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Abstract. We introduce FIFA, a fast approximate inference method for
action segmentation and alignment. Unlike previous approaches, FIFA
does not rely on expensive dynamic programming for inference. Instead,
it uses an approximate differentiable energy function that can be min-
imized using gradient-descent. FIFA is a general approach that can re-
place exact inference, improving its speed by more than 5 times while
maintaining its performance. FIFA is an anytime inference algorithm
that provides a better speed vs. accuracy trade-off compared to exact in-
ference. We apply FIFA on top of state-of-the-art approaches for weakly
supervised action segmentation and alignment as well as fully supervised
action segmentation. FIFA achieves state-of-the-art results for most met-
rics on two action segmentation datasets.

Keywords: Video Understanding · Action Segmentation · Approximate
Inference.

1 Introduction

Action segmentation is the task of predicting the action label for each frame
in the input video. Action segmentation is usually studied in the context of
activities performed by a single person, where temporal smoothness of actions
are assumed. Fully supervised approaches for action segmentation [23,1,28,36]
already achieve good performance on this task. Most approaches for fully su-
pervised action segmentation make frame-wise predictions [23,1,28] while trying
to model the temporal relationship between the action labels. These approaches
usually suffer from over-segmentation. Recent works [36,14] try to overcome
the over-segmentation problem by finding the action boundaries and temporally
smoothing the predictions inside each action segment. But these post-processing
approaches still can not guarantee temporal smoothness.

Action segmentation inference is the problem of making segment-wise smooth
predictions from frame-wise probabilities given a known grammar of the actions
and their average lengths [32]. The typical inference in action segmentation in-
volves solving an expensive Viterbi-like dynamic programming problem that
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finds the best action sequence and its corresponding lengths. In the literature,
weakly supervised action segmentation approaches [19,31,32,27,34] usually use
inference at test time. Despite being very useful for action segmentation, the
inference problem remains the main computational bottleneck in the action seg-
mentation pipeline [34].

In this paper, we propose FIFA, a fast anytime approximate inference pro-
cedure that achieves comparable performance with respect to the dynamic pro-
gramming based Viterbi decoding inference at a fraction of the computational
time. Instead of relying on dynamic programming, we formulate the energy func-
tion as an approximate differentiable function of segment lengths parameters and
use gradient-descent-based methods to search for a configuration that minimizes
the approximate energy function. Given a transcript of actions and the corre-
sponding initial lengths configuration, we define the energy function as a sum
over segment level energies. The segment level energy consists of two terms: a
length energy term that penalizes the deviations from a global length model and
an observation energy term that measures the compatibility between the current
configuration and the predicted frame-wise probabilities. A naive approach to
model the observation energy would be to sum up the negative log probabilities
of the action labels that are defined based on the length configuration. Neverthe-
less, such an approach is not differentiable with respect to the segment lengths.
In order to optimize the energy using gradient descent-based methods, the ob-
servation energy has to be differentiable with respect to the segment lengths. To
this end, we construct a plateau-shaped mask for each segment which temporally
locates the segment within the video. This mask is parameterized by the segment
lengths, the position in the video, and a sharpness parameter. The observation
energy is then defined as a product of a segment mask and the predicted frame-
wise negative log probabilities, followed by a sum pooling operation. Finally, a
gradient descent-based method is used to find a configuration for the segment
lengths that minimizes the total energy.

FIFA is a general inference approach and can be applied at test time on top
of different action segmentation approaches for fast inference. We evaluate our
approach on top of the state-of-the-art methods for weakly supervised temporal
action segmentation, weakly supervised action alignment, and fully supervised
action segmentation. Results on the Breakfast [17] and Hollywood extended [4]
datasets show that FIFA achieves state-of-the-art results on most metrics. Com-
pared to the exact inference using the Viterbi decoding, FIFA is at least 5 times
faster. Furthermore, FIFA is an anytime algorithm which can be stopped after
each step of the gradient-based optimization, therefore it provides a better speed
vs. accuracy trade-off compared to exact inference.

2 Related Work

In this section we highlight relevant works addressing fully and weakly supervised
action segmentation that have been recently proposed.



FIFA: Fast Inference Approximation for Action Segmentation 3

Fully Supervised Action Segmentation. In fully supervised action segmentation,
frame-level labels are used for training. Initial attempts for action segmenta-
tion applied action classifiers on a sliding window over the video frames [33,16].
However, these approaches did not capture the dependencies between the action
segments. With the objective of capturing the context over long video sequences,
context free grammars [35,30] or hidden Markov models (HMMs) [24,18,21]
are typically combined with frame-wise classifiers. Recently, temporal convolu-
tional networks showed good performance for the temporal action segmentation
task using encoder-decoder architectures [23,26] or even multi-stage architec-
tures [1,28]. Many approaches further improve the multi-stage architectures by
applying post-processing based on boundary-aware pooling operation [36,14] or
graph-based reasoning [13]. Without any inference most of the fully-supervised
approaches therefore suffer from oversegmentation at test time.

Weakly Supervised Action Segmentation. To reduce the annotation cost, many
approaches that rely on a weaker form of supervision have been proposed. Ear-
lier approaches apply discriminative clustering to align video frames to movie
scripts [8]. Bojanowski et al . [5] proposed to use as supervision the transcripts in
the form of ordered lists of actions. Indeed, many approaches rely on this form
of supervision to train a segmentation model using connectionist temporal clas-
sification [12], dynamic time warping [6] or energy-based learning [27]. In [7], an
iterative training procedure is used to refine the transcript. A soft labeling mech-
anism is further applied at the boundaries between action segments. Kuehne et
al . [20] applied a speech recognition system based on a HMM and Gaussian
mixture model (GMM) to align video frames to transcripts. The approach gen-
erates pseudo ground truth labels for the training videos and iteratively refines
them. A similar idea has been recently used in [31,21]. Richard et al . [32] com-
bined the frame-wise loss function with the Viterbi algorithm to generate the
target labels. At inference time, these approaches iterate over the training tran-
scripts and select the one that matches the test video best. By contrast, Souri et
al . [34] predict the transcript besides the frame-wise scores at inference time.
State-of-the-art weakly supervised action segmentation approaches require time
consuming dynamic programming based inference at test time.

Energy-Based Inference. In energy-based inference methods, gradient descent is
used at inference time as described in [25]. The goal is to minimize an energy
function that measures the compatibility between the input variables and the
predicted variables. This idea has been exploited for many structured prediction
tasks such as image generation [9,15], machine translation [11] and structured
prediction energy networks [3]. Belanger and McCallum [2] relaxed the discrete
output space for multi-label classification tasks to a continuous space and used
gradient descent to approximate the solution. Gradient-based methods have also
been used for other applications such as generating adversarial examples [10] and
learning text embeddings [22].
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3 Background

The following sections introduce all the concepts and notations required to un-
derstand the proposed FIFA methodology.

3.1 Action Segmentation

In action segmentation, we want to temporally localize all the action segments
occurring in a video. In this paper, we consider the case where the actions are
from a predefined set of M classes (a background class is used to cover uninter-
esting parts of a video). The input video of length T is usually represented as
a set of d dimensional features vectors x1:T = (x1, . . . , xT ). These features are
extracted offline and are assumed to be the input to the action segmentation
model. The output of action segmentation can be represented in two ways:

– Frame-wise representation y1:T = (y1, . . . , yT ) where yt represents the action
label at time t.

– Segment-wise representation s1:N = (s1, . . . , sN ) where segment sn is rep-
resented by both the action label of the segment cn and its corresponding
length `n, i.e., sn = (cn, `n). The ordered list of actions c1:N is usually re-
ferred to as the transcript.

These two representations are equal and redundant, i.e., it is possible to compute
one from the other. In order to transfer from the segment-wise to the frame-wise
representation, we introduce a mapping α(t; c1:N , `1:N ) which outputs the action
label at frame t given the segment-wise labeling.

The target labels to train a segmentation model, depend on the level of
supervision. In fully supervised action segmentation [1,28,36], the target label
for each frame is provided. However, in weakly supervised approaches [32,27,34]
only the ordered list of action labels are provided during training while their
lengths are unknown.

Recent fully supervised approaches for action segmentation like MSTCN [1]
and its variants directly predict the frame-wise representation y1:T by choosing
the action label with the highest probability for each frame independently. This
results in predictions that are sometimes oversegmented.

Conversely, recent weakly supervised action segmentation approaches like
NNV [32] and follow-up work include an inference stage during testing where
they explicitly predict the segment-wise representation. This inference stage in-
volves a dynamic programming algorithm for solving an optimization problem
which is a computational bottleneck for these approaches.

3.2 Inference in Action Segmentation

During testing, the inference stage involves an optimization problem to find the
most likely segmentation for the input video, i.e.,

c1:N , `1:N = argmax
ĉ1:N ,ˆ̀1:N

{
p(ĉ1:N , ˆ̀

1:N |x1:T )
}
. (1)
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Given the transcript c1:N , the inference stage boils down to finding the seg-
ment lengths `1:N by aligning the transcript to the input video, i.e.,

`1:N = argmax
ˆ̀
1:N

{
p(ˆ̀

1:N |x1:T , c1:N )
}
. (2)

In approaches like NNV [32] and CDFL [27], the transcript is found by iterat-
ing over the transcripts seen during training and selecting the transcript that
achieves the most likely alignment by optimizing (2). In MuCon [34], the tran-
script is predicted by a sequence to sequence network.

The probability defined in (2) is broken down by making independences as-
sumption between frames

p(ˆ̀
1:N |x1:T , c1:N ) =

T∏
t=1

p
(
α(t; c1:N , ˆ̀

1:N )|xt
)
·
N∏
n=1

p
(
ˆ̀
n|cn

)
(3)

where p
(
α(t)|xt

)
is referred to as the observation model and p

(
`n|cn

)
as the

length model. Here, α(t) is the mapping from time t to the action label given
the segment-wise labeling. The observation model estimates the frame-wise ac-
tion probabilities and is implemented using a neural network. The length model
is used to constrain the inference defined in (2) with the assumption that the
lengths of segments for the same action follow a particular probability distribu-
tion. The segment length is usually modelled by a Poisson distribution with a
class dependent mean parameter λcn , i.e.,

p
(
`n|cn

)
=
λ`ncnexp(−λcn)

`n!
. (4)

This optimization is solved using an expensive dynamic programming based
Viterbi decoding [32]. For details on how to solve this optimization problem
using Viterbi decoding please refer to the supplementary material.

4 FIFA: Fast Inference Approximation

Our goal is to introduce a fast inference algorithm for action segmentation. We
want the fast inference to be applicable in both weakly supervised and fully
supervised action segmentation. We also want the fast inference to be flexible
enough to work with different action segmentation methods. To this end, we
introduce FIFA, a novel approach for fast inference for action segmentation.

In the following, for brevity, we write the mapping α(t; c1:N , `1:N ) simply as
α(t). Maximizing probability (2) can be rewritten as minimizing the negative
logarithm of that probability

argmax

{
p(ˆ̀

1:N |x1:T , c1:N )

}
= argmin

{
− log

(
p(ˆ̀

1:N |x1:T , c1:N )
)}

(5)
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Fig. 1. Overview of the FIFA optimization process. At each step in the optimization,
a set of masks are generated using the current length estimates. Using the generated
masks and the frame-wise negative log probabilities, the observation energy is calcu-
lated in an approximate but differentiable manner. The length energy is calculated
from the current length estimate and added to the observation energy to calculate the
total energy value. Taking the gradient of the total energy with respect to the length
estimates we can update it using a gradient step.

which we refer to as the energy E(`1:N ). Using (3) the energy is rewritten as

E(`1:N ) =− log

(
p(`1:N |x1:T , c1:N )

)
=− log

( T∏
t=1

p
(
α(t)|xt

)
·
N∏
n=1

p
(
`n|cn

))

=

T∑
t=1

− log p
(
α(t)|xt

)
︸ ︷︷ ︸

Eo

+

N∑
n=1

− log p
(
`n|cn

)
︸ ︷︷ ︸

E`

.

(6)

The first term in (6), Eo is referred to as the observation energy. This term
calculates the cost of assigning the labels for each frame and is calculated from
the frame-wise probability estimates. The second term E` is referred to as the
length energy. This term is the cost of each segment having a length given that
we assume an average length for actions of a specific class.

We propose to optimize the energy defined in (6) using gradient based opti-
mization in order to avoid the need for time-consuming dynamic programming.
We start with an initial estimate of the lengths (obtained from the length model
of each approach or calculated from training data when available) and update
our estimate to minimize the energy function.

As the energy function E(`1:N ) is not differentiable with respect to the
lengths, we have to calculate a relaxed and approximate energy function E∗(`1:N )
that is differentiable.
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4.1 Approximate Differentiable Energy E∗

The energy function E as defined in (6) is not differentiable in two parts. First
the observation energy term Eo is not differentiable because of the α(t) function.
Second, the length energy term E` is not differentiable because it expects natural
numbers as input and cannot be computed on real values which are dealt with in
gradient-based optimization. Below we describe how we approximate and make
each of the terms differentiable.

Approximate Differentiable Observation Energy Consider a N×T matrix
P containing negative log probabilities, i.e.,

P [n, t] = − log p(cn|xt). (7)

Furthermore, we define a mask matrix M with the same size N × T where

M [n, t] =

{
0 if α(t) 6= cn

1 if α(t) = cn
. (8)

Using the mask matrix we can rewrite the observation energy term as

Eo =

T∑
t=1

N∑
n=1

M [n, t] · P [n, t]. (9)

In order to make the observation energy term differentiable with respect to
the length, we propose to construct an approximate differentiable mask matrix
M∗. We use the following smooth and parametric plateau function

f(t|λc, λw, λs) =
1

(eλs(t−λc−λw) + 1)(eλs(−t+λc−λw) + 1)
(10)

from [29]. This plateau function has three parameters and it is differentiable
with respect to them: λc controls the center of the plateau, λw is the width and
λs is the sharpness of the plateau function.

While the sharpness of the plateau functions λs is fixed as a hyper-parameter
of our approach, the center λc and the width λw are computed from the lengths
`1:N . First we calculate the starting position of each plateau function bn as

b1 = 0, bn =

n−1∑
n′=1

`n′ . (11)

We can then define both the center and the width parameters of each plateau
function as

λcn = bn + `n/2,

λwn = `n/2
(12)
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and define each row of the approximate mask as

M∗[n, t] = f(t|λcn, λwn , λs). (13)

Now we can calculate a differentiable approximate observation energy similar to
(9) as

E∗
o =

T∑
t=1

N∑
n=1

M∗[n, t] · P [n, t]. (14)

Approximate Differentiable Length Energy For the gradient-based op-
timization, we must relax the length values to be positive real values instead
of natural numbers. As the Poisson distribution (4) is only defined on natural
numbers, we propose to use a substitute distribution defined on real numbers.
As a replacement, we experiment with a Laplace distribution and a Gaussian
distribution. In both cases, the scale or the width parameter of the distribution
is assumed to be fixed.

We can rewrite the length energy E` as the approximate length energy

E∗
` (`1:N ) =

N∑
n=1

− log p(`n|λ`cn), (15)

where λ`cn is the expected value for the length of a segment from the action cn.
In case of the Laplace distribution this length energy will be

E∗
` (`1:N ) =

1

Z

N∑
n=1

|`n − λ`cn |, (16)

where Z is the constant normalization factor. This means that the length energy
will penalize any deviation from the expected average length linearly. Similarly,
for the Gaussian distribution, the length energy will be

E∗
` (`1:N ) =

1

Z

N∑
n=1

|`n − λ`cn |
2, (17)

which means that the Gaussian length energy will penalize any deviation from
the expected average length quadratically.

With the objective to maintain a positive value for the length during the op-
timization process, we estimate the length in log space and convert it to absolute
space only in order to compute both the approximate mask matrix M∗ and the
approximate length energy E∗

` .

Approximate Energy Optimization The total approximate energy func-
tion is defined as a weighted sum of both the approximate observation and the
approximate length energy functions

E∗(`1:N ) = E∗
o (`1:N , Y ) + βE∗

` (`1:N ) (18)
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Fig. 2. Speed vs. accuracy trade-off of
different inference approaches applied to
the MuCon method. Using FIFA we can
achieve a better speed vs. accuracy trade-
off compared to frame sampling or hy-
pothesis pruning in exact inference.
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ergy. Accuracy is calculated on the Break-
fast dataset using FIFA applied to the
MuCon approach trained in the weakly
supervised action segmentation setting.

where β is the multiplier for the length energy.
Given an initial length estimate `01:N , we iteratively update this estimate

to minimize the total energy. Figure 1 illustrates the optimization step for our
approach. During each optimization step, we first calculate the energy E∗ and
then calculate the gradients of the energy with respect to the length values.
Using the calculated gradients, we update the length estimate using a gradient
descent update rule such as SGD or Adam. After a certain number of gradient
steps (50 steps in our experiments) we will finally predict the segment length.

If the transcript for a test video is provided then it is used ,e.g,. using the
MuCon [34] approach or in a weakly supervised action alignment setting. How-
ever, if the latter is not known ,e.g., in a fully supervised approach or CDFL
[27] for weakly supervised action segmentation, we perform the optimization for
each of the transcripts seen during training and select the most likely one based
on the final energy value at the end of the optimization.

The initial length estimates are calculated from the length model of each
approach in case of a weakly supervised setting whereas in a fully supervised
setting the average length of each action class is calculated from the training
data and used as the initial length estimates. The initial length estimates are
also used as the expected length parameters for the length energy calculations.

The hyper-parameters like the choice of the optimizer, number of steps, learn-
ing rate, and the mask sharpness, remain as the hyper-parameters of our ap-
proach.

5 Experiments

5.1 Evaluation Protocols and Datasets

We evaluate FIFA on 3 different tasks: weakly supervised action segmentation,
fully supervised action segmentation, and weakly supervised action alignment.
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Results for action alignment are included in the supplementary material. We
obtain the source code for the state-of-the-art approaches on each of these tasks
and train a model using the standard training configuration of each model. Then
we apply FIFA as a replacement for an existing inference stage or as an additional
inference stage.

We evaluate our model using the Breakfast [17] and Hollywood extended [4]
datasets on the 3 different tasks. Details of the datasets are included in the
supplementary material.

5.2 Results and Discussions

In this section, we study the speed-accuracy trade-off and the impact of the
length model. Additional ablation experiments are included in the supplemen-
tary material.

Speed vs. Accuracy Trade-off. One of the major benefits of FIFA is that it is any-
time. It provides the flexibility of choosing the number of optimization steps. The
number of steps of the optimization can be a tool to trade-off speed vs. accuracy.
In exact inference, we can use frame-sampling, i.e., lowering the resolution of the
input features, or hypothesis pruning, i.e., beam search for speed vs. accuracy
trade-off.

Figure 2 plots the speed vs. accuracy trade-off of exact inference compared
to FIFA. We observe that FIFA provides a much better speed-accuracy trade-
off as compared to frame-sampling for exact inference. The best performance is
achieved after 50 steps with 5.9% improvement on the MoF accuracy compared
to not performing any optimization (0 steps).

Impact of the Length Energy Multiplier. For the length energy, we assume that
the segment lengths follow a Laplace distribution. Figure 3 shows the impact
of the length energy multiplier on the weakly supervised action segmentation
performance on the Breakfast dataset. The choice of this parameter depends on
the dataset. While the best accuracy is achieved with a multiplier of 0.05, our
approach is robust to the choice of these hyper-parameters on this dataset. We
further experimented with a Gaussian length energy. However, as shown in the
figure, the performance is much worse compared to the Laplace energy. This
is due to the quadratic penalty that dominates the total energy, which makes
the optimization biased towards the initial estimate and ignores the observation
energy.

Impact of the Length Initialization. Since FIFA starts with an initial estimate
for the lengths, the choice of initialization might have an impact on the per-
formance. Table 1 shows the effect of initializing the lengths with equal values
compared to using the length model of MuCon [34] for the weakly supervised
action segmentation on the Breakfast dataset. As shown in the table, FIFA is
more robust to initialization compared to the exact inference as the drop in
performance is approximately half of the exact inference.
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Inference Method Initialization MoF

Exact MuCon [34] 50.7
Equal 48.8 (-1.9)

FIFA MuCon [34] 51.3
Equal 50.2 (-1.1)

Table 1. Impact of the length initialization for MuCon using exact inference and FIFA
for weakly supervised action segmentation on the Breakfast dataset.

5.3 Comparison to State of the Art

In this section, we compare FIFA to other state-of-the-art approaches.

Weakly Supervised Action Segmentation. We apply FIFA on top of two state-
of-the-art approaches for weakly supervised action segmentation namely Mu-
Con [34] and CDFL [27] on the Breakfast dataset [17] and report the results
in Table 2. FIFA applied on CDFL achieves a 12 times faster inference speed
while obtaining results comparable to exact inference. FIFA applied to MuCon
achieves a 5 times faster inference speed and obtains a new state-of-the-art per-
formance on the Breakfast dataset on most of the metrics.

We also reported the inference speed of ISBA [7] and NNV [32] (since the
source code of D3TW [6] is not available we could not measure its inference
speed) and reported them for the sake of completeness in Table 2. ISBA has the
fastest inference time as during testing it does not perform any optimization.
ISBA makes framewise predictions which results in over-segmentation and low
performance across all metrics.

Method MoF MoF-BG IoU IoD Time (min)

ISBA [7] 38.4 38.4 24.2 40.6 0.01
NNV [32] 43.0 - - - 234
D3TW [6] 45.7 - - - -

CDFL [27] 50.2 48.0 33.7 45.4 -
CDFL∗ 49.4 47.5 35.2 46.4 260
FIFA + CDFL∗ 47.9 46.3 34.7 48.0 20.4 (×12.8)

MuCon [34] 47.1 - - - -
MuCon∗ 50.7 50.3 40.9 54.0 4.1
FIFA + MuCon∗ 51.3 50.7 41.1 53.3 0.8 (×5.1)

Table 2. Results for weakly supervised
action segmentation on the Breakfast
dataset. ∗ indicates results obtained by
running the code on our machine.

Method F1@{10, 25, 50} Edit MoF

BCN [36] 68.7 65.5 55.0 66.2 70.4
ASRF [14] 74.3 68.9 56.1 72.4 67.6

MS-TCN++ [28] 64.1 58.6 45.9 65.6 67.6
FIFA + MS-TCN++∗ 74.3 69.0 54.3 77.3 67.9

MS-TCN [1] 52.6 48.1 37.9 61.7 66.3
FIFA + MS-TCN∗ 75.5 70.2 54.8 78.5 68.6

Table 3. Results for fully supervised ac-
tion segmentation setup on the Breakfast
dataset. ∗ indicates results obtained by
running the code on our machine.

Similarly for the Hollywood extended dataset [4], we apply FIFA to Mu-
Con [34] and report the results in Table 4. FIFA applied on MuCon achieves a 4
times faster inference speed while obtaining results comparable to MuCon with
exact inference.
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Fully Supervised Action Segmentation. In the fully supervised action segmenta-
tion setting, we apply FIFA on top of MS-TCN [1] and its variant MS-TCN++ [28]
on the Breakfast dataset [17] and report the results in Table 3. MS-TCN and
MS-TCN++ do not perform any inference at test time. This usually results in
over-segmentation and low F1 and Edit scores. Applying FIFA on top of these
approaches improves the F1 and Edit scores significantly. FIFA applied on top
of MS-TCN achieves state-of-the-art performance on most metrics.

For the Hollywood extended dataset [4], we train MS-TCN [1] and report
results comparing exact inference (EI) compared to FIFA in Table 5. We ob-
serve that MS-TCN using an inference algorithm achieves new state-of-the-art
results on this dataset. FIFA is comparable or better than exact inference on
this dataset.

Method MoF-BG IoU Time (speedup)

ISBA [7] 34.5 12.6 -
D3TW [27] 33.6 -
CDFL [27] 40.6 19.5 -
MuCon [34] 41.6 -

MuCon∗ 40.1 13.9 53
MuCon + FIFA∗ 41.2 13.7 13 (×4.1)

Table 4. Results for weakly supervised
action segmentation on the Hollywood ex-
tended dataset. Time is reported in sec-
onds. ∗ indicates results obtained by run-
ning the code on our machine.

Method MoF MoF-BG IoU IoD

HTK [19] 39.5 8.4
ED-TCN [7] 36.7 27.3 10.9 13.1
ISBA [7] 54.8 33.1 20.4 28.8

MSTCN [34] (+ EI)∗ 64.9 35.0 22.6 33.2
MSTCN + FIFA∗ 66.2 34.8 23.9 35.8

Table 5. Results for fully supervised ac-
tion segmentation on the Hollywood ex-
tended dataset. ∗ indicates results ob-
tained by running the code on our ma-
chine. EI stands for Exact Inference.

5.4 Qualitative Example

A qualitative example of the FIFA optimization process is depicted in Figure 4.
For further qualitative examples, failure cases, and details please refer to the
supplementary material.

6 Conclusion

In this paper, we proposed FIFA a fast approximate inference procedure for
action segmentation and alignment. Unlike previous methods, our approach does
not rely on dynamic programming-based Viterbi decoding for inference. Instead,
FIFA optimizes a differentiable energy function that can be minimized using
gradient-descent which allows for a fast and accurate inference during testing.
We evaluated FIFA on top of fully and weakly supervised methods trained on
the Breakfast and Hollywood extended datasets. The results show that FIFA is
able to achieve comparable or better performance, while being at least 5 times
faster than exact inference.
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