
Supplemental Material
Architecture. We use a 3D-Resnet18 backbone [2] unless
otherwise noted and pool the feature map into a single 512-
dimensional feature vector. The first 256 neurons serve as
the static feature; the last 256 neurons serve as the dynamic
feature. The MLP head hi has 512 hidden units with ReLU
activation, hs and hn have 256 hidden units. Note that the
MLP heads are removed after self-supervised training and
will not be transferred to downstream tasks.

In Section 4.1 we investigate the influence of different
aggregation functions, namely Sum, Linear, MLP, and
GRU. The Sum simply takes the sum over the non-stationary
features of the short views, i.e.

∑N
i=1 φ

(i)
s . For Linear

and MLP we first concatenate the non-stationary features,
i.e.
(
φ
(1)
s , . . . , φ

(N)
s

)
∈ RN×256, and then apply a linear

layer or an MLP, respectively, mapping from RN×256 to
R256. The MLP has N × 256 hidden units with ReLU acti-
vation. The GRU aggregates the sequence of non-stationary

features
(
φ
(i)
s

)N
i=1

to produce a single aggregated feature

φg ∈ R256 of the same dimension as the non-stationary fea-
tures of the long view. We use a one-layer ConvGRU with
a kernel size of 1.

Datasets. We conduct experiments on four video datasets.
For self-supervised learning, we use videos of Kinetics-
400 [4] and discard the labels. Our copy of the dataset
consists of 234.584 training and 12.634 validation videos.
We evaluate the learned representation on UCF101 [8] and
HMDB51 [7] for action recognition and on the Breakfast
dataset [6] for action segmentation.

Implementation Details. For self-supervised pretraining,
we use the Adam optimizer [5] with weight decay 1e − 5,
a batch size of 128 and an initial learning rate of 1e − 3,
that is decreased by a factor of 10 when the validation loss
plateaus. We set τ = 0.1 and m = 0.99 for the momentum
update of the key encoder. We use a memory bank size of
65.536 as in [3].

For finetuning we sample clips of 16 frames with a tem-
poral stride of 3, and train the model end-to-end using the
standard cross entropy loss. We train for 500 epochs using
the Adam optimizer with an initial learning rate of 1e − 4,
which we reduce at epoch 300 and 400 by a factor of 10.
Weight decay is set to 1e − 5 and we use a dropout of 0.9.
During inference we sample 10 clips from each test video,
and use ten crop. The predictions are averaged to produce
the final prediction of each test video.

Views and Augmentations. We construct long views by
sampling N · L frames with a temporal stride of 3. We
set L = 8 in all experiments, unless otherwise noted and

provide experiments with different values of N . Given a
long view of N · L frames, we divide them into N non-
overlapping sub-sequences of L frames, which serve as
short views. We apply spatial augmentations, such as crop
and horizontal flip, and color augmentations to each view
independently. More specifically, we use random resized
crop with probability p = 1.0, where a spatial patch is se-
lected covering 50% to 100% of the original frame with an
aspect ratio between 3/4 and 4/3. Then, we resize the patch
to the size 128 × 128. Horizontal flip is applied with prob-
ability p = 0.5. For color augmentations we use random
color drop with probability p = 0.1, and apply color jitter
with probability p = 1.0, where brightness, contrast, satu-
ration and hue are shifted. We use a maximum brightness
adjustment of 0.5, contrast of 0.5, saturation of 0.5, and
hue of 0.25. The different views of a video sequence (long
and short views) are augmented independently, but within
a single view, the frames are augmented consistently, i.e.
the same crop, color augmentation, etc. is selected for all
frames of this view. During finetuning we keep the random
crop and horizontal flip, but only apply color jitter as de-
scribed above with a probability of p = 0.3.

Evaluation. To evaluate the learned video representa-
tions, we follow the most widely adopted approach of fine-
tuning: We use the pretrained weights to initialize the 3D-
Resnet18 backbone network, add a randomly initialized lin-
ear layer for classification and then train it end-to-end on
split 1 of UCF101 and HMDB51.

The exact choice of the framework used for finetuning
influences the final accuracies substantially; an apples-to-
apples comparison between different methods is impossi-
ble. For this reason, we additionally provide retrieval re-
sults. Here, the pretrained network serves as a feature ex-
tractor and is kept fixed. We extract features for all videos
in the dataset and compute R@k: For each video in the test
set we retrieve the top k nearest neighbor and count a cor-
rect retrieval if at least one of the videos is of the same class
as the test video. Note that R@k does not measure the pre-
cision of the retrieved results. Therefore, we also present
precision-recall-curves. Here, we compute precision and
recall for all values of k and plot the resulting curves. Preci-
sion and recall are calculated as it is the standard approach
in retrieval. Precision is the fraction of relevant instances
among the retrieved instances, while recall is the fraction of
relevant instances that were retrieved.

Finally, we evaluate our models on another transfer
learning task: action segmentation. We use the pretrained
model to extract features from the video frames of the
Breakfast dataset and subsequently train a temporal action
segmentation model on top of them. Again, this evalua-
tion does not involve any finetuning on the target dataset.
This provides a more elaborate assessment of the learned



N Training top1 Accuracy
UCF101 HMDB51

2 scratch 77.2 53.7
3 scratch 75.5 49.6
4 scratch 76.5 50.9
3 curriculum 77.8 52.1
4 curriculum 78.0 52.3

Table 1. Finetuning results on UCF101 and HMDB51. We train
LSFD using different numbers of sub-sequences N , either from
scratch (scratch) or in a curriculum learning regime (curriculum).
We notice that training from scratch is sub-optimal, compared to
curriculum learning, which we attribute to the increased difficulty
of the task for larger N .

representations. We evaluate the segmentation model via
frame-wise accuracy, segmental edit distance and F1 scores
at overlapping thresholds 10%, 25% and 50%. More specif-
ically, for the F1 scores we determine for each predicted
action segment whether it is a true or false positive by tak-
ing a threshold on the IoU with the ground truth. Then we
compute precision and recall summed over all classes and
compute F1 = 2 prec·recall

prec+recall .

Curriculum learning for larger N . We investigate the
effect different numbers of sub-sequences have on the
learned representations. We keep L = 8 fixed in this ex-
periment and only vary N . We notice that training LSFD
with N > 2 from scratch is sub-optimal, decreasing the
performance on both UCF101 and HMDB51, see Table 1.
We attribute this to the increased difficulty of the task for
larger N , and propose to follow a curriculum learning strat-
egy instead. Here, we use the pretrained weights obtained
from training LSFD with N − 1 to initialize the training
for N . We train N = 2 from scratch for 100 epochs, and
subsequently train N = 3 and N = 4 for 40 epochs with a
reduced learning rate and weight decay of 1e−4 and 1e−6,
respectively. As evident in Table 1, this approach improves
the downstream performance compared with training from
scratch.

Implementation details for MS-TCN. We use the of-
ficial publicly available code of MS-TCN [1] for train-
ing and evaluation. The MS-TCN model consists of four
stages, each containing ten dilated convolutional layers.
We train the model for 295 epochs using the Adam op-
timizer with an initial learning rate of 0.0005 and the
ReduceLROnPlateau learning rate scheduler on the av-
erage loss per epoch. The first layer of MS-TCN adjusts the
dimension of the input features (i.e. 512 for full features and
256 for stationary and non-stationary features in our experi-
ments) using a 1×1 convolution; the remaining layers have

64 channels.

Feature Decomposition Analyses. In this section, we are
aiming to get a better understanding of our feature decom-
position; specifically, we are interested in the difference be-
tween our stationary and non-stationary features. To that
end, we use the pretrained model as a feature extractor
(without the MLP heads hs and hn). To compute similari-
ties between two feature vectors x and y, we use the cosine
similarity:

xT y

‖x‖‖y‖
.

Furthermore, we compute retrieval accuracies among
videos that can be classified with different numbers of
frames. First, we train separate model receiving N =
1, 2, 4, 8, 16, 32 frames as input. Then, we group the videos
into disjoint subsets based on the numbers of frames that are
needed for classification. For N = 1 this subset consists of
all videos that are correctly classified by the model trained
with N = 1 frames. For N = 2 the subset consists of those
video that are correctly classified by the model with N = 2
frames as input, but that were misclassified by the N = 1
model, for N = 4 we exclude the videos from N = 1 and
N = 2, etc.

References
[1] Yazan Abu Farha and Juergen Gall. MS-TCN: Multi-stage

temporal convolutional network for action segmentation. In
CVPR, 2019. 2

[2] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spa-
tiotemporal 3D CNNs retrace the history of 2D CNNs and
ImageNet? In CVPR, 2018. 1

[3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, 2020. 1

[4] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and
Andrew Zisserman. The kinetics human action video dataset.
arXiv, abs/1705.06950, 2017. 1

[5] Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 1

[6] Hilde Kuehne, Ali B. Arslan, and Thomas Serre. The lan-
guage of actions: Recovering the syntax and semantics of
goal-directed human activities. In CVPR, 2014. 1

[7] Hilde Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso
Poggio, and Thomas Serre. HMDB: A large video database
for human motion recognition. In ICCV, 2011. 1

[8] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv, abs/1212.0402, 2012. 1


