantages
when initializing with a kMeans model. Normalization, in contrast, is crucial. If the network
input is unnormalized, neural network training is highly sensitive to the learning rate and
RProp even fails to converge.

The number of visual words is set to 4,000 for all experiments. The histograms for each
of the five descriptors are combined using a multichannel RBF-χ2 kernel,

K(i, j) = exp
(
− 1

5

5

∑
c=1

D(H(xc
i ),H(xc

j))

Ac

)
, (13)

where xc
i is the c-th descriptor type of the i-th video, D(·, ·) is the χ2-distance between two
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histograms, and Ac is the mean distance between all histograms for descriptor c in the training
set.

We evaluate our method on four action recognition benchmarks. The datasets range from
medium scale to large scale.

The Olympic Sports dataset [19] contains 783 action clips of 16 different Olympic dis-
ciplines. We follow the setup of [19] and use the suggested split into a training set containing
649 videos and a test set containing 134 videos. Roughly 40 million trajectories are extracted
for the training set and 7.8 million for the test set. We report mean average precision.

The HMDB-51 dataset [13] is a large action recognition dataset containing 6,849 videos
collected from several movies and public databases. The video clips comprise 51 action
categories, each of which is represented by at least 101 videos. Three splits into training
and test sets are provided by the authors. For each of the splits, 42 million trajectories are
extracted for training and 18 million trajectories for testing. We report the average accuracy.

J-HMDB [11] is a subset of HMDB-51 with 928 videos and 21 action classes. The clips
are rather short, having a length of 15 to 40 frames. As for HMDB-51, the authors propose
three splits, each of them using 70% of the video clips as training data and 30% for testing.
For each split, the training data comprises roughly two million trajectories and the test data
750,000(±50,000) trajectories. This dataset is the smallest of the four in terms of extracted
trajectories. We use it to validate that our method not only works for large scale tasks, but
also on small datasets. As for HMDB-51, average accuracy over the three splits is reported.

The UCF101 dataset [29] is a large scale action recognition dataset with 13,320 video
clips of 101 action classes. The videos are collected from Youtube and contain actions of
five types (human-object interaction, body motion only, human-human interaction, playing
musical instruments, and sports). The authors suggest three splits, each containing approx-
imately 9,500 clips for training and 3,700 for testing. This results in roughly 230 million
trajectories for the training set and 90 million trajectories for the test set. We report average
accuracy over the three splits.

For Olympic Sports and HMDB-51, we use the human bounding boxes provided by
Wang and Schmid.1 For the other datasets, improved dense trajectories are extracted without
human bounding boxes.

5 Experimental Results
In this section, we evaluate our method empirically. First, the effect of subsampling the
trajectories is analyzed. We show that even with a small number of trajectories, satisfying
results can be obtained while accelerating the training time by up to two orders of magnitude.
Then, we evaluate our method on four action recognition benchmarks and compare it to some
well known coding methods on two small image classification datasets. We conclude with a
comparison to the current state-of-the-art in action recognition.

5.1 Effect of Feature Subsampling

We evaluate the runtime and accuracy of our method when reducing the number of trajec-
tories per video on Olympic Sports. The networks are trained on a GeForce GTX 780 with
3GB memory. We limit the number of trajectories per video to values from 150 to 20,000

1http://lear.inrialpes.fr/people/wang/improved_trajectories
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(a) Time required to train the neural network.
x- and y-axis are in logarithmic scale.
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Figure 2: Runtime and mean average precision on Olympic Sports when limiting the maxi-
mal number of trajectories per video. Note that the x-axes are in logarithmic scale.

Descriptors: concatenated separate

baseline neural network baseline neural network

Olympic Sports 84.1% 86.7% 84.4% 85.9%
J-HMDB 56.6% 57.6% 59.1% 61.9%
HMDB-51 45.8% 50.6% 52.2% 54.0%
UCF101 67.8% 73.3% 73.3% 76.9%

Table 1: Comparison of the baseline with the neural network model for concatenated and
separate descriptors on four different datasets.

via uniform subsampling. This corresponds to an overall number of trajectories between
100,000 and 12 million. In Figure 2a, the runtime is shown. For 150 trajectories per video,
neural network training takes nine minutes, which is about the same time needed for the gen-
eration of the visual vocabulary for the baseline using our GPU implementation of kMeans.
The training time scales linearly with the number of trajectories per video. In Figure 2b, the
performance of the system with limited number of trajectories is illustrated. For the blue
curve, the number of trajectories has only been limited for neural network training, but the
histograms are computed on all extracted trajectories. The performance of the neural net-
work models is always above the baseline (dashed line). The curve stabilizes around 5,000
trajectories per video, suggesting that this number is sufficient for the neural network based
BoW. Note that for kMeans, we observed only small fluctuations around one percent when
changing the number of clustered trajectories, the subsampling strategy, or the initialization.

If the histograms for the training and test set are also computed on the limited set of tra-
jectories (red and green curve), the performance of the systems is much more sensitive to the
number of subsampled trajectories. However, when more than 5,000 trajectories per video
(overall 3.2 million trajectories) are used for the neural network histogram computation, the
difference to taking all extracted trajectories is small. Hence, it is possible to achieve sat-
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Method Codebook Size Caltech-101 15-Scenes

Hard assignment [15] 200 64.6% 81.1%
Kernel Codebooks [33] 200 64.1% 76.7%
Soft assignment [17] 1000 74.2% 82.7%

ScSPM [38] 1024 73.2% 80.3%
LLC [37] 2048 73.4% -
Multi-way local pooling [2] 1024×65 77.8% 83.1%

Unsupervised SS-RBM [9] 1024 75.1% 84.1%
Ours 1024 74.5% 83.5%

Table 2: Comparison of our method to other coding methods on Caltech-101 and 15-scenes.

isfying results with only 8% of the originally extracted trajectories, allowing to accelerate
both, the histogram computation and the feature extraction itself. A similar reduction is also
possible with kMeans, but the loss in accuracy is higher.

During training of the neural network, a class posterior distribution p(c|H(x)) is mod-
eled. Using this model instead of the SVM with RBF-χ2 kernel for classification is worse
than the baseline. For concatenated descriptors, the result on Olympic Sports is 82.3%. Reg-
ularization, dropout, and adding additional layers did not yield any improvement. However,
considering that the model for p(c|H(x)) is only a linear classifier on the histograms (c.f .
Section 3), the result is remarkable as the baseline with a linear SVM reaches only 69.6%.

5.2 Evaluation on Various Datasets
We evaluate our method on the four action recognition datasets Olympic Sports, J-HMDB,
HMDB-51, and UCF101. On J-HMDB, all extracted trajectories are used for neural network
training. On Olympic Sports and HMDB-51, we limit the number of trajectories per video
to 5,000 as proposed in Section 5.1. For terms of efficiency, we further reduce this number
to 2,500 for the largest dataset UCF101. We conduct the experiments for concatenated
descriptors, i.e. we directly use a 426 dimensional feature vector for each trajectory, and for
separate descriptors as originally proposed in [34]. The results are shown in Table 1.

The neural network outperforms the baseline on all datasets. For the medium-sized
datasets J-HMDB and Olympic Sports that have only few classes, the improvement is be-
tween 1% and 2.6% in case of concatenated descriptors. For the large datasets, however, the
baseline is outperformed by around 5%. In case of separate descriptors, the improvement is
smaller but still ranges from 1.5% to 3.6%.

Comparing the neural network with concatenated descriptors (second column of Table
1) and the baseline with separate descriptors (third column of Table 1) reveals that both
systems achieve similar accuracies. However, for the baseline with separate descriptors,
visual vocabularies and histograms have to be computed for each of the five descriptors
separately. For the neural network with concatenated descriptors, in contrast, it is sufficient
to train a single system.

Note that the performance gain over the traditional BoW model is due to the fact the
codebook for the neural network is trained discriminatively to best separate the classes. Par-
ticularly, it is not related to the fact that the neural network implicitly models a non-uniform
prior. To validate this hypothesis, we trained a traditional BoW model with a non-uniform
prior on Olympic Sports. The mean average precision is 84.0% compared to 84.1% with
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Method HMDB-51 UCF101

Traditional models
Improved DT + bag of words 52.2% 73.3%
Improved DT + fisher vectors [34, 35] (*) 57.2% 85.9%
Improved DT + LLC 50.8% 71.9%
Stacked fisher vectors [21] (*) 66.8% -
Multi-skip feature stacking [14] (*) 65.4% 89.1%
Super-sparse coding vector [39] 53.9% -

Neural networks
Two-stream CNN [25] (**) 59.4% 88.0%
Slow-fusion spatio-temporal CNN [12] (**) - 65.4%
Composite LSTM [30] 44.0% 75.8%

Ours 54.0% 76.9%

Table 3: Comparison of our model to published results on HMDB-51 and UCF101. We also
provide results with BoW and LLC encoding as a direct comparison to our method. Methods
marked with (*) use Fisher vectors, those marked with (**) use additional training data.

a uniform prior. It can be seen that the non-uniform prior does not lead to a significant
difference.

5.3 Application to Image Classification

Although designed to meet some specific problems in action recognition, our method is
applicable to image datasets, too. We compare to existing coding methods on two small
image datasets, Caltech-101 [8] and 15-scenes [7]. Following the setup of [9], we densely
extract SIFT features, compute spatial pyramids, and use a linear SVM for classification.
Note that our method is not particularly designed for such a setting since we do not train our
encoding directly on the spatial pyramid features that are finally used for classification. In
contrast to the methods [2, 9, 37, 38], we do not introduce any sparsity constraints. Still, our
method shows competitive results compared to several other coding methods, see Table 2.

5.4 Comparison to State of the Art

In Table 3, our method is compared to the state-of-the-art on HMDB-51 and UCF101.
Our approach outperforms other approaches based on BoW, sparse coding [39], locality-
constrained linear coding (LLC) [37], or neural networks [12, 30]. The approach [25] is not
directly comparable since the accuracy is mainly boosted by the use of additional training
data. Only the methods that use Fisher vectors achieve a better accuracy than our method.
However, extracting Fisher vectors is more expensive in terms of memory than a BoW model.
If Fisher vectors are extracted per frame, the storage of the features would require around 1
TB for the 2.4 million frames of UCF101 compared to 35 GB for our method. For applica-
tions with memory and runtime constraints, our approach is a very useful alternative.
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6 Conclusion
We have introduced a neural network model that enables discriminative and supervised train-
ing of a visual vocabulary directly on video level rather than on descriptor level only. The
model is equivalent to the standard BoW model and differs only in the way it is trained. Our
model outperforms the baseline by two to five percent points on four state-of-the-art action
recognition datasets and allows for a significant reduction in the amount of extracted features,
and thus in training and test time, without a considerable loss of performance. Moreover, we
have shown the applicability of our model to image classification and achieved competitive
results compared to other coding methods, although no additional constraints like sparsity
are required.
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