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The structure of this supplementary material is as follows. In Section 1, we provide
more details regarding the datasets that we are using as well as highlighting the main
differences among them in terms of number of videos, lengths, and segments. In Sec-
tion 2, we provide the implementation details of our architecture; we investigate the
impact of the encoder architecture, our Split-Segment approach, and the constrained K-
Medoids algorithm. Furthermore, we provide the values for our hyper-parameters. Last
but not least, in Section 3, we provide more insight on our proposed grouping losses.

1 Datasets

In Table 1, we provide general information regarding the datasets (GTEA, 50Salads,
and Breakfast) that we use for our experiments. Among these datasets Breakfast has
the largest number of classes and videos. On the other hand, the GTEA and 50Salads
dataset are much smaller in terms of number of samples. The 50Salads dataset has the
longest video sequences among the three datasets, while GTEA contains videos with
the highest number of action segments and repetitions of an action within a video.

Table 1. Statistics of Action Segmentation Datasets.

Dataset # of Classes # of Videos Min Videos Length Max Videos Length Mean Videos Length
Min # of Segments Max # of Segments

in a Video in a Video
GTEA [1] 11 28 634 2009 1115.18 21 44

50Salads [4] 17 50 7555 18143 11551.90 15 26
Breakfast [2] 48 1712 130 9741 2097 2 25

2 Implementation Details

In Figure 1 we show the complete flowchart of our proposed model for the supervised
setup. All of the training and testing experiments were conducted on a single NVIDIA
V100 GPU.

* Equal contribution.
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Impact of Encoder Model. In our proposed algorithm, we utilized a modified version
of the encoder model proposed in [5]. The encoder model proposed by [5] takes advan-
tage of window attention as well as hierarchical representation for the action segmen-
tation task. While we find their proposed encoder model very effective and inspiring,
we made small modifications to the architecture that further improved the performance.
Particularly, we replace the RELU activation layers with GELU activation and add one
more layer of dilated convolution at the end of each encoder block. Fig. 2 shows the side
by side comparison between the encoder block proposed by [5] and our modified ver-
sion. Moreover, Table 2 shows the Edit performance for using a simple encoder block
(default pytorch implementation), the one proposed by [5], and our proposed modified
version (last row in Table 2) on split 1 of GTEA, 50Salad, and Breakfast. While the AS-
Former encoder achieves drastic improvements over the simple encoder, our modified
version further improves over the ASFormer encoder.

Fig. 2. Modifications on Encoder Model. Comparison between the original encoder block pro-
posed by [5] (a) and our modified version (b) with GELU activations instead of RELU and an
additional dilated convolution at the end of the encoder block.

Impact of Split-Segment. Due to a strong imbalance in the duration of action seg-
ments, we propose a split-segment approach for improving the training of the network,
where longer action segments are split up into several shorter ones, so that segment du-
rations are more uniformly distributed; it is important to note that during the inference
we do not use any split-segment and use the video as is. In the timestamp supervised
setting, we do not use split-segment as we do not have access to the ground truth du-
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Table 2. Impact of Encoder Model. Quantitative comparison (Edit score) between the impact
of different encoder blocks on split 1 of GTEA, 50Salads, and Breakfast.

Breakfast 50Salads GTEA

UVAST with
Simple Encoder 70.3 68.7 69.4
ASFormer [5] Encoder 74.6 73.8 88.6
Proposed Encoder 76.1 75.4 93.4

UVAST Timestamp
ASFormer [5] Encoder 72.9 76.6 89.0
Proposed Encoder 74.3 78.3 89.1

ration of segments. For the split-segment approach, we scale the durations to [0, 1] by
dividing the absolute duration of a segment (i.e., the number of frames in the segment)
by the total number of frames in the video. For instance, if the split-segment value
is set to 0.1 it means that the duration of each action segment should be at most 0.1
and segments larger than 0.1 will be split up into smaller segments with maximum
length of 0.1. During inference we merge the repeated actions into one: For exam-
ple, if our model predicts an action sequence of (A,B,B,C,A,A,A) we convert it to
(A,B,C,A). The split-segment value is a hyper parameter that can be selected empiri-
cally for each dataset. In Table 3 we show the impact of using split-segment on split 1 of
the Breakfast, 50Salads, and GTEA datasets, where we report the Edit scores. We can
see that using the split-segment approach helps the model achieve better performances
on all three datasets. Furthermore, in Table 4 we provide an ablation study regarding the
impact of selecting different split-segment values on the split 1 of the Breakfast dataset.

Table 3. Impact of Split-Segment. Quantita-
tive comparison (Edit score) between the im-
pact of using split-segment versus not using it
on split 1 of GTEA, 50Salads, and Breakfast
dataset.

Breakfast 50Salads GTEA
No Split-Segment 75.0 74.2 88.2
With Split-Segment 76.1 75.4 93.4

Table 4. Impact of Split-Segment Values.
Ablation study on split 1 of the Breakfast
dataset regarding the impact of using differ-
ent values for the split-segment on the perfor-
mance (Edit score).

Split-Segment Values
0.05 0.1 0.15 0.17 0.2 0.3

Breakfast 74.9 75.6 76.1 76.1 76.1 75.4

Hyper-Parameters. Table 5 provides a summary of the values for our hyper-
parameters used for training our model. In Table 5, Stage 1 and 2 refer to Section 3.1 and
3.3 of the main paper, where we train the Transformer for auto-regressive segment pre-
diction and alignment Transformer for duration prediction, respectively. Furthermore,
as shown in Table 5, we use a cross-attention smoothing (average pooling on the cross-
attention map along the T dimension) for the 50Salads dataset to reduce the noise in
the cross-attention. Comparing to the Breakfast and GTEA datasets, 50Salads dataset
has the longest videos (see Table 1) with a very low number of training data which
causes the cross-attention map to be noisy. Our proposed cross-attention loss along
with cross-attention smoothing helps to reduce the noise and therefore leads to a better
performance. Similar to previous methods and to have a fair comparison, we use sam-
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pling rate of 2 for the 50Salads dataset since it has higher FPS compared with the other
two datasets [3]. We state the hyper-parameters used in FIFA and Viterbi in Table 6.

Table 5. Hyper-Parameters.

Common Between Stage 1 and 2 Stage 1 (Encoder-Decoder) Stage 2 (Alignment Decoder)
Batch Optimizer LR Epoch sampling rate d d’ τ ′ Dropout Activation Split Segment # Layers in # Layers in Decoder Feedforward Cross-Attention Smoothing # Parameters # Layers in Decoder Feedforward # Parameters
Size Encodeer Decoder Dimension Smoothing Kernel Alignment Decoder Dimension

Breakfast 1 adam 0.0005 800 1 2048 64 0.001 ✓ GELU 0.17 10 2 2048 × × 1.109M 1 1024 0.166M
50Salads 1 adam 0.0005 800 2 2048 64 0.001 ✓ GELU 0.15 10 2 2048 ✓ 31 1.103M 1 1024 0.166M
GTEA 1 adam 0.0005 800 1 2048 64 0.001 ✓ GELU 0.17 10 2 2048 × × 1.102M 1 1024 0.166M

Table 6. Hyper-Parameters used in FIFA and Viterbi.

Dataset FIFA Viterbi
Epochs Sharpness Step-size frame sampling

Breakfast 3000 80 0.01 5
50Salads 3000 80 0.01 2
GTEA 3000 80 0.1 1

K-Medoids. In the main paper, we propose a constrained k-medoids algorithm for
generating pseudo-segmentations given frame-wise input features and timestamps. In
contrast to the vanilla k-medoids clustering algorithm, our constrained version ensures
temporal consistency of the clusters and the resulting temporally continuous clusters
can be unambiguously identified with the class labels of the ground truth transcript.
This is a major advantage over an unconstrained clustering method, which may result in
temporally fragmented clusters, making class label assignment ambiguous. We compare
our constrained k-medoids with the unconstrained version, see Table 7, where we assign
each cluster the class label belonging to the timestamp it was initialized with. Note, that
in this scenario the original ground truth timestamps may end up in completely different
clusters and the class label assignment becomes noisy.

As expected the temporal fragmentation of the clusters leads to over-segmentation
and correspondingly low Edit and F1 scores. However, even on Acc this unconstrained
version suffers due to the noisy label assignment. Furthermore, we show two example
videos from the Breakfast dataset in Fig. 3; again, we observe over-segmentation due to
temporally fragmented clusters. Notably, we observe that the unconstrained k-medoids
performs much better on GTEA compared with Breakfast and 50Salads. One reason for
this can be the frequency of background classes, which are visually distinct to the ac-
tion classes in the video and typically show very static scenes. The frequent background
classes of highly similar features separate the action classes from one another. In con-
trast, Breakfast and 50Salads do not have a frequent background class and relatively
static scenes are assigned to an action class, making it more difficult to separate them.

3 Grouping Loss Terms

The action segmentation datasets mentioned above are highly imbalanced in terms of
the frequency of the actions that appear in the videos and the number of frames each
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Table 7. K-Medoids. We compare our constrained k-medoids algorithm proposed in the main
paper with the vanilla unconstrained version.

Breakfast 50Salads GTEA
F1@ F1@ F1@

{10 25 50} Edit Acc {10 25 50} Edit Acc {10 25 50} Edit Acc
Constrained k-medoids 95.5 87.5 70.0 100.0 76.9 97.5 90.4 75.6 100.0 81.3 99.8 97.7 83.0 100.0 75.3
Unconstrained k-medoids 8.4 6.6 3.8 12.3 53.8 3.8 2.5 1.0 2.3 52.9 71.0 68.2 52.9 59.8 69.6

Fig. 3. K-Medoids. We compare our constrained and the unconstrained k-medoids algorithm
qualitatively. Both algorithms cluster the frame-wise input features, using the ground truth times-
tamps t1, . . . , tn as initialization.

action occupies, which influences the cross-entropy loss on top of the encoder and de-
coder. To cope with the imbalanced classes, we utilize two modified versions of the
cross-entropy loss. The first loss involves averaging the probabilities of each class sep-
arately, and the second one involves averaging the logits of each class before passing
them to Softmax.

To shed more light on the intuition behind the modifications, let us consider a clas-
sifier that classifies N frames xn into C classes. We denote the logits by an and the cor-
responding probabilities by µn = Softmax(an) where Softmax(an)c = ean,c∑C

i=1 ean,i
.

For grouping the frames by class label, we define:

Nc = {n|yn = c} for c ∈ {1, . . . , C}, (1)

µ̄c =
1

|Nc|
∑
n∈Nc

µn, (2)

µ̂c = Softmax(â)c âc =
1

|Nc|
∑
n∈Nc

an,c. (3)

We consider the following three loss terms, where the first is an element-wise cross-
entropy loss and the last two group-wise cross-entropy loss terms, taking the average
outside and inside the Softmax, respectively:

L = −
N∑

n=1

C∑
c=1

ync logµnc , (4)

L̄ = −
C∑

c=1

log µ̄c, (5)

L̂ = −
C∑

c=1

log µ̂c. (6)
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Table 8 summarizes the results for different choices of the grouping loss. We ob-
serve that L̄ works the best for the segment-wise loss on top of the decoder, and L̂ works
best for the frame-wise classification. Note that we report the results of the first stage
training, i.e., transcript prediction only and therefore only report Edit score.

Table 8. Impact of different modifications on the group loss. Ablation study on split 1 of
the 50Salads dataset regarding the impact of using different modifications of the group loss. We
report Edit results for stage 1 training.

Lg-frame Lg-segment 50Salads
L̄, Eq. (5) L̄, Eq. (5) 78.4

L̂, Eq. (6) L̂, Eq. (6) 78.1

L̄, Eq. (5) L̂, Eq. (6) 79.8
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