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Abstract. We evaluate the capabilities of the recently introduced NTraj+
features for action recognition based on 2d human pose on a variety of
datasets. Inspired by the recent success of neural networks for computer
vision tasks like image classification, we also explore their performance
on the same action recognition tasks. Therefore we introduce two new
neural network architectures which both show competitive performance
in comparison to the state-of-the-art. We show that handcrafted features
are still useful in the context of action recognition but as the amount of
training data keeps on growing the era of neural networks might soon
reach the realm of pose based action recognition.

1 Introduction

Action recognition is the task of inferring an action label for a short video clip
where a human performs a single action, e.g. clap hands, sit down and shoot
bow. Due to the progress of 2d human pose estimation [1], the position of most
important body parts like head, hands and feet can be inferred by various tech-
niques. According to the Gestalt principle, the movement of these body parts are
enough for the human brain to recognize what action a human is performing. In-
spired by this principle we try to infer action labels for short video clips by using
only the 2d pose coordinates of the acting person as input to our algorithms.

In [6] the Joint-annotated Human Motion Data Base (Jhmdb) was proposed
to study the impact of human pose for action recognition on a challenging dataset
consisting of videos taken from the Internet. The authors also proposed a feature
descriptor, termed NTraj+, that concatenates many simple descriptors like rela-
tive joint positions, distances between joints, angles defined by triplets of joints
and their first order temporal derivatives. The features, however, have never been
compared with other descriptors. We evaluate NTraj+ on five action datasets
(sub-Jhmdb [6], Jhmdb [6], HdmO05 [9], Florence 3D [10], and PennAction [17])
and compare it with the state-of-the-art.

Since NTraj+ are hand-crafted features, we also investigate two neural net-
work architectures that learn pose features in an end-to-end fashion directly from
the 2d pose data. The first architecture is based on the AlexNet model [8] which
has been proposed for image classification. It comprises a convolution layer that



is applied to the input pose data across seven consecutive time frames. The
output is max pooled and followed by three fully connected layers. The second
architecture uses a hierarchical body part model and is inspired by an approach
for action recognition from 3d pose data [4]. It applies a convolution and max
pooling to each of the five body parts separately, i.e. trunk, right arm, left arm,
right leg, left leg. Afterward the individual body part layers are successively
combined to form a full body layer topped by two fully connected layers.

2 Related Work

Until now current state-of-the-art action recognition baselines for RGB-videos
rely on low-level features such as dense trajectories, which is a feature vector en-
coding the movement of interest points tracked using optical flow and augmented
by appearance features such as HOG [14, 15]. CNN architectures used to extract
high quality appearance features and trained on optical flow further helped
to enhance action recognition performance [11,3]. Due to stronger and CNN
based features, human pose estimation has also made significant advances [12].
Given stronger pose estimates, the paradigm of using low level features for action
recognition might soon draw to a close. As Jhuang et al. [6] have shown, high
quality pose estimates have the potential of outperforming low-level features
on the task of action recognition. The area of pose based action recognition is
partly decoupled from pose estimation since pose information can be retrieved
in multiple ways (e.g. kinect sensor, motion capturing). Remarkably dissimilar
approaches achieve state-of-the-art results on data from RGB-D sensors. Vemu-
lapalli et al. [13] introduce a pose feature representation as points in a Lie group
and achieve state-of-the-art results on datasets such as Florence 3D-Action. Du
et al. [4] designed a hierarchical recurrent neural network that performs inner
product operations on separate body parts which are subsequently fused to a
full body model. They use bidirectional recurrent neural networks and LSTM
units to combine the frames of each action sequence temporally. Zhang et al. [17]
introduce a volumetric, x-y-t, patch classifier to recognize and localize actions.

3 Methodology

We evaluate three different approaches for action recognition. The first approach
is the method proposed in [6]. It extracts NTraj+ features and uses a non-linear
SVM for classification. The approach is described in Section 3.1. In Section 3.2,
we introduce a neural network with fully connected layers and in Section 3.2 we
introduce a neural network that models the hierarchical structure of the human
body. The neural networks can be applied to pose data directly or to the NTraj+
features. For all neural network computations we used the publically available
caffe library [7].



3.1 NTraj+, Bag-of~Words and SVM (BOW)

In the work [6], NTraj+ features have been introduced for action recognition. It
combines a variety of descriptors that are extracted from a sequence of 2d human
pose. In the original paper, the pose is scale normalized where the scale is given
by the annotation tool. In general, the scale is unknown and we therefore do not
normalize the pose by scale. The descriptors can be extracted from an arbitrary
skeleton. In the following, we describe the features for a skeleton with 15 joints.

1. The first part consists of a 30 dimensional vector containing the x and y
positions of the 15 joints relative to the root joint, i.e., the head.

2. The distance between each pair of joints (3, §), i.e., || (s, ¥i) — (z;,y;) ]|, yields
(125) = 105 descriptors.

3. The orientation of each pair of joints (4, 5), i.e., arctan(g::zj
(125) = 105 descriptors.

4. For each triplet of joints (4,7, k), an angle is computed for each joint i,
J, and k by arccos(uj; - ug;), arccos(u;; - Uy;), and arccos(u,y - u;;) with

u;; = % This results in 3 x (%) = 1,365 descriptors.

), yields

This gives a 1,605 dimensional feature vector f. In addition first order temporal
derivatives are computed over a trajectory of length 7', which is subsampled with
step size s:

(ft+s _fta"'v.ft-‘rks _ft+(k71)s) (1)

with k& € [1,...,[Z]]. This results in 3,210 feature descriptors. In addition,
dyets AYepre \\ s

(arctan(dz%:;), . ,arctan(dz%:s)) is added where dziygs = Tpiks — Tog(h-1)s-

This gives additional 15 descriptors summing up to 3,225 descriptors.

For each descriptor, a codebook is generated by running k-means 10 times
on all training samples and choosing the codebook with maximum compactness.
These codebooks are used to extract a histogram for each descriptor type and
video. For classification, an SVM classifier in a multi-channel setup is used. To
this end, for each descriptor type f, a distance matrix Dy is computed that con-
tains the y?-distance between the histograms (hlf, h;) of all video pairs (v;,v;).
The kernel matrix for classification is then given by

1 Ds(hl,h])
K(v;i,v;) = exp 7 7f] (2)
7 14

where 1/ is the mean of the distance matrix D ¢. For classification, an SVM is
trained in a one-vs-all setting.

3.2 Fully Connected Neural Network (FC)

We concatenate the pose of T' = 7 consecutive frames with a step size of 3 be-
tween the frames. Figure 1 a) shows a sketch of the network architecture. The
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Fig. 1. Architecture of a) the “fully connected” (FC) and b) the hierarchical neural
network (HR). Specifications of both neural network architectures: Input is a sequence
of either pose coordinates or NTraj+ features computed from 7 consecutive frames of
the video sequence with a step size of 3 between the frames. “conv” is a convolution
filter applied to every of the 7 input frame separately. Max pooling with kernel size
7 is performed after each convolution. “fc¢” signifies a fully connected layer. “relu” is
a rectified linear unit. “drop” stands for dropout which is set to 50 % chance. “hu”
signifies the number of hidden units used in the respective layer.

convolution layer (conv) is applied to all 7 input frames separately. The follow-
ing max pooling forwards only the values of those frames that have maximum
values. The max pooling is followed by three fully connected layers (fc) with a
rectified unit (relu) as nonlinearity. The last fully connected layer is the classi-
fication layer. As loss layer we use hinge loss with L2 regularization. A dropout
layer in front of the classification layer serves for further regularization. All fully
connected layers are initialized using the Xavier heuristic [5] and the convolution
is initialized with random numbers drawn from a Gaussian distribution.

3.3 Hierarchical Neural Network (HR)

For the hierarchical architecture, we structure the joints by body parts as out-
lined in Figure 1 b). The convolution is applied to each body part separately
followed by a dropout layer. Subsequently the body parts are hierarchically com-
bined while applying a fully connected layer after every combination. In the case
of NTraj+ as input feature the features are computed for every body part in-
dividually reducing the dimensionality of NTraj+ features substantially. The
numbers of hidden units used in both neural network architectures can be found
in Figure 1 in the bottom row.
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Fig. 2. Impact of the parameters trajec- Table 1. Specifications of the datasets. a) Pose
tory length (7") and subsampling step size coordinate source. b) Number of action cate-
(s) (legend) on the action recognition ac- gories. c) Number of action sequences. d) Train-
curacy for Jhmdb. ing / testing ratio. ) Number of splits.

4 Experiments

4.1 Datasets

We perform action recognition on five datasets, namely sub-Jhmdb [6], Jh-
mdb [6], Hdm05 [9], Florence 3D [10], and PennAction [17]. All datasets are
transformed into a uniform skeleton consisting of 13 joint locations 4+ neck and
belly. The other thirteen joints are head, shoulders, elbows, wrists, hips, knees
and ankles. Although, Hdm05 and Florence3D provide 3d pose, we only use 2d
projections of the poses. Penn-Action provides 13 joints which we augment with
the locations of neck and belly. The latter are computed as center of mass of
shoulders or hips and shoulders, respectively.

Table 1 summarizes the specifications of each dataset. In the case of Hdm05,
we follow the protocol proposed in [4] and randomly subsample sequences from
the entire dataset. Thus videos of the same actor performing the same action
can occur in both the training and the testing set. This makes the results of
HdmO05 especially prone to overfitting.

4.2 Evaluation of NTraj+ Parameters

Using the SVM as described in Section 3.1, we perform an evaluation of the two
parameters trajectory length T and step size s. In general, the performance has
its peak when the trajectory is subdivided once and the differences are computed
from start middle and the end frame as can be seen from Figure 2. The best
configuration is obtained for T' = 7 and s = 3, which is used for the rest of the
experiments. In general, the NTraj+ features are not sensitive to a particular
parameter choice.

4.3 Different Feature Combinations

For the neural networks, we evaluate different fusion schemes. For all frames in
a video sequence, we extract either a) the feature layer corresponding to the last
fully connected layer before the classification layer, denoted by feats, or b) the



scores of the classification layer using an additional softmax layer, denoted by
scores. For version a) we train a linear SVM (one-vs-all) using Lib-SVM [2].
To aggregate all frames belonging to the same sequence, we evaluated three
different methods, namely the average, max and min computed for each of the K
outputs f of the neural network over all N frames belonging to the same video:

XN
a =5 O falh) 3
M, = max (k) (4)

This is then concatenated to obtain one feature vector per video:

(al,...,aK) (6>
(Ml,...,MK) (7)
(My, ..., Mg, mq,...;mg, a1, ..., 0K ). (8)

In case of a), it is then used to train the linear SVM.
The same aggregation schemes are applied for b) for each class score
¢n €[1,2,...,C]. The action label ¢ for a sequence is then obtained by

¢ = argmax a(c) (9)
c=1...C
or ¢=argmaxM(c). (10)
c=1...C

Table 2 and 3 show that generally using the CNN features combined with
max aggregation scheme performs best. Only in the case of pose input data the
min-max-average aggregation performs slightly better. But since pose generally
performs worse than NTraj+ features, we stick to the max aggregation scheme.
It is interesting to note that the neural networks perform better with the hand
crafted NTraj+ features than with the raw pose data.

4.4 Comparisons

Finally we compare the performance of all three methods on all datasets com-
paring pose vs. NTraj+ features as input (see Table 4). We see that in every
experiment the NTraj+ helps to achieve top performance compared to using
pose only. Depending on the dataset, SVM with NTraj+ or FC with NTraj+
performs best. Although most of the results perform slightly less than state-
of-the-art performance, we see that all three approaches are quite robust for a
variety of datasets and perform competitively when they are used with NTraj+
features. It needs to be noted that P-CNN [3] uses the annotation scale, which
is usually not available, and the methods [4] and [13] use 3D pose. Given that
we use only 2d pose, the results obtained by the NTraj+ features are impressive.
On the Penn-Action dataset, the features outperform the state-of-the-art.



sub-Jhmdb|Jhmdb|HdmO05|Florence 3D|Penn Action|Total Acc

FC Max feats 76.7 69.8 | 95.3 89.8 93 84.9

scores 73.6 70.8 93.5 86.3 87.6 82.4

Average feats 73.6 70.4 | 95.1 86.4 90 83.1

scores 74.7 70.8 94.3 87.2 89.1 83.2

Min-Max- feats 74.3 70.7 | 95.8 86.3 91.9 83.8
Average

HR Max feats 73.9 71.8 94.5 88.3 94.1 84.5

scores 71.3 71.9 | 844 87.4 89 80.8

Average feats 74.3 71.3 93.3 87 92.4 83.7

scores 72 72 86.5 88 90.3 81.8

Min-Max- feats 73.9 71.7 | 94.6 88.3 94.1 84.5
Average

Table 2. Comparison of different feature combination schemes for NTraj+ computed
on individual body parts. The best performance is achieved when a 4000 dimensional
feature vector is retrieved from the previous last fully connected layer of a neural
network for every frame in a video sequence. The frames are then combined

sub-Jhmdb|Jhmdb|HdmO5 |Florence 3D|Penn Action|Total Acc

FC Max feats 71.1 65.6 | 90.4 82.7 92.9 80.5

scores 68.6 66.1 80.8 81.5 88.3 77.1

Average feats 69.3 65.7 | 88.1 83.7 90.9 79.5

scores 69.4 65.4 | 83.4 82.3 89.2 77.9

Min-Max- feats 71.5 66.6 90 82.7 92.8 80.7
Average

HR Max feats 71.9 66.2 85.3 82.9 92.8 79.8

scores 67.6 66.9 | 66.8 83.5 79.5 72.9

Average feats 70.7 65 82.9 83.9 90.5 78.6

scores 66.5 65.3 68.7 83 82.1 73.1

Min-Max- feats 70.7 65.5 85.2 83 92.8 79.4
Average

Table 3. Comparison of different feature combination schemes for pose input data

sub-Jhmdb|Jhmdb HdmO05 Florence 3D |Penn Action|Total Acc
BOW |NTraj+ [75.6 £ 2.7 | 76.9 + 4.1|95.4 + 1.1|88.5 + 6.3 |98 86.9
FC NTraj+ |[76.7 £ 6 [69.8 2.6 [95.3 +0.9 |89.8 &£ 7.4 |93 84.9
HR |NTraj+ *|{73.9 &1 71.8 £ 1.2 (945 + 1.3 [88.3 =8.1 |94.1 84.5
FC Pose 71.1 3.4 165.6 £ 1.4 (904 + 2.3 [82.7 £ 7.3 |92.9 80.5
HR |Pose 71.9 £ 4.5 [66.2 £ 2.8 [85.3 £2 82.9 £ 13.7 192.8 79.8
78.2 [3] 77.8 [3] 96.9 [4] 90.9 [13] 85.5 [16]

Table 4. Comparison of all three methods: bag-of-words (BOW), fully connected neu-
ral network (FC), and hierarchical neural network (HR). The frames for each video
sequence are aggregated using the max-feats scheme. (*): For HR, the NTraj+ features
are computed for each body part individually
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Conclusion

We demonstrated that NTraj+ is a robust pose feature descriptor that enhances
action recognition performance across a variety of datasets. Further we could
show that relatively shallow neural network architectures already achieve perfor-
mances close to the state-of-the-art suggesting the need for further investigation
into that domain.

The work was partially supported by the ERC grant ARCA (677650).
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