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Abstract

Video learning is an important task in computer vision
and has experienced increasing interest over the recent
years. Since even a small amount of videos easily com-
prises several million frames, methods that do not rely on
a frame-level annotation are of special importance. In this
work, we propose a novel learning algorithm with a Viterbi-
based loss that allows for online and incremental learning
of weakly annotated video data. We moreover show that
explicit context and length modeling leads to huge improve-
ments in video segmentation and labeling tasks and include
these models into our framework. On several action seg-
mentation benchmarks, we obtain an improvement of up to
10% compared to current state-of-the-art methods.

1. Introduction

A continuously growing amount of publicly available
video data on YouTube or video streaming services, an in-
creased interest in applications such as surveillance, and the
need to analyze continuous video streams e.g. in the domain
of autonomous driving has caused an increased interest in
video learning algorithms.

While approaches for action classification on pre-
segmented video clips already perform convincingly
well [27, 35, 4, 7], realistic applications require the segmen-
tation of temporally untrimmed videos that usually contain
a large variety of different actions with different lengths.
Since acquiring frame-level annotations of such videos is
expensive, methods that can learn from less supervision are
of particular interest. A popular type of weak supervision
are transcripts [1, 11, 16, 24, 12, 13], which provide for each
training video an ordered list of actions, but not the frames
where the actions occur in the video.

In order to learn a model for temporal action seg-
mentation with such weak supervision, CNNs or RNNs
have been combined with an explicit model for the intra-
class temporal progression, e.g. a hidden Markov model
(HMM), and the inter-class context, e.g. with a finite gram-
mar [24, 12, 13]. While these approaches are particularly
suited for videos that contain complex actions and have a
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Figure 1. The input video xT
1 is forwarded through the network

and the Viterbi decoding is run on the output probabilities. The
frame labels generated by the Viterbi algorithm are then used to
compute a framewise cross-entropy loss based on which the net-
work gradient is computed.

huge number of distinct classes, they come with the major
problem that their training requires some heuristical ground
truth. They rely on a two-step approach that is iterated
several times. It consists of first generating a segmenta-
tion for each training video using the Viterbi algorithm and
then training the neural network as in the fully supervised
case using the generated segmentation as pseudo ground-
truth. Consequently, the two-step approach is sensitive to
the initialization of the pseudo ground-truth and the accu-
racy tends to oscillate between the iterations [24]. In con-
trast to theses methods, CTC [10] is a framework for weakly
supervised sequence learning. However, this approach does
not allow to include explicit models for the context between
classes and their temporal progression and therefore does
not achieve state-of-the-art performance.

In this work, we propose a novel learning algorithm that
allows for direct learning using the input video and ordered
action classes only. The approach includes the Viterbi-
decoding as part of the loss function to train the neural net-
work and has several practical advantages compared to the
two-stage approach: it neither suffers from an oscillation
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effect nor requires a frame-wise labeling as initialization or
any kind of pseudo ground-truth, models are learned incre-
mentally, and the accuracy is improved due to direct opti-
mization of the loss function of interest.

As a second contribution, we also propose to use an ex-
plicit length model instead of the widely used HMMs [16,
24, 12, 13], allowing to learn the action classes directly
rather than intermediate HMM states. In an extensive eval-
uation, we show an increase of up to 10% in accuracy com-
pared to existing methods.

2. Related Work
Most existing work on temporal action segmentation fo-

cuses on a fully supervised task [15, 26, 31, 19, 32, 22,
6, 37, 18, 36, 28]. Purely CNN based approaches such as
structured segment networks [37] or temporal convolutional
networks [18] have recently shown convincing results on
several action segmentation benchmarks. Similarly, LSTM-
based approaches have been in focus [36, 28]. However,
formulated in a classical deep learning setting, these ap-
proaches all rely on fully supervised, i.e. framewise anno-
tated training data. Richard and Gall [23] propose the use
of an explicit statistical language model as well as a length
model in a fully supervised formulation. Note that a frame-
level annotation is available, so the estimation of the length
model is straightforward using the ground-truth length from
the training set. Moreover, the length model is learned prior
to the actual action classifier. In our approach, on the con-
trary, no frame-level annotation is provided, so the length
model changes over time during the training process and is
dependent on all other models.

First attempts on weakly supervised learning have been
made by [17, 21], who try to to obtain training examples
based on movie scripts. Duchenne et al. [5] first addressed
the problem of segmenting actions within videos, assuming
that a clip contains not only frames of an action but also
background frames. Current approaches go much further
and try to infer an exact temporal segmentation of multiple
action classes within a single video using weakly annotated
training data only. In [30, 8, 9], web images are used to
guide video learning in a weakly supervised fashion. Wang
et al. [34] use a purely CNN-based approach to weakly su-
pervised action detection, where they use a different type of
supervision, namely short unordered action lists. This ap-
proach is well suited to detect action occurrences in a video
with large background portions but not designed for videos
that contain a huge amount of different action classes as in
our case. A similar kind of supervision using unordered sets
of actions is proposed in [25], who also rely on the model
factorization proposed by [23]. In [1], the task of tempo-
ral action segmentation is relaxed to an alignment task: it
is assumed that an ordered list of occurring actions is also
given for inference, thus it only remains to align those ac-

tion classes to the video frames.
Kuehne et al. [16] interpret the task of learning an action

segmentation system just given an ordered list of occurring
actions as supervision as an instance of a speech recogni-
tion problem, where the videos correspond to the audio sig-
nal and the action classes correspond to words. They apply
a standard HMM-GMM system using a speech recognition
toolkit. Building upon this idea, Richard et al. [24] replace
the GMM by a recurrent neural network but still rely on an
HMM for a coarse temporal modeling. A similar approach
has been proposed by Koller et al. [12, 13] for sign language
recognition, which is a problem closely related to temporal
action segmentation, but with the most significant differ-
ence that the actual temporal boundaries of the recognized
words/classes are not relevant. Note that in contrast to our
proposed method, [16, 24, 12, 13] use a two-step optimiza-
tion scheme that does not allow for direct, sequence-wise
training.

Lin et al. [20] use the CTC approach in combination with
a statistical language model for weakly supervised video
learning. However, they only infer the sequence of actions
occurring in the video. As an extension of the CTC ap-
proach, [11] propose ECTC that takes visual similarities
between the frames into account to avoid degenerate seg-
mentations. In contrast to our method, this approach does
not allow to include explicit context and length models.

3. Temporal Action Segmentation
We address the problem of temporally localizing activi-

ties in a video xT
1 = (x1, . . . , xT ) with T frames. The task

is to find a segmentation of a video into an unknown number
ofN segments and to output class labels cN1 = (c1, . . . , cN )
and lengths lN1 = (`1, . . . , `N ) for each of the N segments.
Using a background class for uninteresting frames, each
frame can be assigned to a segment. For terms of sim-
plicity, we refer to the label assigned to frame xt as cn(t),
where n(t) is the number of the segment frame t belongs to.
Putting the task in a probabilistic setting, we aim to find the
most likely video labeling given the video frames, i.e.

(ĉN1 , l̂
N
1 ) = argmax

cN
1 ,lN1

{
p(cN1 , l

N
1 |xT

1 )
}
. (1)

State-of-the-art methods [32, 23, 16, 12, 24, 13] formu-
late p(cN1 , l

N
1 |xT

1 ) in such a way such that the argmax can
be efficiently computed using a Viterbi-like algorithm. De-
pending on the approach, the models are either trained in a
fully supervised setting [32, 23], which requires a very time-
consuming frame-wise labeling of the training videos, or in
a weakly supervised setting [16, 12, 24, 13]. In the latter
case, the training videos are annotated only by an ordered
sequence of action classes that occur in the video. This
means each training instance is a tuple (xT

1 , c
N
1 ) consist-

ing of a video xT
1 and a transcript sequence c1 → · · · → cN



that defines the ordering of occurring actions. In contrast to
the fully supervised setting, lN1 and accordingly the frame-
level annotation of the training data is unknown.

In this work, we focus on the problem of weakly super-
vised learning and propose two contributions. The first con-
tribution addresses the modeling of p(cN1 , l

N
1 |xT

1 ). Instead
of using a hidden Markov model as in [16, 12, 24, 13],
we explicitly model the length of each action class. The
model is described in Section 5 and in our experiments we
show that the proposed length model outperforms an HMM.
The second contribution is a more principled approach for
weakly supervised learning. This approach is described in
Section 4 and can be used to train any model that uses neural
networks and Viterbi decoding such as [12, 24, 13].

4. NeuralNetwork-Viterbi
Before we describe the proposed learning approach in

Section 4.1, we briefly summarize the training in a fully
supervised setting and the training procedure that is used
in [16, 12, 24, 13] for weakly supervised learning.

In a classical fully supervised training setup, frame-wise
ground-truth annotation is provided for the training data, i.e.
each training video comprises the triple (xT

1 , c
N
1 , l

N
1 ). Since

lN1 and therefore the label cn(t) for each frame xt is known,
the underlying model for Equation (1), which is typically a
neural network, is trained using the frame-level annotations
and, for instance, the cross-entropy loss.

If only the transcript of a training video, i.e. an ordered
sequence of classes that occur in the video, is given, lN1
is unknown and only (xT

1 , c
N
1 ) is provided. Most existing

weakly supervised approaches [16, 12, 24, 13] reduce the
problem to the fully supervised case by generating a pseudo
ground-truth cpseudo

n(t) for all training sequences. A neural net-
work is then trained using a pseudo cross-entropy loss that
is based on the pseudo ground-truth cpseudo

n(t) .
This approach comes with a major problem: The model

learning and transcript decoding (i.e. pseudo ground-truth
generation) are separated and the transcripts cN1 are only
used for the pseudo ground-truth cpseudo

n(t) generation. In other
words, the model learning does not explicitly include the
transcripts. As a workaround, the two steps pseudo ground-
truth generation and model learning are repeated several
times, where the pseudo ground-truth in the first iteration is
a uniform alignment of transcripts to sequence frames. In
later repetitions, the pseudo ground-truth is generated us-
ing a Viterbi decoding on Equation (1) with the previously
trained network. From a practical point, this results in sev-
eral major limitations. As it was reported in [24], the ap-
proach is sensitive to the initialization of the pseudo ground-
truth and the accuracy tends to oscillate between the itera-
tions. Furthermore, the approach processes in each step the
entire dataset, which prevents its use for incremental learn-
ing.

In this work, we propose a new framework that allows
to learn directly from the transcripts. Therefore, we de-
fine a loss that can be computed solely based on the current
model and a single training example (xN

1 , c
N
1 ). The loss is

designed to be zero if

p(cN1 , l
N
1 |xT

1 ) = p(cN1 , l
N
1 |xT

1 , c
N
1 ), (2)

i.e. if the prediction without given transcripts (left hand
side) is equal to the prediction with given transcripts (right
hand side). Particularly, our approach does not require a
precomputed pseudo ground-truth and works directly on the
weakly annotated data.

4.1. Viterbi-based Network Training

Our new training procedure is illustrated in Figure 1.
The training algorithm randomly draws a sequence xT

1 and
its annotation cN1 from the training set. The sequence is
then forwarded through a neural network. Note that there
are no constraints on the network architecture, all com-
monly used feed-forward networks, CNNs, and recurrent
networks can be used. The optimal segmentation by means
of Equation (1) is then computed by application of a Viterbi
decoding on the network output, see Section 5.1 for de-
tails. Since cN1 is provided as annotation, only lN1 needs
to be inferred during training. We switch notation and
write the Viterbi segmentation (cN1 , l

N
1 ) as framewise labels

cn(1), . . . , cn(T ), with which the cross-entropy loss over all
aligned frames is accumulated:

L = −
T∑

t=1

log p(cn(t)|xt). (3)

We chose the cross-entropy loss as it is most common in
neural network optimization. However, our framework is
not bound to a specific loss function. Once the Viterbi seg-
mentation of the input sequence is computed, any other loss
such as squared-error can as well be used.

Based on the sequence loss L, the network parameters
are updated using stochastic gradient descent with the gra-
dient ∇L of the loss. We would like to emphasize that the
algorithm operates in an online fashion, i.e. in each itera-
tion, the loss L is computed with respect to a single ran-
domly drawn training sequence (xT

1 , c
N
1 ) only.

4.2. Enhancing the Robustness

In practice, a sequence xT
1 can easily be a few thousand

frames long. Backpropagating all frames at once can thus
raise problems with the limited GPU memory. Moreover,
online learning algorithms generally benefit from making
a large number of model updates. Therefore, we split the
sequence into multiple mini-batches after the Viterbi seg-
mentation cn(1), . . . , cn(T ) has been computed. These mini-
batches are then backpropagated one-by-one through the
network.



However, traditional online learning algorithms such as
stochastic gradient descent rely on the assumption that

L∗(w) = ExL(x,w) =
∫
L(x,w)dP(x), (4)

where w denotes the model parameters, L∗(w) is the true
loss that is to be optimized, and L(x,w) is the loss of a
single observation x, see e.g. [2]. In each iteration, the ob-
servations x are usually assumed to be drawn independently
from the distribution P(x). In our setting, on the contrary,
all frames in an iteration belong to the same sequence xT

1 ,
so they are not independent. Further subdividing long se-
quences into smaller mini-batches enhances the problem:
multiple updates are made with a strong bias towards (a)
the characteristics of the sequence frames and (b) the lim-
ited amount of classes occurring in the sequence.

We therefore propose to use a buffer B and store recently
processed sequences and their inferred frame labels. In or-
der to make the gradient in each iteration more robust, K
frames from the buffer are sampled and added to the loss
function,

L = −
[ T∑

t=1

log p(cn(t)|xt) +
K∑

k=1

log p(ck|xk)
]
. (5)

Since the neural network is updated gradually in small
steps, most of the frame/label pairs in the buffer still agree
with the current model. However, sampling random frames
from the buffer lessens the above-mentioned sequence bias
from the loss function and increases the robustness of the
optimization algorithm.

5. The Model
We now introduce the specific model used in this paper.

Starting from Equation (1), we factorize the overall proba-
bility p(cN1 , l

N
1 |xT

1 ),

(ĉN1 , l̂
N
1 ) = argmax

cN
1 ,lN1

{
p(cN1 , l

N
1 |xT

1 )
}

= argmax
cN
1 ,lN1

{
p(xT

1 |cN1 , lN1 ) · p(lN1 |cN1 ) · p(cN1 )
}
.

(6)

Assuming conditional independence of the frames, the
argmax term can be further decomposed into

argmax
cN
1 ,lN1

{ T∏

t=1

p(xt|cn(t)) ·
N∏

n=1

p(`n|cn) · p(cn|cn−11 )
}
.

(7)

We refer to p(xt|cn(t)) as visual model, to p(`n|cn) as
length model, and to p(cn|cn−11 ) as context model.

The visual model is a neural network as illustrated in
Figure 1. We use a recurrent network with a single layer
of 256 gated recurrent units and a softmax output. Simi-
lar recurrent networks have also been used in other recent
methods [11, 24], but we train the network as described in
Section 4. Since the outputs of the neural network are poste-
rior probabilities p(c|xt), we follow the hybrid approach [3]
and refactor

p(xt|c) ∝
p(c|xt)
p(c)

, (8)

where p(c) is a class prior. During training, we count the
amount of frames that have been labeled with a class c for
all sequences that have been processed so far. Normalizing
these counts to sum up to one finally results in our estimate
of p(c). The prior is updated after every iteration, i.e. after
every new training sequence. If a sequence annotation cN1
contains a class that has not been seen before, 1/#classes

is used.
As length model, we use a class-dependent Poisson dis-

tribution:

p(`|c) = λ`c exp (−λc)
`!

. (9)

After each iteration, we update λc, which is the mean length
of a segment for class c. If the training sample (xT

1 , c
N
1 )

contains a class that has not been seen before, we set
λc = N/T .

Previous works using context models either rely on an n-
gram language model [23, 13] or a finite set of allowed class
sequences [16, 24]. In order to capture both possibilities, we
use a right-regular stochastic grammar, where all rules are
of the form h̃ → c h with h̃, h denoting nonterminal sym-
bols and a class c that acts as terminal symbol. Such a gram-
mar is a superclass of n-grams and finite grammars. There-
fore, we decode the possible contexts cn−11 as non-terminal
symbols h of the grammar and denote the probability to
hypothesize class c given the context h as p(c|h). During
training, the grammar for a sequence is defined by the tran-
script sequence cN1 . For evaluation, we consider two tasks,
namely action alignment and action segmentation. While
for action alignment a transcript sequence, which defines
the grammar, is also provided for each test sequence, tran-
scripts are not provided for the more difficult task of action
segmentation. In this case, we estimate the grammar from
the transcript annotation of all training videos.

5.1. Viterbi Algorithm Revisited

Finding the best segmentation in terms of Equation (7) is
a challenging problem given the exponentially large search
space over all possible class sequences and lengths. Most
works optimizing a similar quantity rely on the Viterbi al-
gorithm [16, 12, 13, 24] that is based on dynamic program-
ming and is usually used to find the best label sequence of
a hidden Markov model.



In contrast to the standard applications of the Viterbi al-
gorithm, our model additionally features a length model that
makes the optimization more complex. To find the best se-
quence by means of Equation (7), we define an auxiliary
function Q(t, `, c, h) that yields the best probability score
for a segmentation up to frame tmeeting the following con-
ditions:

1. the length of the last segment is `,
2. the class label of the last segment is c,
3. the context (the nonterminal symbol) of the stochastic

grammar is h.

The function can be computed recursively. We distinguish
two cases. The first case is when no new segment is hypoth-
esized, i.e. ` > 1. Then,

Q(t, `, c, h) = Q(t− 1, `− 1, c, h) · p(xt|c), (10)

so the score of the current frame is multiplied with the aux-
iliary function’s value at the previous frame. The second
case is a new segment being hypothesized at frame t, i.e.
` = 1. Then,

Q(t, ` = 1, c, h) =

max
˜̀,c̃,h̃:

h̃→c h ∧
∃h′:h′→c̃ h̃

{
Q(t− 1, ˜̀, c̃, h̃) · p(xt|c) · p(˜̀|c̃) · p(c|h̃)

}
,

(11)

i.e. the maximization is carried out over all possible lengths
˜̀and over all c̃, h̃ that are a right-hand side of a rule in the
grammar and there is another rule that allows a transition
from h̃ to h by hypothesizing class c.

The most likely segmentation of the complete video is
then given by

max
`,c,h

{
Q(T, `, c, h) · p(`|c)

}
. (12)

The optimal class labels cN1 and lengths lN1 can be obtained
by keeping track of the maximizing arguments c̃ and ˜̀from
Equation (11). Additional details and code are available on-
line.1

Complexity. The maximization over ` is bounded by
the length T of the video and the possibilities for c̃, h̃ pairs
are limited by the number of rules in the grammar, so the
cost to compute Q for a frame t is linear in the video length
and the grammar size. Since Q needs to be computed for
all frames, the overall complexity is quadratic in the video
length. This can be prohibitive for long videos. Thus, in
practice, we limit the maximal allowed length to a constant
L, so the runtime of the Viterbi decoding is linear in both,
video length and grammar size. Throughout this work, we
use L = 2, 000.

1https://alexanderrichard.github.io

6. Experiments
We provide results on three different datasets. The main

evaluation (Sections 6.1 to 6.3) is conducted on Break-
fast [14], a large-scale dataset for action segmentation. It
comprises 1, 712 videos (around 3.6 million frames) of per-
sons making breakfast. There are ten dishes such as pan-
cakes or cereals, all with fine-grained annotations like stir
or pour. Overall, there are 48 action classes and an average
of 6.9 action instances per video. The videos range from
some seconds to several minutes in length. We follow [14]
and report frame accuracy averaged over four splits.

The 50 Salads [29] dataset is another video dataset for
action segmentation. Although it only contains 50 videos,
each video is very long and the dataset still has nearly
600, 000 frames annotated with 17 classes, which amount
to an average of 20 action instances per video. As evalu-
ation metric, we report frame accuracy averaged over five
splits.

Hollywood Extended has been introduced in [1] for the
task of action alignment, which we address with our method
in Section 6.5. The dataset comprises 937 videos (nearly
800, 000 frames) and 16 different classes. Each video con-
tains 2.5 action instances on average. As evaluation metric,
we follow [1] and report the Jaccard index as intersection
over detection.

Setup. In accordance with [16, 24, 11], we extract Fisher
vectors of improved dense trajectories [33] over a temporal
window of length 20 for each frame and reduce the result to
64 dimensions using PCA. In all experiments, the recurrent
network is trained for 10, 000 iterations with a learning rate
of 0.01 for the first 2, 500 iterations and 0.001 afterwards.
The minibatch size for backpropagation of the frames of a
training sequence (cf . Section 4.2) is set to 512.

6.1. Robustness

We start with an evaluation of our proposed end-to-end
learning algorithm. As discussed in Section 4.2, we enhance
the loss function (5) by sampling additional frames from a
buffer. In the following, we evaluate the impact of this en-
hancement and its parameters, namely number of sampled
frames and buffer size.

Impact of Old Data Sampling. The first proposition
to enhance the robustness of our algorithm is to maintain
some recently seen sequences and their inferred labeling in
a buffer and to sample a certain amount K of additional
frames from this buffer. This way, we want to ensure that in
each iteration, the overall data and class distribution are suf-
ficiently well captured. For the purpose of analyzing which
value for K is necessary, we assume an unlimited buffer
size, i.e. all previously processed sequences are maintained
in memory. The results are illustrated in Figure 2. If we
do not sample from previously seen sequences, the model
is learned on-line, i.e. the training sequences are directly

https://alexanderrichard.github.io
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accuracy 27.2 35.8 41.8 41.2 43.0 42.5
runtime (h) 3:26 4:09 6:08 8:40 16:15 28:25

Figure 2. Impact of buffered data sampling. A sampling ratio of
1:K means that for each frame of the current sequence, K buffered
frames are sampled. The first column shows the result for on-line
learning, i.e., without a buffer. Runtime is measured on a K80.

processed and not stored in a buffer. In this case, our ap-
proach achieves a frame accuracy of 27.2%. If we use a
buffer and sample frames from it, the accuracy is greatly
increased. Without sampling from the buffer, the model
learns a strong bias towards the characteristics and class dis-
tributions of the current video only. This can be avoided by
adding other frames from different classes and sequences
to the loss function. While a 1:1 sampling, i.e. for each
frame in the sequence one buffered frame is sampled, al-
ready shows a huge improvement, we find the optimization
to stabilize at a sampling rate of 1:25. Thus, we stick to this
value in all remaining experiments.

Impact of the Buffer Size. For the above evaluation,
we assumed an unlimited buffer size, i.e. every processed
sequence could be stored. This may be undesirable in case
of large datasets for two reasons: first, depending on the
amount of training data, it can be prohibitive to maintain all
videos in memory at the same time. Second, the underly-
ing assumption when using the buffer is that the frame/label
pairs that are sampled are still more or less consistent with
the current model. While this assumption is reasonable if
all buffered sequences have been processed only a few iter-
ations ago, it will certainly be wrong if there are frame/label
pairs that have been generated by a model a few thousand
iterations ago. Hence, we evaluate the impact of the buffer
size on the performance, see Figure 3. Since we already
fixed a sampling ratio of 1:25, a buffer size of less than 25
sequences is not reasonable. A too small buffer of less than
100 sequences does not reflect the overall data and class
distributions well enough, resulting in a poor segmentation
performance, cf . Figure 3. With more than 200 buffered
sequences, however, the system stabilizes. Considering the
size of the datasets we use (less than 2, 000 sequences each),
old frame/label pairs being inconsistent with the current
model are not an issue here. Hence, we leave the buffer
size unlimited for the remainder of this work.

Batch Size. In all experiments, we use a batch size of
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Figure 3. Impact of the buffer size for a buffered data sampling
ratio of 1:25. Only a few hundred buffered sequences are already
sufficient for robust learning.
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Figure 4. Effect of the batch size. A small batch and frequent
updates are beneficial for better accuracy.
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Figure 5. Convergence behaviour of our NN-Viterbi algorithm in
both variants, online (red) and with enhanced robustness (blue),
over 10, 000 training iterations.

one. Figure 4 shows that with larger batch sizes the ac-
curacy slowly drops. Our model is continuously updated,
i.e. segmentation information from previous iterations en-
ters the parameter updates, via a running length and prior
estimate as well as through buffered data. Thus, a small
batch size allows for a rapid adaptation of the length model
and prior.

Convergence Behaviour. Figure 5 shows the conver-
gence behaviour of our algorithm as a pure online learn-
ing approach (no buffered data sampling) and with the ro-
bustness enhancements, i.e. with a 1:25 data sampling and
an unlimited buffer size. While both variants of our al-
gorithm start to converge after 2, 000 to 3, 000 iterations,
the robustness enhancement is particularly advantageous at
the beginning of training, adding a huge margin in terms of



accuracy (%) runtime (h)

pseudo ground-truth [24] 23.9 03:45
pseudo gr.-tr. + HMM [24] 33.3 08:12
pseudo gr.-tr. + HMM + LM 36.4 17:21
pseudo gr.-tr. + LM 39.1 06:04
NN-Viterbi + LM 43.0 22:43

Table 1. Impact of length modeling in combination with NN-
Viterbi compared to different models using a pseudo ground-truth.
Training time is measured on a TitanX.

frame accuracy compared to the pure online variant. Note
that [24] report an oscillating accuracy over the iterations of
their two-step scheme. Our NN-Viterbi, in contrast, has a
smooth and stable convergence behaviour for both variants.

6.2. Impact of Direct Learning and Model

In this section, we evaluate the impact of our proposed
algorithm compared to the state-of-the-art methods for
weakly supervised learning which generate pseudo ground-
truth instead of using the transcript annotations directly for
learning as discussed in Section 4, and the advantages of
temporal modeling using an explicit length model rather
than an HMM as discussed in Section 5. The results are
shown in Table 1.

6.2.1 Temporal Modeling: HMM vs. Length Model

Since most recent methods use a hidden Markov model for
the temporal progression throughout the sequence [16, 24,
13], we first show the benefits of modeling the temporal pro-
gression directly with a length model. Although the Viterbi
decoding is more involved in this case, it allows to train
a model directly on the action classes rather than on hid-
den Markov model states. First, note the impact of tem-
poral modeling in general: if we neither use an HMM nor
an explicit length model, the accuracy drastically drops, see
first row of Table 1. When introducing an HMM as in [24],
nearly +10% improvement can be observed. Using our fac-
torization from Equation (7) with the explicit length model,
however, a further gain of +6% is achieved, see fourth row
of Table 1. The reason for the latter is twofold: First, the
training data is aligned to the actual classes rather than to a
huge number of HMM states, so for each class more train-
ing examples are available. Second, the number of HMM
states is fix during network training, while the length model
can dynamically adopt to the learned model during training.
Notably, using a length model on HMM states is not recom-
mendable since HMM states are typically of very short du-
ration and the state-wise length model has no major impact.

6.2.2 Pseudo Ground-Truth vs. Direct Learning

Note that so far, the model is still trained according to
the two-step paradigm of repeatedly generating a pseudo

ps-gt + len

NN-Viterbi
ground truth

ps-gt + len

NN-Viterbi
ground truth

Figure 6. Example segmentations of two videos from the Breakfast
dataset. The two-step scheme with pseudo ground truth and length
model has a bias towards uniform lengths, which prevents short
actions from being detected accurately. The NN-Viterbi approach
is much more robust.

ground-truth and optimizing the network. Using our pro-
posed algorithm, on the contrary, leads to much better re-
sults of 43.0% accuracy, which can be attributed to the di-
rect loss, see Table 1. In case of the two-step scheme, the
model is encouraged to learn the errors that are present in
the generated pseudo ground-truth. Including the transcripts
directly into the model learning, this can be avoided.

In Figure 6, two example segmentations are shown. Re-
call that for the two-step scheme, the initial pseudo ground-
truth is a uniform segmentation. Even after several itera-
tions, a bias towards uniform sequence lengths can be ob-
served. This leads to inaccurate detections of short seg-
ments (upper example segmentation) or even completely
missed segments (lower example segmentation). Our pro-
posed NN-Viterbi learning is much more accurate, specifi-
cally when the segment lengths vary strongly.

6.3. Incremental Learning

In a classical learning setup, usually a fixed training set
is provided. In this case, it is convenient to process all data
in random order. For algorithms working in an online or
incremental fashion, however, an interesting practical ques-
tion is what happens if not all training data is available right
at the beginning. For instance, video data from different ac-
tors is added to the training data over time. Or, training data
for some classes is only available at a later point in time.

We therefore analyze our algorithm under such condi-
tions. To this end, we sorted the training set (a) by the ten
coarse Breakfast activities2 and (b) by the actors, see Ta-
ble 2. In the first case, coarse activities that have been ob-
served in the beginning, e.g. cereals and coffee, hardly lose
any accuracy compared to training with randomly shuffled
data, see Figure 7. Later coarse activities are usually not
learned well and experience a relative drop of about 50%
compared to random shuffling. The comparably small per-
formance drop for milk and tea is due to the fact that these
activities share a lot of fine-grained action classes with ce-
reals and coffee, for instance take cup or pour milk.

Compared to the case where all data is available right at
the beginning and random shuffling is possible, sorting the

2Each video in the Breakfast dataset belongs to one of ten coarse activ-
ities. The activities are compositions of 48 fine-grained action classes.



frame accuracy (%)

sorted by activity 27.9
sorted by actor 41.5
randomly shuffled 43.0

Table 2. Impact of the sequence input order on the robustness of
the algorithm. The videos are sorted (a) by the ten coarse activi-
ties of the Breakfast dataset, (b) by the performing actor, and (c)
randomly.
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Figure 7. Accuracy per coarse activity for randomly shuffled train-
ing data and training data sorted by coarse activities. Left activities
have been seen early during training, right activities later.

data by actor still results in a very good performance. Ap-
parently, learning the correct class distributions right at the
beginning is very important, while changes in appearance
over time - such as changing actors - still allows to robustly
learn the underlying concepts of the classes.

6.4. Comparison to State of the Art

In this section, we compare our approach to state-of-the-
art methods for the same task, see Table 3. While OCDC [1]
is based on a discriminative clustering, [15] and [24] rely
on hidden Markov models and train their systems with the
classical repeated two-step scheme. Their model formula-
tion is comparable to our factorization from Equation (7).
Still, NN-Viterbi outperforms the methods by a large mar-
gin. CTC and ECTC allow to optimize the posterior proba-
bilities p(cN1 |xT

1 ) directly. However, the criterion does not
include explicit models such as a stochastic grammar or a
length model. The assumption is that the underlying re-
current network can learn all temporal dependencies on its
own. As also shown in [11], this can lead to degenerate seg-
mentations particularly when videos are long, since even
LSTMs usually struggle to memorize context over multiple
hundred frames. Human actions typically are rather long,
hence modeling context and length explicitly is very im-
portant and purely CTC based methods struggle to achieve
comparable performance. Lin et al. [20] also use a CTC
based model on Breakfast to infer the sequence of actions
in a video. They evaluate the unit accuracy, i.e. the edit dis-
tance between the inferred action transcript and the ground
truth transcript, and obtain 43.4% unit accuracy. With our
approach, we obtain 55.5% unit accuracy.

Breakfast 50 Salads

OCDC [1] 8.9 −
CTC [11] 21.8 11.9
HTK [15] 25.9 24.7
ECTC [11] 27.7 −
HMM/RNN [24] 33.3 45.5

NN-Viterbi 43.0 49.4

Table 3. Comparison of our method to several state-of-the-art
methods for the task of temporal action segmentation. Results are
reported as frame accuracy (%).

Hollywood Extended

ECTC [11] 41.0
HTK [15] 42.4
OCDC [1] 43.9
HMM/RNN [24] 46.3

NN-Viterbi 48.7

Table 4. Comparison of our method to several state-of-the-art
methods for the task of action alignment. Results are reported as a
variant of the Jaccard Index (intersection over detection).

6.5. Action Alignment

The task of action alignment has first been addressed by
Bojanowski et al. [1]. In contrast to the previous task, the
ordered action sequences cN1 are now also given for infer-
ence. Thus, only the alignment of actions to frames, or in
other words, the lengths lN1 of each segment, need to be in-
ferred. The training procedure is exactly the same as before.

The results are shown in Table 4. Our method outper-
forms the current state-of-the art by +2.4%.

7. Conclusion
We have proposed a direct learning algorithm that can

handle weakly labeled video sequences. The algorithm is
generic and can be applied to any kind of model whose best
segmentation can be inferred using a Viterbi-like algorithm.
Unlike the CTC criterion, our approach allows to include
multiple explicitly modeled terms such as a context model
and a length model, what has been proven crucial for good
performance. Moreover, we showed that using an explicit
length model and optimizing the video classes directly leads
to a huge improvement over related HMM-based methods
that use a pseudo ground-truth. Overall, our method out-
performs the current state-of-the-art by a large margin and
shows a robust and stable convergence behaviour.
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