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Abstract

Localizing functional regions of objects or affordances
is an important aspect of scene understanding and relevant
for many robotics applications. In this work, we introduce
a pixel-wise annotated affordance dataset of 3090 images
containing 9916 object instances. Since parts of an object
can have multiple affordances, we address this by a convo-
lutional neural network for multilabel affordance segmen-
tation. We also propose an approach to train the network
from very few keypoint annotations. Our approach achieves
a higher affordance detection accuracy than other weakly
supervised methods that also rely on keypoint annotations
or image annotations as weak supervision.

1. Introduction

The capability to perceive functional aspects of an envi-
ronment is highly desired because it forms the essence of
devices intended for collaborative use. These aspects can
be categorized into abstract descriptive properties called at-
tributes [28, 25, 30] or physically grounded regions called
affordances. Affordances are important as they form the
key representation to describe potential interactions. For
instance, autonomous navigation depends heavily on under-
standing outdoor semantics to decide if the lane is change-
able or if the way ahead is drivable [5]. Similarly, assistive
robots must have the capability of anticipating indoor se-
mantics like which regions of the kitchen are openable or
placeable [20]. Further, because forms of interaction are
given for virtually any object class, it is desirable to have
recognition systems that are capable of localizing function-
ally meaningful regions or affordances alongside contem-
porary object recognition systems.

Existing methods [15, 17, 26, 13, 32] learn to infer
pixel-wise affordance labels using supervised learning tech-
niques. Since creating pixel wise annotated datasets is heav-
ily labor intensive, recent works focus mainly on coarse af-
fordance classes like walkable or reachable which are at a
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scene level but not at an object level [32]. An exception is
the UMD part affordance dataset [26], which provides an-
notations for objects. In order to simplify the annotation
process, a turntable setting has been used to capture the ob-
jects. This setup, however, simplifies the task since each
image contains only one object that is easy to segment. We
therefore propose a more challenging dataset containing im-
ages captured in a kitchen environment. The dataset con-
sists of 3090 images containing 9916 object instances. As
in [26], each pixel is annotated by none or several affor-
dance classes. This is different to other semantic segmen-
tation tasks where a pixel is usually labeled by only one
semantic class. To address this, we extend a convolutional
neural network (CNN) architecture for segmentation from
singlelabel to multilabel classification.

Since CNNs require large amounts of annotated data,
it is desirable to train them in a weakly supervised set-
ting. In [2], supervision in form of keypoints has been
proposed. Instead of providing segmentation masks, only
a very small set of pixels in an image are annotated. We
therefore propose an approach for affordance detection that
can be learned by such keypoint annotations. In our ex-
periments, we show that our approach outperforms [2] for
affordance detection by a large margin. Our approach also
achieves a higher affordance detection accuracy than other
state-of-the-art methods that utilize weaker supervision at
image level [27, 19].

2. Related Work
Properties of objects can be described at various levels of

abstraction by a variety of attributes including visual prop-
erties [28, 16, 10, 23], e.g. object color, shape and object
parts, physical properties [11, 41], e.g. weight, size and ma-
terial characteristics, and categorical properties [1, 8]. Ob-
ject affordances, which describe potential uses of an object,
can also be considered as other attributes. For instance, [4]
describes affordances by object-action pairs whose plausi-
bility is determined either by mining word co-occurrences
in textual data or by measuring visual consistency in images
returned by an image search. [41] proposes to represent ob-
jects in a densely connected graph structure. While a node
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represents one of the various visual, categorical, physical or
functional aspects of the object, an edge indicates the plau-
sibility of both node entities to occur jointly. Upon querying
the graph with observed information, e.g. {round, red}, the
result is a set of most likely nodes, e.g. {tomato, edible, 10-
100gm, pizza}.

Affordances have also been used as an intermediate rep-
resentation for higher level tasks. In [3], object functional-
ity is defined in terms of the poses of relevant hand-grasps
during interaction. Object recognition is performed by com-
bining individual classifiers based on object appearance and
hand pose. [42] uses affordances as a part of a task ori-
ented object modeling. They formulate a generative frame-
work that encapsulates the underlying physics, functions
and causality of objects being used as tools. Their rep-
resentation combines extrinsic factors that include human
pose sequences and physical forces such as velocity and
pressure and intrinsic factors that represent object part af-
fordances. [22] models action segments using CRFs which
are described by human pose, object affordance and their
appearances. Using a particle filter framework, future ac-
tions are anticipated by sampling from a pool of possible
CRFs thereby performing a temporal segmentation of ac-
tion labels and object affordances. [18] jointly models ob-
ject appearance and hand pose during interactions. They
demonstrate simultaneous hand action localization and ob-
ject detection by implicitly modeling affordances.

Localizing object affordances based on supervised learn-
ing has been addressed in particular in the context of
robotics applications. [15] performs robotic manipulations
on objects based on affordances which are inferred from
the orientations of object surfaces. [17] learns a discrim-
inative model to perform affordance segmentation of point
clouds based on surface geometry. [26] uses RGB-D data to
learn pixelwise labeling of affordances for common house-
hold objects. They explore two different features: one based
on a hierarchical matching pursuit and another based on
normal and curvature features derived from RGB-D data.
[13] learns to infer object level affordance labels based on
attributes derived from appearance features. [24] proposes a
two stage cascade approach based on RGB-D data to regress
potential grasp locations of objects. In [9], pixelwise affor-
dance labels of objects are obtained by warping the query
image to the K-nearest training images based on part loca-
tions inferred using deformable part models. [35] combines
top-down object pose based affordance labels with those ob-
tained from bottom-up appearance based features to infer
part-based object affordances. Top-down approaches for
affordance labeling have been explored in [12, 14] where
scene labeling is performed by observing possible inter-
actions between scene geometry and hallucinated human
poses. Localizing object affordances based on human con-
text has been also studied in [21]. [32] uses CNNs to es-

Figure 1. Example images from (top row) the UMD part affor-
dance dataset and (bottom row) the CAD120 dataset.

timate a depth map and surface normals for a scene and a
single-label CNN for semantic segmentation. The feature
maps are then merged to predict affordances maps.

Weakly-supervised learning for semantic image segmen-
tation has been investigated in several works. In this con-
text, training images are only annotated at the image-level
and not at pixel-level. For instance, [36] formulates the
weakly supervised segmentation task as a multiple instance
and multitask learning problem. Further, [37, 38] incor-
porate latent correlations among superpixels that share the
same labels but originate from different images. [39] sim-
plifies the above formulation by a graphical model that si-
multaneously encodes semantic labels of superpixels and
presence or absence of labels in images. [40] handles noisy
labels from social images by using robust mid-level repre-
sentations derived through topic modeling in a CRF frame-
work. Recently, several weakly supervised approaches have
been proposed for weakly supervised learning of image seg-
mentations. An approach based on a CNN has been pro-
posed in [27]. It uses an expectation-maximization frame-
work to iteratively learn the latent pixel labels of the training
data and the parameters of the CNN. A similar approach
is followed by [29] where linear constraints derived from
weak image labels are imposed on the label prediction dis-
tribution of the CNN. [19] proposes to use class wise re-
gions of interest obtained by an image classification CNN
and conditional random fields for segmentation. [33] fol-
lows a similar approach, but here only a class agnostic fore-
ground mask is calculated. Closest to our work is the single-
label approach [2], which uses an objectness prior, since
it also utilizes keypoint annotations for weakly supervised
learning.

3. Affordance Datasets

There are not many datasets with pixelwise affordance
labels. Recently, the NYUv2 RGB-D dataset has been
augmented with coarse affordance labels like walkable
and movable for entire rooms instead of objects [32]. In



Figure 2. Example images with annotations from the proposed CAD120 affordance dataset. Pixels that do not belong to any affordance
are considered as background. Best viewed in color.

contrast, the publicly available RGB-D dataset proposed
by [26] focuses on part affordances of everyday tools. The
dataset consisting of 28,074 images is collected using a
Kinect sensor, which records RGB and depth images at a
resolution of 640 × 480 pixels and provides 7-class pixel-
wise affordance labels for objects from 17 categories. Each
pixel may belong to multiple affordances at the same time.
Each object is recorded on a revolving turntable to cover a
full 360◦ range of views providing clutter-free images of the
object as shown in Fig. 1. While such lab recordings pro-
vide images with high quality, they lack important contex-
tual information such as human-interaction, other objects
and typical background.

We therefore adopt a dataset that contains objects within
the context of human-interactions in a more realistic envi-
ronment. We found the CAD120 dataset [21] to be well tai-
lored for our purpose. It consists of 215 videos in which 8
actors perform 14 different high-level activities. Each high-
level activity is composed of sub-activities, which in turn
involve one or more objects. In total, there are 32 different
sub-activities and 35 object classes. A few images of the
dataset are shown in Fig. 1. The dataset also provides frame
wise annotation of the sub-activity, object bounding boxes
and automatically extracted human pose.

We annotate the affordance labels openable, cuttable,
containable, pourable, supportable, holdable for every 10th

frame from sequences involving an active human-object in-
teraction resulting in 3090 frames. Each frame contains be-
tween 1 and 12 object instances resulting in 9916 objects in
total. We annotate all object instances with pixelwise affor-
dance labels. Since the object bounding boxes in the dataset
are annotated, we perform all experiments on cropped im-

ages after extending the bounding boxes by 30 pixels if pos-
sible in each direction. A few annotated cropped images
from the dataset are shown in Fig. 2. As can be seen, the
appearance of affordances can vary significantly, e.g. visu-
ally distinct object parts like the lid of a box or the door of
a microwave have the affordance label openable. Similarly,
the knife handle and the boxes are holdable.

We report some statistics regarding the annotations with
respect to the cropped images in Fig. 3. Fig. 3(a) shows
that the generic affordance classes supportable and hold-
able occur frequently. The classes pourable and contain-
able also occur quite often due to the kitchen environment.
The class cuttable occurs rarely. Except of the background
class and supportable, the classes cover only a small por-
tion of a cropped image when they are present as shown in
Fig. 3(b). Fig. 3(c) shows that most of the pixels are labeled
as background, i.e. they are not labeled by any affordance
class, but there are also many pixels labeled by two classes.
The dataset is well balanced in terms of the number of im-
ages contributed by each actor with a median of 382 and a
range of 227–606 images per actor. The dataset is publicly
available.1

4. Proposed Method

For semantic image segmentation, CNNs have shown
very good results [6, 7]. For our experiments, we use the
VGG-16 architecture as in [6] and the ResNet-101 as in [7].
In contrast to [6, 7], we do not use an additional CRF. Since
the models [6, 7] do not handle the multilabel case, we have

1https://github.com/ykztawas/
Weakly-Supervised-Affordance-Detection
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(a) Probability of an affordance class to oc-
cur in an image

(b) Image area occupied by an affordance class
given its presence in an image

(c) Percentage of pixels that are annotated by
0, 1 or 2 affordance classes

Figure 3. Statistics of the dataset

Figure 4. Illustration of our approach for weakly supervised affordance detection. The example images are taken from the UMD part
affordance dataset [26]. The first row shows the weak annotations of the training images. The saw is annotated by five keypoints with
affordance labels. The second row shows the prediction of the CNN on an image of the test set. If the CNN is only trained on the keypoint
annotations, the predictions are not very precise. The third row shows the estimated annotation for the training image after the prediction of
the CNN was refined by Grabcut for each affordance class. The last row shows the prediction of the CNN trained on the refined annotations
of the training set. Compared to the second row, the affordances are precisely detected. Best viewed in color.

to modify the architecture. We first describe the learning
procedure in the fully supervised setting and then discuss
the weakly supervised setting.

4.1. Full Supervision

Given an image I with n pixels, we denote the image
pixels as X = {x1, x2, . . . , xn} and the corresponding la-
beling as Y = {yi,l} where yi,l ∈ {0, 1} indicates if pixel
xi is labeled by affordance class l. We denote the set of
affordances as L.

In the fully supervised case, we train the CNN by opti-

mizing the log likelihood given by

J(θ) = logP (Y |I; θ) =
n∑
i=1

∑
l∈L

logP (yi,l|I; θ), (1)

where θ are the parameters of the CNN. A common loss
function for semantic image segmentation is the cross-
entropy based on the output of a final softmax layer. This
does not work in the multilabel case and we define the loss
based on the sigmoid function:

P (yi,l|I; θ) =
1

1 + exp (−fi,l (yi,l|I; θ))
, (2)



where fi,l (yi,l|I; θ) is the output of the CNN at pixel xi and
affordance l without the softmax layer.

4.2. Weak Supervision

While all pixels are labeled in the fully supervised set-
ting, we will have only very few pixels annotated in the
weakly supervised setting. In our setup, weak supervision is
provided in terms of keypoints as illustrated in the first row
of Fig. 4. In this case, the observed variables are image data
X and keypointsZx = {(z1, x1), (z2, x2), . . . }, where xl is
an annotated keypoint with label zl, but the pixel level seg-
mentations Y are latent variables. The concept of weakly
supervised learning consists of estimating Y for the train-
ing images while learning the parameters of the CNN.

We use the available pre-trained models on ImageNet for
VGG-16 and ResNet-101 as initialization for the CNNs and
initialize Ŷ by

ŷi,l =

{
1 if |{(zl, xl)∈Zx : zl=l ∧ |xl − xi|≤σ}| > 0

0 otherwise
(3)

where Zx are the available keypoint annotations. We chose
σ = 40 for the UMD dataset and σ = 50 for the CAD
dataset. In order to learn the parameters θ of the CNN we
maximize

max
θ

n∑
i=1

∑
l∈L

logP (ŷi,l|I; θ). (4)

The predictions of the learned CNN are reasonable but not
very precise as illustrated in the second row of Fig. 4. We
therefore add an additional training stage.

After updating the parameters of the CNN, we re-
compute P (Y |I; θ) for the training images and compute the
probability for the latent variable Y by

P (Y |I, Zx) =
∑
l∈L

P (Y, l|I, Zx) (5)

=
∑
l∈L

P (Y |l, I, Zx)P (l|I, Zx) (6)

≈
∑
l∈L

P (Yl|I; θ)P (l|Zx). (7)

Since we know from Zx if an affordance label l is present,
we have P (l|I, Zx) = P (l|Zx) and

P (l|Zx) =

{
1 if |{(zl, xl)∈Zx : zl=l}| > 0

0 otherwise.
(8)

In (7), P (Yl|I; θ) denotes the probabilities which have been
predicted by the CNN for the affordance class l. In order
to obtain the final annotation Y for the training images we
binarize the predictions by setting

ŷi,l =

{
1 if P (yi,l|I, Zx) > 0.5

0 otherwise.
(9)

While this could be already considered as the final estimate
Ŷ to update the CNN as described in (4), we use Grab-
cut [31] to refine the labels for each affordance l indepen-
dently. To model for each affordance l the color distribution
of the affordance region and the background region, we use
Gaussian mixture models with 6 components. The distri-
bution for the affordance regions is initialized by the pixels
with ŷi,l = 1 and distribution for the background by the pix-
els with ŷi,l = 0. The refinement by Grabcut is illustrated
in the third row of Fig. 4. The final row shows the improved
results of the CNN trained on the training images refined by
Grabcut.

5. Experiments
We first evaluate the fully supervised approach (Sec-

tion 4.1) and compare it with other fully supervised ap-
proaches for affordance detection. We then compare the
discussed weakly supervised setting (Section 4.2) with the
fully supervised baseline and state-of-the-art weakly super-
vised image segmentation methods. For the UMD part af-
fordance dataset, we use the two defined train-test splits for
evaluation. For the first split, which is denoted by cate-
gory split, the object classes are shared among the train-
ing and test set. In the second split, which is denoted by
novel split, the object classes in the test set are not present
in the training set. The second protocol is more difficult
and measures how well the methods generalize across ob-
ject classes. For the CAD120 affordance dataset, we also
propose two splits. For the first split, which we denote by
actor split, we reserve images from actors {5, 9} as test set
and use the images from actors {1, 6, 3, 7, 4, 8} as training
data. For the second split, which we denote by object split,
the training set contains the object classes table, plate, ther-
mal cup, medicine box, microwave, and bowl while the test
set contains all other object classes.

In [26] a ranked weighted F-measure was proposed for
measuring the accuracy for affordance detection. The mea-
sure takes into account that a pixel can have multiple labels,
but assumes that the labels can be ranked. Ranking the la-
bels is often not very intuitive. We therefore also report
the accuracy using per class intersection-over-union (IoU),
which is also known as Jaccard index, for both datasets.

5.1. UMD Part Affordance Dataset

5.1.1 Supervised Setting

In [26], two approaches have been presented for learning
affordances from local appearance and geometric features.
The first approach is based on features derived from a super-
pixel based hierarchical matching pursuit (HMP) together
with a linear SVM and the second approach is based on
curvature and normal features derived from depth data used
within a structured random forest (SRF). We compare two



UMD dataset (category split) Grasp Cut Scoop Contain Pound Support Wgrasp mean

Fully Supervised Ranked F-Measure category split

HMP + SVM [26] 0.15 0.04 0.05 0.17 0.04 0.03 0.10 0.08
DEP + SRF [26] 0.13 0.03 0.10 0.14 0.03 0.04 0.09 0.08
Proposed (VGG) 0.23 0.08 0.18 0.21 0.04 0.08 0.11 0.13

Proposed (ResNet) 0.24 0.08 0.18 0.21 0.04 0.09 0.11 0.14
Fully Supervised IoU category split

HMP + SVM [26] 0.57 0.37 0.70 0.77 0.41 0.49 0.79 0.59
DEP + SRF [26] 0.35 0.15 0.38 0.65 0.18 0.26 0.80 0.40
Proposed (VGG) 0.66 0.77 0.85 0.84 0.64 0.73 0.82 0.76

Proposed (ResNet) 0.71 0.79 0.86 0.86 0.72 0.55 0.84 0.76
Weakly Supervised IoU category split

Proposed (VGG) without Grabcut (Train) 0.30 0.21 0.46 0.48 0.26 0.32 0.50 0.36
Proposed (VGG) 0.46 0.48 0.72 0.78 0.44 0.53 0.65 0.58

Proposed (VGG) + Grabcut (Test) 0.57 0.68 0.73 0.73 0.60 0.66 0.76 0.67
Proposed (ResNet) without Grabcut (Train) 0.29 0.21 0.47 0.50 0.28 0.33 0.50 0.37

Proposed (ResNet) 0.42 0.35 0.67 0.70 0.44 0.44 0.77 0.54
Proposed (ResNet) + Grabcut (Test) 0.52 0.56 0.72 0.72 0.51 0.64 0.76 0.63

Image label [27] 0.06 0.19 0.04 0.22 0.12 0.02 0.08 0.10
Area constraints [27] 0.06 0.04 0.10 0.14 0.22 0.04 0.37 0.14

SEC [19] 0.39 0.16 0.27 0.13 0.35 0.19 0.07 0.22
WTP [2] 0.16 0.14 0.20 0.20 0.01 0.07 0.13 0.13

Table 1. Evaluation of fully and weakly supervised approaches for affordance detection on the UMD part affordance dataset (category
split). Evaluation metrics are weighted F-measure and IoU.

UMD dataset (novel split) Grasp Cut Scoop Contain Pound Support Wgrasp mean

Fully Supervised Ranked F-Measure novel split

HMP + SVM [26] 0.16 0.02 0.15 0.18 0.02 0.05 0.10 0.10
DEP + SRF [26] 0.05 0.01 0.04 0.07 0.02 0.01 0.07 0.04
Proposed (VGG) 0.18 0.05 0.18 0.20 0.03 0.07 0.11 0.12

Proposed (ResNet) 0.16 0.05 0.18 0.19 0.02 0.06 0.11 0.11

Fully Supervised IoU novel split

HMP + SVM [26] 0.29 0.10 0.61 0.74 0.03 0.24 0.63 0.38
DEP + SRF [26] 0.32 0.04 0.23 0.42 0.16 0.22 0.81 0.31
Proposed (VGG) 0.37 0.35 0.65 0.62 0.10 0.52 0.85 0.50

Proposed (ResNet) 0.33 0.51 0.69 0.52 0.09 0.51 0.85 0.50
Weakly Supervised IoU novel split

Proposed (VGG) without Grabcut (Train) 0.16 0.14 0.43 0.45 0.02 0.37 0.40 0.28
Proposed (VGG) 0.27 0.14 0.55 0.58 0.02 0.37 0.67 0.37

Proposed (VGG) + Grabcut (Test) 0.34 0.34 0.65 0.70 0.08 0.54 0.73 0.48

Proposed (ResNet) without Grabcut (Train) 0.16 0.17 0.44 0.40 0.02 0.39 0.44 0.29
Proposed (ResNet) 0.25 0.21 0.62 0.50 0.08 0.43 0.67 0.40

Proposed (ResNet) + Grabcut (Test) 0.34 0.70 0.78 0.62 0.09 0.72 0.67 0.56
Image label [27] 0.04 0.00 0.09 0.16 0.01 0.02 0.32 0.09

Area constraints [27] 0.05 0.00 0.04 0.16 0.00 0.01 0.32 0.09
SEC [19] 0.12 0.03 0.06 0.23 0.07 0.12 0.25 0.13
WTP [2] 0.11 0.03 0.18 0.11 0.00 0.02 0.23 0.10

Table 2. Evaluation of fully and weakly supervised approaches for affordance detection on the UMD part affordance dataset (novel split).
Evaluation metrics are weighted F-measure and IoU.

network architectures. The first one is based on the VGG-16
architecture [34]. For training, we use a mini-batch of 3 im-
ages and an initial learning rate of 0.001 (0.01 for the final
classifier layer), multiplying the learning rate by 0.1 after
every 2000 iterations. We use a momentum of 0.9, weight
decay of 0.0005 and run for 6000 iterations. Additionally,
we use the ResNet-101 architecture [7]. Here we main-
tained all the hyperparameters from the original paper. The
performance comparison on both IoU and ranked weighted
F-measure metrics are shown in Tables 1 and 2.

As can be observed, the trend in performance is similar
irrespective of the evaluation metric. The HMP+SVM outper-

forms the DEP+SRF combination, indicating that learning
features from data is more effective than learning complex
classifiers on handcrafted features. Our approach based on
the VGG architecture as well as the ResNet architecture in
turn outperform HMP+SVM confirming the effectiveness of
end-to-end learning. In average, both architectures achieve
similar results for both protocols.

When we compare the results in Tables 1 and 2, which
correspond to the protocols category split and novel split,
we observe a lower accuracy for the second protocol that
evaluates the generalization across object classes. For the
supervised case, the accuracy drops from 0.76 to 0.50. The



affordance class pound has the largest drop. By looking
at the data, we observe that only instances of the two ob-
ject classes hammer and mallet are marked by pound in the
training data. In the test data, the affordance appears for
the object classes tenderizer, cup, and saw. While for ham-
mer and mallet, the entire object is labeled by pound, the
tenderizers are only partially labeled as pound. As a con-
sequence, our approach tends to label also the entire ten-
derizer as pound. Our approach also does not label parts of
a cup as pound since mugs, which are in the training set,
are not labeled by pound. In general, the method needs to
observe enough variation in the training data since it might
otherwise overfit to an object class.

5.1.2 Weakly Supervised Setting

In case of weak supervision, we evaluate our approach for
the VGG architecture and the ResNet architecture. For the
VGG architecture we used the same hyperparameters as for
supervised learning. For ResNet, we reduced the number of
iterations from 20000 to 5000 to reduce the training time.

First, we evaluate the impact of the additional Grab-
cut step during training as discussed in Section 4.2.
We denote the results without the Grabcut step by VGG
without Grabcut(Train) and ResNet without
Grabcut(Train). The accuracy drops drastically com-
pared to our proposed method independently of the net-
work architecture as shown in Tables 1 and 2. When
we compare the network architectures VGG and ResNet,
we observe that they perform similarly. While VGG per-
forms slightly better for the category split, ResNet is
slightly better for the novel split. Since the Grabcut
step is essential during training, we also evaluated if an
additional refinement by Grabcut of the predictions of
the CNN on the test images also improves the results.
We denote this setting by VGG+Grabcut(Test) and
ResNet+Grabcut(Test). On the UMD dataset, this
leads to a substantial improvement. For the novel split, the
weakly supervised method ResNet+Grabcut(Test)
even outperforms the ResNet trained with full supervision.
However, we will see in the next section that this is not the
case for the more challenging CAD120 affordance dataset.

We also compare our approach to other methods that
have been proposed for weakly supervised image segmenta-
tion. The methods [19, 27] rely on weaker supervision and
use annotations at an image level, i.e. instead of keypoints
only the classes that are present in an image are given with-
out any additional localization of the classes. The method
[27] uses expectation-maximization to train a CNN. The im-
age label based version rejects all classes proposed by the
CNN during the E-step but not present in the training image.
The area based version uses area priors for foreground and
background. It also rejects classes not present in the image,

but it also encourages that the background fills at least 40%
of the image area and the foreground 20%, respectively. The
approach did not always converge and oscillated instead. In
these cases, we stopped after the 5th iteration. The SEC
method [19] uses attention heat maps from classification
CNNs and conditional random fields. It is currently the best
weakly supervised method on the Pascal VOC dataset, al-
though it only uses image level supervision.

The method [2] uses the same amount of supervision as
our approach, namely keypoints. The method exploits an
objectness prior to improve the accuracy. We observed that
we obtained better results after removing the dropout layer
and replacing the upconvolution layer by the upsampling as
it is used in [27].

The results in terms of IoU are shown in Tables 1 and 2.
SEC outperforms WTP despite of the weaker supervision.
This is also consistent with the numbers reported in [19, 2].
Our approach outperforms the other methods for affordance
detection by a margin. While our approach requires more
supervision than SEC and [27], our approach also outper-
forms WTP, which also uses keypoints as annotations.

5.2. CAD120 Affordance Dataset

5.2.1 Supervised Setting

We first evaluate the fully supervised approaches on the pro-
posed CAD120 affordance dataset, which is discussed in
Section 3. The results are reported in Tables 3 and 4. If
we compare the results for the category split for the UMD
part affordance dataset, which is given in Table 1, with the
actor split in Table 3, we observe that the accuracies on the
proposed CAD120 affordance dataset are lower than the ac-
curacies on UMD since the proposed CAD120 affordance
dataset is more challenging, cf. Fig. 1. While on UMD
both networks achieve 76% mean IoU, they achieve less
than 60% on the proposed dataset. In contrast to UMD, the
accuracy decreases only slightly when comparing the actor
split and object split in Tables 3 and 4. This shows that the
methods generalize very well across object classes for this
dataset while on UMD the methods seem to overfit to the
object categories of the training data due to the controlled
recording setting. The larger drop in accuracy on UMD,
however, can also be explained by annotation inconsisten-
cies across object classes as it is discussed in Section 5.1.1.

5.2.2 Weakly Supervised Setting

We also evaluate our approach on the dataset in the weakly
supervised setting. We perform the same experiments as on
the UMD part affordance dataset. We first compare the re-
sults when Grabcut is removed from the training procedure,
which is denoted by VGG without Grabcut(Train)
and ResNet without Grabcut(Train). The ac-
curacy drops when Grabcut is omitted as shown in Ta-



CAD120 affordance dataset (actor split) Bck Open Cut Contain Pour Support Hold Mean

Fully Supervised IoU category split

Proposed (VGG) 0.81 0.67 0.00 0.54 0.42 0.70 0.64 0.54
Proposed (ResNet) 0.86 0.71 0.00 0.61 0.45 0.79 0.70 0.59

Weakly Supervised IoU category split

Proposed (VGG) without Grabcut (Train) 0.58 0.37 0.10 0.19 0.18 0.18 0.41 0.29
Proposed (VGG) 0.61 0.33 0.00 0.35 0.30 0.22 0.43 0.32

Proposed (VGG) + Grabcut (Test) 0.60 0.23 0.14 0.33 0.28 0.24 0.42 0.32
Proposed (ResNet) without Grabcut (Train) 0.60 0.37 0.08 0.20 0.17 0.22 0.41 0.29

Proposed (ResNet) 0.60 0.25 0.00 0.35 0.30 0.17 0.42 0.30
Proposed (ResNet) + Grabcut (Test) 0.58 0.22 0.0 0.29 0.22 0.20 0.32 0.26

SEC [19] 0.53 0.43 0.00 0.25 0.09 0.02 0.20 0.22
WTP [2] 0.53 0.13 0.00 0.10 0.08 0.11 0.22 0.17

Image label [27] 0.55 0.05 0.01 0.09 0.10 0.02 0.21 0.15
Area constraints [27] 0.53 0.11 0.02 0.09 0.09 0.07 0.15 0.15

Table 3. Evaluation of fully and weakly supervised approaches for affordance detection on the CAD120 affordance dataset (actor split).
The evaluation metric used is IoU.

CAD120 affordance dataset (object split) Bck Open Cut Contain Pour Support Hold Mean

Fully Supervised IoU novel split

Proposed (VGG) 0.76 0.10 0.27 0.60 0.45 0.66 0.60 0.49
Proposed (ResNet) 0.80 0.22 0.50 0.62 0.48 0.75 0.60 0.57

Weakly Supervised IoU novel split

Proposed (VGG) without Grabcut (Train) 0.61 0.13 0.15 0.20 0.18 0.14 0.46 0.27
Proposed (VGG) 0.62 0.08 0.08 0.24 0.22 0.20 0.46 0.27

Proposed (VGG) + Grabcut (Test) 0.62 0.07 0.05 0.21 0.19 0.27 0.41 0.26

Proposed (ResNet) without Grabcut (Train) 0.60 0.10 0.10 0.16 0.16 0.18 0.38 0.24
Proposed (ResNet) 0.69 0.11 0.09 0.28 0.21 0.36 0.56 0.33

Proposed (ResNet) + Grabcut (Test) 0.69 0.09 0.04 0.20 0.18 0.44 0.48 0.30

SEC [19] 0.54 0.04 0.09 0.13 0.09 0.08 0.13 0.16
WTP [2] 0.57 0.01 0.00 0.02 0.09 0.03 0.19 0.13

Image label [27] 0.58 0.00 0.00 0.00 0.00 0.00 0.23 0.12
Area constraints [27] 0.59 0.03 0.03 0.01 0.02 0.02 0.28 0.14

Table 4. Evaluation of fully and weakly supervised approaches for affordance detection on the CAD120 affordance dataset (object split).
The evaluation metric used is IoU.

bles 3 and 4. When we add Grabcut also for inference
on the test images, denoted by VGG+Grabcut(Test)
and ResNet+Grabcut(Test), we observe that Grab-
cut does not improve the accuracy. This is in contrast to the
UMD part affordance dataset where Grabcut during testing
improved the results. The benefit of Grabcut during testing
on UMD can be explained by the monotonous background
as shown in Fig. 1, which simplifies the segmentation.

We also compare our approach to methods for weakly
supervised image segmentation [2, 19, 27]. Among them,
SEC [19] performs best, yielding 22% mean IoU for the
actor split and 16% for the object split. As for UMD, our
approach outperforms SEC and the other methods. While
ResNet achieves 30% mean IoU for the actor split and
33% for the object split, VGG achieves 32% and 27%, re-
spectively. This is consistent with the UMD dataset where
ResNet also generalizes better across object categories in
comparison to VGG.

6. Conclusion

In this work, we have addressed the problem of weakly
supervised affordance detection. To this end, we proposed

a convolutional network that can be trained from weak key-
point annotations. In contrast to object detection and seg-
mentation, affordance detection is a more difficult task due
to the higher abstraction level compared to objects and
the fact that a part can be associated with multiple affor-
dances. For evaluation, we introduced a pixel-wise anno-
tated affordance dataset containing 3090 images and 9916
object instances with rich contextual information which
can be used to further investigate the impact of context
on affordance segmentation. To assess the quality of our
method, we compared our approach to several state-of-the-
art weakly supervised image segmentation methods on the
proposed CAD120 affordance dataset and the UMD part
affordance dataset [26]. On both datasets, our proposed
method achieves state-of-the-art performance both in the
fully supervised setting as well as in the weakly supervised
setting.
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